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Abstract

Deciding whether two crimes have been committed by the same offender or different

offenders is an important investigative task. Crime linkage researchers commonly use

receiver operating characteristic (ROC) analysis to assess the accuracy of linkage deci-

sions. Accuracy metrics derived from ROC analysis—such as the area under the curve

(AUC)—offer certain advantages, but also have limitations. This paper describes the

benefits that crime linkage researchers attribute to the AUC. We also discuss several

limitations in crime linkage papers that rely on the AUC. We end by presenting sugges-

tions for researchers who use ROC analysis to report on crime linkage. These suggestions

aim to enhance the information presented to readers, derive more meaningful conclu-

sions from analyses, and propose more informed recommendations for practitioners

involved in crime linkage tasks. Our reflections may also benefit researchers from other

areas of psychology who use ROC analysis in a wide range of prediction tasks.
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1 | INTRODUCTION

Crime linkage analysis involves the task of determining whether

a single perpetrator has committed two or more crimes (Bennell &

Canter, 2002). Accurately linking crimes can improve police

investigations in numerous ways. For instance, linking crimes can pro-

vide additional data for investigative techniques such as criminal and

geographic profiling, while also allowing for more efficient use of

police resources (Woodhams et al., 2007). Furthermore, prosecutors

have used crime linkage analysis in criminal trials as inculpatory evi-

dence to establish the guilt of an offender, and as an aggravating fac-

tor to help secure more appropriate sentences for serial offenders

(Labuschagne, 2015).

Crimes committed by the same offender can typically be identi-

fied with a high degree of certainty using physical evidence, such as

DNA or fingerprints. However, this sort of physical evidence is often

unavailable or of too poor quality to be properly analyzed

(Hazelwood & Warren, 2003). When physical evidence is collected,

analysis can also be time-consuming and expensive, potentially lead-

ing to substantial backlogs (Davies, 1991). In contrast, crime linkage

analysis can be carried out using behavioral, temporal, and/or geo-

graphic evidence that can potentially be collected at much lower cost

and analyzed more quickly (Bennell et al., 2014).i

In recent years, there has been an increased focus on studying

the processes underlying the crime linkage task, and in evaluating the

degree to which it is possible to accurately link crimes using behav-

ioral, temporal, and geographic information (Bennell et al., 2014). One

of the most popular methods for assessing the degree to which this

task can be accomplished accurately involves the use of receiver oper-

ating characteristic (ROC) analysis (e.g., Bennell & Canter, 2002;
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Davidson & Petherick, 2020; Tonkin et al., 2011). In fact, since it was

first used for this purpose in 2002 (Bennell, 2002), this method of

analysis has been used in at least 32 other published studies.

In the present paper, we explain how ROC analysis has been used

in the context of crime linkage research and describe some of the ben-

efits of its use. We then move on to the two primary purposes of this

paper. First, we highlight various problems with the way ROC analysis

(and accuracy metrics that are derived from it) has often been used in

this context. Second, we present methods that crime linkage

researchers can use to mitigate these problems in future research. To

help us illustrate points throughout the paper, we present analyses

using a dataset of Finnish serial burglaries examined by Tonkin, Sant-

tila, & Bull (2012) and Tonkin et al. (2019). which we describe in more

detail below. While our focus in this paper is exclusively on crime link-

age analysis, we hope that our reflections are also useful for

researchers from other areas of psychology who use ROC analysis to

examine a wide range of prediction tasks (e.g., diagnostic accuracy,

risk assessment, recognition memory).

2 | USING ROC ANALYSIS TO STUDY THE
CRIME LINKAGE TASK

Researchers have primarily examined the task of crime linkage in one

of two ways. Both involve coding solved crimes for the presence of

behaviors exhibited by offenders. One approach, which we will call

the “series membership task”, is to use this coded information, specifi-

cally the degree of behavioral similarity between crimes, to determine

if it is possible to accurately predict whether a particular offense that

is randomly selected from a database belongs to a known (i.e., solved)

series of crimes included in that database (e.g., Santtila et al., 2004;

Santtila et al., 2005; Santtila et al., 2008). Research using this

approach has generally shown that crimes can be assigned to the cor-

rect series at a higher rate than what would be expected by chance.

For instance, using a sample of 248 arson cases, Santtila et al. (2004)

found that 33% of cases could be correctly linked to the series they

belong to (while only 3% would have been expected by chance).

A second approach to studying crime linkage, and the one that

will be focused on in this paper, has conceptualized the linkage task as

one that requires a decision to be made about whether pairs of crimes

are the work of the same offender or not (e.g., Bennell &

Canter, 2002; Davidson & Petherick, 2020; Tonkin et al., 2011). We

will call this approach the “pairwise linking task”. Like other two-

alternative (yes–no) type diagnostic decisions that must be made

based on ambiguous evidence, the goals when using this approach are

to identify what behaviors are best suited for distinguishing between

crimes committed by the same offender versus different offenders,

and to determine how similar two crimes should be before a decision

is made that they have been committed by the same offender

(i.e., establish an appropriate decision threshold; Bennell, 2005; Swets

et al., 2000). Research has shown that it is possible to achieve both

these goals and to accomplish the pairwise crime linkage task with a

reasonable degree of accuracy (Bennell et al., 2014).

These different aspects of the pairwise crime linkage task are

illustrated in Figure 1, where the probabilities of observing across-

crime similarity scores for crime pairs committed by the same

offender versus different offenders are graphed for a specific set of

behaviors. In this case, across-crime similarity scores refer to scores

derived from some type of similarity index, which is used to quantify

the degree of similarity that exists across a crime pair. When relying

on behavioral information, numerous similarity coefficients can poten-

tially be used for this purpose (e.g., simple matching coefficient, taxo-

nomic similarity index; Ellingwood et al., 2013; Melnyk et al., 2011),

but Jaccard's coefficient is the most commonly used measure for

crime linkage analysis (Bennell et al., 2014).ii When temporal or geo-

graphic information is being relied on, across-crime similarity can be

established using simple measures of time differences or inter-crime

distances. Similarity scores are typically calculated for all crime pairs in

a sample, some of which will have been committed by the same

offender. This is done in an exhaustive fashion usually with the help

of specialized software that creates crime pairs from a sample of

crimes, assigns each pair a code depending on whether the crimes

have been committed by the same versus different offenders, and

then calculates various across-crime similarity scores for each pair

(e.g., B-LINK, which was created by the second author for this specific

purpose; Bennell, 2002).

As is typical in crime linkage research, when across-crime similar-

ity scores are calculated in this fashion, they tend to be larger, on

average, for crime pairs committed by the same offender. Borrowing

from work in other diagnostic fields such as radiology (e.g., Swets

et al., 2000), it has been argued that the degree of overlap between

these distributions indicates how useful the behaviors in question will

be for discriminating between crimes committed by the same offender

versus different offenders (i.e., the more overlap, the more difficult it

will be; Bennell, 2005). For example, if the distributions overlap

completely, it will be impossible for the similarity scores that gave rise

to those distributions to be used for discriminatory purposes because

every score is just as likely to be associated with crimes committed by

F IGURE 1 Hypothetical distributions of across-crime similarity
scores for crimes committed by the same offender (the right
distribution) versus different offenders (the left distribution). The
x-axis represents the degree of similarity (from 0 to 1) between crime
pairs and the y-axis represents the probability that a crime pair
possesses any given degree of similarity.
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the same offender as they are to be associated with crimes committed

by different offenders.

Researchers have also argued that a threshold can be set any-

where along the x-axis in this figure (the dashed line in Figure 1) to

indicate when a “linked decision” should be made for a particular pair

of crimes, and that the decision outcomes resulting from possible

thresholds can be examined to determine an “optimal” threshold

(Bennell, 2005). More specifically, when conceptualizing crime linkage

decisions in this way, there are four possible decision outcomes.

These decision outcomes include: hits (i.e., two crimes committed by

the same offender are correctly linked), correct rejections (i.e., two

crimes committed by different offenders are correctly left unlinked),

false alarms (i.e., two crimes committed by different offenders are

incorrectly linked), and misses (i.e., two crimes committed by the same

offender are incorrectly left unlinked).iii The probabilities of these

decision outcomes depend on the ability of a given set of behaviors to

discriminate between crimes committed by the same offender versus

different offenders (i.e., distribution overlap), but also on the level of

behavioral similarity used to decide when two crimes are similar

enough to one another to warrant being linked (i.e., the placement of

the decision threshold).

These issues can be modelled using ROC analysis (Bennell, 2005).

As illustrated in Figure 2, ROC analysis plots the probabilities of hits

(pH; also known as sensitivity) and false alarms (pFA; also known as

1–specificity) across a variety of decision thresholds, ranging from

lenient thresholds (a low level of across-crime similarity is required to say

that two crimes are linked) to strict thresholds (a high level of across-

crime similarity is required to say that two crimes are linked).iv For each

decision threshold, pH and pFA values are calculated to form a point in

the ROC graph. Connecting these plotted points produces a ROC curve.

The area of the graph that lies underneath the curve (referred to

as the area under the curve or the AUC) ranges from 0 (none of the

graph falls under the curve) to 1 (all the graph falls under the curve) and

is used as a measure of discrimination accuracy (Hajian-Tilaki, 2013).

The less distribution overlap that exists in Figure 1, the better able one

is to discriminate between the alternatives of interest, and the higher

the AUC will be (more hits will be made relative to false alarms, across

the possible decision thresholds). According to Swets (1988), AUCs

between 0.50 and 0.70 “represent a rather low accuracy”, values

between 0.70 and 0.90 indicate values that “are useful for some pur-

poses” (depending on context), and values above 0.90 indicate a “rather
high accuracy” (p. 1292).v In studies that attempt to use behavioral

information to discriminate between crime pairs that have been com-

mitted by the same offender versus different offenders, the range of

reported AUCs is between 0.45 to 0.96 (Bennell et al., 2014).vi

The utility of linkage decisions at any point along a ROC curve,

which indicates performance at a particular threshold of across-crime

similarity, can be captured by examining the pH to pFA ratio at that

point. One can see from Figure 2 that, even for a set of distributions

with a constant degree of overlap (i.e., a single ROC curve), pH and

pFA vary widely and predictably as a function of the decision thresh-

old. When a lenient threshold is set, low levels of across-crime behav-

ioral similarity are required to decide that a crime pair was committed

by the same offender, and pH and pFA will both be very high. In con-

trast, when a strict threshold is set, requiring a higher level of across-

crime similarity to make an affirmative linkage decision, pH and pFA

will both be very low. One of the challenges then in the pairwise crime

linkage task is determining what threshold to use to find an appropri-

ate balance between pH and pFA. We will discuss this challenge, and

ways to potentially resolve it, below.

3 | POTENTIAL BENEFITS OF USING ROC
ANALYSIS TO STUDY THE PAIRWISE CRIME
LINKAGE TASK

Researchers who have used ROC analysis to examine the pairwise

crime linkage task have highlighted numerous benefits associated with

this approach (e.g., Bennell et al., 2009). The primary benefit is that

ROC analysis provides a measure of linking accuracy (the AUC)

that applies across different decision thresholds, rather than being spe-

cific to any single threshold, which may or may not result in desirable

decisions (Bennell et al., 2009). Since the AUC is independent of any

single threshold on a ROC curve, it provides an index of overall linkage

performance, which is a more valid approach for assessing linkage accu-

racy than using threshold specific measures (e.g., percentage of correct

decisions made when using a particular decision threshold).

For example, consider the approach adopted by Canter et al.

(1991) who examined the pairwise crime linkage task. Based on an

analysis of crime scene behaviors exhibited by serial rapists, they cal-

culated across-crime behavioral similarity scores (ranging from

0 [no similarity] to 1 [total similarity]) for each crime pair. They then

selected an arbitrary threshold of ≥0.30 to make linkage decisions

(i.e., any crime pair associated with a similarity score ≥0.30 was

deemed to be linked) and calculated how many correct decisions were

F IGURE 2 A receiver operating characteristic graph indicating the
degree of linking accuracy associated with a set of serial burglary
behaviors exhibited by Finnish serial burglars.
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made. As discussed in more detail by Bennell et al. (2009), this

approach is problematic because the accuracy estimate only applies to

the specific threshold that Canter and his colleagues adopted, and

that threshold may not be desirable. As an alternative, a ROC curve

could have been generated and an AUC calculated by assessing deci-

sion outcomes for multiple thresholds. This would have provided an

estimate of linkage accuracy using Canter et al.'s linking approach,

independent of any specific decision threshold.

Another benefit associated with ROC analysis is that, while the

AUC provides a measure of overall linkage accuracy, the various types

of linkage decisions that can be made (i.e., hits, false alarms, misses,

and correct rejections) are also still captured in the ROC graph for

every decision threshold (i.e., the different points along the ROC

curve; Bennell, 2005). Not only does this allow researchers and practi-

tioners to understand the linkage approach they are using more fully,

but it also provides the opportunity for them to identify decision

thresholds that result in the desired balance between hits and false

alarms. For example, threshold setting techniques have been devel-

oped that consider the base rate of the diagnostic alternative that the

decision maker is interested in (crimes committed by the same

offender in the current case), and the costs and benefits of the possi-

ble decision outcomes (Swets et al., 2000). Returning to the example

of Canter et al.'s (1991) study, this approach could have been used to

determine, for instance, that a threshold of ≥0.40 resulted in a more

desirable balance between hits and false alarms, rather than their

threshold of ≥0.30.

Unlike other metrics that could be used to assess crime linkage

accuracy, such as correlations or odds ratios, another potential benefit

of using ROC analysis that has been highlighted (especially by

researchers outside of the policing context) is that the AUC is unaf-

fected by base rates (e.g., the percentage of crime pairs committed by

the same offender in a particular dataset; Douglas et al., 2012;

Mossman, 1994; Rice & Harris, 1995). This is because a ROC curve

(and the resulting AUC) is based on the proportions of the various

decision outcomes, not their frequency. As such, the AUC can be used

to compare linkage accuracy across datasets characterized by differ-

ent base rates. For instance, serial burglars' crime series in police data-

bases are often longer than those of serial rapists of the sort

examined by Canter et al. (1991), which results in higher base rates of

crime pairs committed by the same offender in serial burglary datasets

(Bennell et al., 2014). However, this would not prevent researchers

from comparing the linking method developed by Canter and his col-

leagues using these two datasets if ROC analysis was relied on.

Finally, ROC analysis is beneficial because it is very flexible

(Bennell et al., 2009). For example, not only can the technique be used

to compare the degree of crime linkage accuracy achieved across

datasets that vary (e.g., by base rates), but this form of analysis can be

used to examine how different analytical procedures perform on the

pairwise crime linkage task. For instance, Tonkin et al. (2017) recently

used ROC analysis to compare the linkage accuracy achieved by three

different statistical techniques when they were applied to stranger

sexual offence data from five different countries—logistic regression

analysis, iterative classification tree analysis, and Bayesian analysis.

Based on an analysis of AUCs, they found that each statistical

approach was able to link crimes reasonably well, but that certain

Bayesian procedures were particularly accurate. If a researcher

wanted to extend this analysis to examine how Canter et al.'s (1991)

simple linking approach compared to these more sophisticated analyt-

ical methods, ROC analysis could easily accommodate those types of

comparisons as well.

4 | PROBLEMS WITH THE WAY ROC
ANALYSIS HAS BEEN USED BY CRIME
LINKAGE RESEARCHERS

While the potential benefits associated with ROC analysis have been

described in numerous publications, less attention has been paid to

potential problems with how this analysis has been used in the crime

linkage context. That being said, certain issues have been discussed in

other contexts (e.g., clinical psychology, medicine, radiology; see

Halligan et al., 2015; Singh et al., 2013; Szmukler et al., 2012), and

these issues also apply to the crime linkage context. For the remainder

of this paper, we will highlight some of the problems that we have

observed in some crime linkage studies and discuss ways that crime

linkage researchers might mitigate these issues in future work.

As indicated previously, to help us illustrate our points, we will

draw on a dataset of Finnish serial burglaries examined by Tonkin,

Santtila, & Bull (2012) and Tonkin et al. (2019). The original dataset

contains information related to 234 solved residential burglaries com-

mitted by 117 serial offenders in Finland between 1990 and 2001.

For each crime, the geographical location is captured along with an

estimated offence date, and behaviors related to the type of property

burgled, the method of entry, and internal searches are available. The

data we used for our analyses consisted of across-crime similarity

scores ranging from 0 to 1 (based on Jaccard coefficients) for each

behavioral domain, for every possible crime pair in the sample

(80 crime pairs committed by the same offender and 12,640 commit-

ted by different offenders). The data also included an outcome vari-

able for each crime pair, indicating whether the pair was actually

committed by different offenders (0) or the same offender (1). For our

purposes here, we use logistic regression analysis to make key points,

with the across-crime similarity scores being used to predict the

binary status of the crime pairs.

At the outset of this section, it is important to clarify two points

to ensure readers understand what the purpose of our analysis

is. Unlike other crime linkage studies, we are not examining the differ-

ent types of behaviors exhibited by Finnish serial burglars to deter-

mine what the most effective predictors are for crime linkage analysis.

We simply use statistical models derived from these behaviors to

highlight potential problems with the way researchers studying these

issues currently use ROC analysis and to illustrate methods for mini-

mizing these problems. For readers interested in the kinds of geo-

graphic, temporal, and/or behavioral measures that have been used in

crime linkage research, and their relative importance, we recommend

reading the primary studies that explored the Finnish serial burglary

4 EWANATION ET AL.
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dataset (e.g., Tonkin et al., 2019; Tonkin, Santtila, & Bull, 2012; Ton-

kin, Woodhams, et al., 2012) and other reviews that have examined

this topic (e.g., Bennell et al., 2014; Davies & Woodhams, 2019; Fox &

Farrington, 2018).

The second issue that is important to discuss is our reliance on

logistic regression analysis to fit our prediction models. We rely

on logistic regression analysis because we believe it will be widely

understood by most readers and because it has been the method of

choice in most research examining crime linkage analysis to date

(Bennell et al., 2014). Our choice to rely on this analysis should not be

taken to mean that this is the only method that can be used for this

purpose, or the best method. Researchers have explored a variety of

analytical approaches to examine crime linkage analysis, including but

not limited to, Bayesian analysis, cluster analysis, decision tree analy-

sis, multidimensional scaling, neural networks, and sequence analysis

(e.g., Bennell et al., 2021; Winter et al., 2013; Winter & Rossi, 2021).

While we do not yet know which of these tools is best suited to the

task, research is beginning to explore these issues (e.g., Tonkin

et al., 2017).

4.1 | Definitional issues

One problem with how ROC analysis is used (and this goes beyond

the crime linkage literature) relates to how the AUC is defined and

interpreted (Douglas et al., 2012; Munro, 2004; Singh et al., 2013).

Technically, the AUC is the percentage of times a randomly selected

event (e.g., a cancerous tumor, a serious storm, a pair of crimes com-

mitted by the same offender) will have a higher (or lower, depending

on the test) diagnostic score than a randomly selected non-event

(e.g., a non-cancerous tumor, a benign weather pattern, a pair of

crimes committed by different offenders). However, this is rarely the

way in which the AUC is defined or interpreted in the research litera-

ture. For example, Singh and his colleagues (2013) conducted a sys-

tematic review exploring how predictive validity is measured in the

field of forensic risk assessment. Although all the reviewed studies

used ROC analysis and included the AUC as a measure of accuracy,

only 34% of the studies defined and interpreted the AUC. Of these

definitions and interpretations, the overwhelming majority were

incorrect.

It is not unusual in published crime linkage studies for the AUC to

also be left undefined (e.g., Bennell & Jones, 2005; Slater et al., 2015;

Woodhams et al., 2019), and this opens up the opportunity for it to

be misinterpreted. One of the most common misinterpretations of the

AUC is believing that it reflects the percentage of cases where

the actual outcome matches the predicted outcome (i.e., percent cor-

rect; Singh et al., 2013). Anecdotally, we have seen the AUC in the

crime linkage context be interpreted in the same way, especially by

police professionals. To illustrate that this interpretation is incorrect,

we analyzed the Finnish burglary dataset.

We first conducted a logistic regression analysis using a combined

similarity score (calculated using all behaviors in the dataset) as the

predictor and linkage status (whether crime pairs were committed by

the same offender versus different offenders) as the outcome, saving

the model's predicted probabilities for each crime pair. We then con-

structed a ROC curve based on these probabilities, which was associ-

ated with a moderately high AUC (AUC = 0.81, SE = 0.03, 95% CI

[0.76–0.87]; see Figure 2). Next, we selected a decision threshold

along the scale of predicted probabilities that capped the probability

of false alarms (pFA) at 0.05. This threshold equated to a

probability level of ≥0.02. Applying this threshold to the Finnish data

resulted in a “predicted linkage status” variable by coding crime pairs

with predicted probability values ≥0.02 as “linked” and the remaining

crime pairs as “unlinked.”
Table 1 presents the contingency table comparing the predicted

linkage status to the actual linkage status. Using data from this table,

we can calculate the proportion of crime pairs that the model cor-

rectly predicted using the selected decision threshold (percent

correct = [33 + 12,012]/[33 + 47 + 628 + 12,012] = 0.95). In other

words, the model predicted the correct linkage status 95% of the time

using the specified decision threshold, a value that clearly does not

correspond with the model's overall AUC of 0.81.

The challenge with using the AUC value of 0.81 in practical con-

texts as a metric for absolute crime linkage accuracy (i.e., the level of

linkage accuracy associated with a given set of crime scene behaviors)

is that it has no practical meaning. Investigators do not randomly

select crime pairs for analysis that have been committed by the same

offender versus different offenders. Alternative approaches will be

discussed below when we describe ways to deal with these defini-

tional challenges.

4.2 | Focusing on accuracy metrics, not decision
outcomes

A related problem we have observed in the published crime linkage lit-

erature is that researchers will often focus on accuracy metrics—

usually the AUC—rather than focusing on decision outcomes. The

challenge with this is that most metrics, by themselves, do not tell us

anything about the actual frequency of specific decision outcomes

(e.g., the frequency of hits or false alarms), which is arguably what

police practitioners will be most concerned with. This is especially

problematic for low base rate decision tasks (e.g., where the event of

interest rarely occurs), like the pairwise crime linkage task. In this task,

crime pairs committed by the same offender will be relatively rare,

TABLE 1 Contingency table comparing predicted and true linkage
status.

Predicted linkage status

True linkage status

TotalLinked Unlinked

Linked 33 (a) 628 (b) 661

Unlinked 47 (c) 12,012 (d) 12,059

Total 80 12,640 12,720

Note: AUC = 0.81; threshold ≥0.02.
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unless the base rate is artificially manipulated. For low base rate tasks,

accuracy metrics such as the AUC can give the illusion that desirable

decisions will typically be made when that is not actually the case

(McClelland, 2011). We discuss this issue in more detail below in the

section on precision-recall graphs.

To illustrate, consider how the data presented above would play

out in a real-life situation. The base rate of crime pairs committed by

the same burglar in a particular jurisdiction is about 0.63%, which is

not unheard of in studies that have examined the pairwise crime link-

age task. Researchers in this jurisdiction have produced a logistic

regression model, which has a moderately high AUC of 0.81. When

using a predicted probability threshold of ≥0.02 the ROC curve asso-

ciated with this regression model suggests that a moderate hit rate

(41%) and a very low false alarm rate (5%) will be achieved. A particu-

lar pair of crimes comes to the attention of an investigator in this juris-

diction. They assess the across-crime similarity for the crime pair and

subjects the resulting similarity score to the regression model. Based

on the predicted probability produced by the model, they decide that

the two crimes are likely to be committed by the same offender

(i.e., the probability exceeded ≥0.02) and assumes their decision is

likely to be accurate given the accuracy metric attached to the deci-

sion model (AUC = 0.81). However, what is the probability that the

crimes they linked are actually the work of the same offender?

To answer this question, we can use the data from the Finnish

dataset again. Recall the data from Table 1 where a threshold of

≥0.02 was applied to the predicted probabilities produced by the

logistic regression model described above. The AUC for this data is

0.81, the base rate is 0.60% (80/12720), the hit rate is 41% (33/80),

and the false alarm rate is 5% (628/12640)—the exact values from the

previous paragraph. Now, consider the 661 linked decisions. Of those

decisions, only 33 (5%) crime pairs are actually committed by the same

offender. Thus, the likelihood that the linked crime pair in question in

the previous paragraph (or any other linked crime pair) actually repre-

sents crimes committed by the same offender is 5%.

This low likelihood value is the direct result of the extremely low

base rate (0.63%) in this sample of data; essentially, the regression

model being used here is given many more opportunities (12,640

vs. 80) to make a false alarm than to make a miss. This example dem-

onstrates that, despite having access to a highly accurate linkage

approach with a reasonably high AUC and a moderate hit to false

alarm ratio, many more false alarms than hits will be made when trying

to detect low base-rate events (like crimes pairs committed by the

same offender). To convey this information to practitioners so they

can make more informed decisions, crime linkage researchers cannot

simply rely on accuracy metrics. They must provide adequate informa-

tion about how frequently hits, false alarms, misses, and correct rejec-

tions will be made.

4.3 | Providing AUC values, not full ROC curves

Another problem that frequently occurs in the crime linkage literature,

including in our own research (e.g., Bennell & Jones, 2005; Ellingwood

et al., 2013; Tonkin et al., 2017), is when AUC values are provided for

a particular linking approach, but not the actual ROC curves that gave

rise to those AUCs. Studies that only report an AUC (or some other,

overall performance metric) are not providing a complete picture of

the model's ability to accurately predict the status of crime pairs

(e.g., Tonkin & Woodhams, 2017; Tonkin, Santtila, & Bull, 2012; Ton-

kin, Woodhams, et al., 2012).vii Indeed, models with ROC curves that

differ in size and shape can produce similar AUC values (Dwyer, 1996)

and therefore it is critical that the actual ROC curves are provided so

that appropriate decisions can be made about how to approach the

linkage task.

Consider Figure 3. These are two ROC curves generated from the

Finnish serial burglary dataset. One of the curves represents the per-

formance achieved when using across-crime similarity scores based

on internal behaviors (e.g., how the offender searched the premises;

AUC = 0.76, SE = 0.03, 95% CI [0.71–0.81]). The other curve repre-

sents the performance achieved when using across-crime similarity

scores based on entry behaviors (e.g., how the offender accessed the

premises; AUC = 0.72, SE = 0.03, 95% CI [0.66–0.79]). Based on

the AUCs alone, one would presumably recommend that practitioners

rely on internal behaviors to discriminate between crimes committed

by the same offender versus different offenders, if only one of these

behavioral domains can be relied on.

However, what if the desire is to keep the false alarm rate to a

minimum when making linking decisions? Say, for example, that inves-

tigators do not want to exceed the pFA value of 0.05 discussed earlier

(the dashed vertical line). In this case, one would likely change the rec-

ommendation, because under these conditions, the hit rate to false

alarm rate ratio is better for entry behaviors. This occurs because

the two ROC curves overlap, meaning that desirable decisions

F IGURE 3 A receiver operating characteristic graph comparing
the degree of linking accuracy for entry and internal search behaviors.
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(i.e., making more hits than false alarms) shifts between the two

behavioral domains depending on the specific conditions the practi-

tioner wants to meet when making linkage decisions. This fact

remains hidden if we only provide practitioners with the AUCs associ-

ated with the two ROC curves.

4.4 | Setting undesirable decision thresholds

The final problem we will discuss is the way in which decision thresh-

olds are set by researchers. Again, this threshold is critically important

because it determines when actual linkage decisions will be made

(i.e., how similar two crimes need to be to one another to consider

them “linked”). Currently, the most common method for establishing

this threshold in the crime linkage context appears to involve methods

for determining the point along the ROC curve that maximizes the

probability of hits while minimizing the probability of false alarms

(Bennell et al., 2009). This is often estimated by calculating Youden's

index (i.e., sensitivity + specificity � 1; Youden, 1950; e.g., Pakkanen

et al., 2020; Slater et al., 2015; Winter et al., 2013). While this is a ratio-

nal approach, it is unlikely to be “optimal” in most investigative settings.

This is because the optimal decision threshold depends on several

factors that are not captured using Youden's index, such as the base

rate of the event of interest (i.e., crime pairs committed by the

same offender) and the benefits and costs of the relevant decision

outcomes (hits, misses, correct rejections, false alarms; Swets

et al., 2000). When the rates of the diagnostic alternatives are equal,

and the benefits and costs associated with the decision outcomes are

the same, Youden's index will identify a threshold that is optimal.

However, when these values deviate from this highly unlikely sce-

nario, the optimal threshold will fall somewhere else along the ROC

curve.

To illustrate a situation where base rate and cost/benefit consid-

erations might matter, consider an approach to linking that involves

two distinct stages, with each stage associated with their own ROC

curve (Figure 4). The first stage consists of a crime analyst using an

algorithm to search through a large database of crimes to identify

potential linkages, like the Violent Crime Linkage Analysis System

(ViCLAS; Collins et al., 1998). If potential linkages are found, the sec-

ond stage involves the analyst informing the relevant investigators

that they may have a serial offender operating in their jurisdictions,

and that they should attempt to determine, using various investigative

techniques, if the crimes in questions are indeed the work of the same

offender.

Using this two-stage linking approach, the benefits and costs

associated with decision outcomes might vary by stage. For example,

the first stage might be treated like a sort of screening stage, where

the goal is to ensure that any crime pairs committed by the same

offender are captured, even if this means potentially capturing crime

pairs committed by different offenders (much like a cancer screening

test; see Carter et al., 2016). In this case, the benefit of making hits

might outweigh the costs of making false alarms, and the appropriate

decision threshold might be a relatively liberal one, as indicated in

Figure 4. In contrast, greater caution may be warranted during the sec-

ond stage, given that this stage will ultimately determine if an actual

linkage decision is made, which in turn may influence if people will be

arrested and charged. Here, the cost of a false alarm might be much

greater than it was in stage one, and even greater than the benefit of a

hit. This would suggest that a much stricter threshold, which reflects

these facts, is appropriate. Methods for calibrating thresholds so they

align with these sorts of considerations will be discussed below.

5 | METHODS FOR MINIMIZING THESE
PROBLEMS

At best, the problems described above limit the value of crime linkage

research that relies on ROC analysis. At worst, the problems mislead

practitioners who consume this research in the hopes that it will

improve their performance when they attempt to link crimes. Given

this, it is important to consider how these problems can be eliminated,

or at least minimized. Below, we describe several mitigation strategies.

It should be noted that some of these strategies have been used by

researchers already; we provide citations to some of this research in

the sections below. However, in our view, the strategies are not being

adopted as broadly as they should. We recommend that all

researchers consider adopting these strategies when examining the

accuracy of decisions in the pairwise crime linkage task.

5.1 | Define precisely what the AUC means and
how it can be used

As described above, in the context of the pairwise crime linkage task,

the AUC can be interpreted as the probability that a randomly

F IGURE 4 Hypothetical receiver operating characteristic curves
for the two-stage linking approach, illustrating a lenient and strict
decision threshold.
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selected pair of crimes committed by the same offender will have a

higher similarity score (i.e., be “more similar”) than a randomly

selected pair of crimes committed by different offenders (Bennell

et al., 2014). In other words, if 100 randomly selected crime pairs

committed by the same offender are compared to 100 randomly

selected crime pairs committed by different offenders, an AUC of

0.81 would indicate that in 81% of those comparisons, the crime pair

committed by the same offender will have a higher across-crime

similarity score than the crime pairs committed by different

offenders. To avoid confusion as to what the AUC actually means in

crime linkage research, this definition should be provided anytime

AUCs are presented, something that is rarely done at the moment.

We believe that an explicit statement should also be included in

these papers that the AUC is not equivalent to percent correct

(i.e., the AUC does not indicate how many times a correct decision

will be made when determining if a crime pair is or is not the work

of the same offender).

It is also important to reinforce what the AUC can be used for. To

us, the real value of the AUC is as a relative (as opposed to absolute)

measure of linkage accuracy. Relative accuracy is important in the

crime linkage context, and the AUC provides a useful metric for com-

parative purposes. For example, when studying linkage methods for

serial burglary, it is important to know whether some types of behav-

iors (e.g., inter-crime distances) are more accurate predictors of link-

age status than others (e.g., similarity of entry behaviors). The AUC

can provide an answer to this question. It is also important to deter-

mine if some types of crime (serial burglary) can be linked more accu-

rately than other types (serial rape). Again, the AUC can provide an

answer to this question. Based on relative AUCs, theories of crime

linkage can also be developed and tested, such as the idea that per-

sonal versus situational influences should be a key consideration

when attempting to link crimes (e.g., behaviors that are personally

controlled, such as inter-crime distance, might be more accurate pre-

dictors of linkage status than those that are situationally determined,

such as property stolen).

5.2 | Present contingency tables

Given that the appropriate interpretation of the AUC may have little

meaning in practical contexts, and that the AUC in isolation tells us lit-

tle about the frequency of decision outcomes in the crime linkage

task, researchers should provide contingency tables for specific deci-

sion thresholds that compare linkage predictions to actual linkage sta-

tus (such as Table 1). Some recent crime linkage papers have included

contingency tables, although only for one specific threshold

(e.g., Tonkin et al., 2017; Woodhams et al., 2019). Providing contin-

gency tables for multiple thresholds, for example a lenient, mid-range,

and strict threshold, could provide a more complete and accurate pic-

ture of how a linkage method might actually perform under varying

decision-making conditions if it were implemented in the field. This

will be particularly important in cases where the base rate of crimes

committed by the same offender is low.

5.3 | Provide full ROC curves, not just AUCs

Researchers also need to provide graphical representations of full ROC

curves, rather than simply reporting the AUC. Many published crime link-

age studies do this (e.g., Slater et al., 2015; Winter et al., 2013;

Woodhams et al., 2019), but not all. As mentioned above, providing a full

ROC curve will allow readers to gain a deeper understanding of how the

linkage method under investigation performs across various decisions

thresholds. This will prevent situations like those illustrated in Figure 3,

where preference may be given to a particular linkage method due to it

having a higher overall AUC, when in fact another linkage method may

be preferable (i.e., results in a better ratio of hits to false alarms) for a

range of decision thresholds that are more practically relevant.viii

5.4 | Identify limits of threshold setting methods
and use valid approaches when possible

Researchers need to be more cautious about using threshold setting

methods that make invalid assumptions about base rates and the ben-

efits and costs associated with decision outcomes (e.g., using You-

den's index or simply choosing the point on the ROC curve that falls

closest to the upper left corner of the ROC graph). It is unlikely, given

the realities within investigative contexts, that such approaches result

in “optimal” decision thresholds and researchers need to clearly artic-

ulate the limits of their threshold setting methods when speaking

about these issues. We also recommend that researchers: (1) not refer

to thresholds as optimal (a mistake we have made in our own

research; for example, Bennell & Jones, 2005) unless the work has

been done to ensure this is the case, (2) highlight the issues that were

unable to be considered when establishing decision thresholds

(e.g., base rates, benefits/costs of decision outcomes), and (3) speak

directly to the implications of these omissions (e.g., that if the bene-

fits/costs are not the same across various decision outcomes, the

threshold will produce an undesirable ratio of such outcomes).

Effort should also be invested over the longer term to study vari-

ous other threshold setting approaches that might be useful in the

crime linkage context. Ideally, researchers would be able to determine

the precise base rates they are working with (i.e., the probability of

encountering crime pairs committed by the same offender and differ-

ent offenders), and the costs and benefits associated with the various

decision outcomes. If this can be done, methods exist to combine

these values to identify desirable thresholds (see Swets et al., 2000).

We provide the formula here for the crime linkage scenario:

Desirable threshold¼ p crime pairs committedbydifferent offendersð Þ
p crime pairs committedby the same offenderð Þ
� benefit correct rejectionð Þþcost false alarmð Þ

benefit hitð Þþcost missð Þ :

The challenge with this approach of course is that these estimates

are incredibly difficult to calculate (Swets, 1992). For example, the fact

that many crimes go unsolved and unreported will obviously compli-

cate any attempts to establish accurate base rates, and while costs

8 EWANATION ET AL.
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and benefits related to crime linkage decisions may be easier to esti-

mate for some variables (e.g., costs and benefits related to finances),

other costs and benefits will be very challenging to quantify

(e.g., costs and benefits related to human suffering).

A slightly more realistic approach may be to consider ratios for these

parameters instead of precise estimates (Swets et al., 2000). For example,

it may not be possible to determine precisely what the costs and benefits

are of the various types of crime linkage decisions, but it may be possible

to determine (e.g., through carefully run focus groups) that investigators

are twice as interested in being correct when crimes have been commit-

ted by the same offender then when crimes have been committed by dif-

ferent offenders. In this case, we could use the following formula:

Optimal threshold¼0:50
0:50

� 1
2
:

It is also possible to establish limits on pH or pFA so that a mini-

mum pH is achieved or a maximum pFA is not surpassed, and to set

thresholds that meet these pre-determined limits. This may be the

simplest approach of those that have been discussed. An example of

this was discussed above, where a limit of pFA ≤ 0.05 was set. Tonkin

et al. (2017) also adopted this approach in their study comparing the

ability of different statistical approaches for linking stranger sexual

assaults. In that research, the crime linkage practitioners involved in

the study set the threshold themselves at pFA ≤ 0.15.

Providing practical advice on how to proceed with this topic goes

beyond the scope of this article. Interested readers will want to

review Swets (1992) where he thoroughly discusses the issue of

establishing decision thresholds to improve the utility of decisions in

high-stakes diagnostics. In that work, Swets also cites multiple exam-

ples from fields where serious attempts have been made to navigate

the challenges encountered when setting sensible thresholds.

5.5 | Provide other metrics of performance to
complement the AUC

We also recommend that crime linkage researchers consider present-

ing other performance metrics, in addition to the AUC and the fre-

quency of decision outcomes, to provide readers with more

information about the performance of the crime linkage method(s)

under investigation. The metrics we propose are all commonly used in

other fields and can be calculated easily from a contingency table. To

illustrate calculations in the following sections, we rely on the contin-

gency table in Table 1, particularly the notations a, b, c, and d, which

will be referred to in formulae we outline.

5.5.1 | Diagnostic effectiveness and
misclassification rate

Perhaps most obviously, diagnostic effectiveness (DE) and the mis-

classification rate (MR) can be provided to supplement AUCs. In the

crime linkage context, DE is simply the proportion of cases that are

correctly categorized by the linkage method under investigation when

using a particular decision threshold (i.e., the proportion of crime pairs

that were correctly predicted as being linked or unlinked). DE can be

calculated from Table 1 as (a + d)/(a + b + c + d). The MR is the

inverse of DE, or the proportion of cases that are incorrectly pre-

dicted. The MR can be calculated from Table 1 as (b + c)/(a + b

+ c + d). Like predictive values, which we describe next, the DE

and MR are directly affected by the base rate of the event in ques-

tion (Shaikh, 2011). They are therefore less valuable when the aim

is to compare accuracy in settings where base rates vary

(e.g., comparing linkage accuracy across different crime types or

police jurisdictions).

Using Table 1, the DE is 0.94 and the MR is 0.05. In other

words, using the particular threshold examined here, the linkage

method under investigation correctly classified the status of crime

pairs 94% of the time, and failed to correctly classify the status of

crime pairs 5% of the time. Like the AUC, however, the DE and MR

do not distinguish between correctly predicted crime pairs that are

actually the work of the same offender versus correctly predicted

crime pairs that are actually the work of different offenders. While

still providing valuable information about the accuracy of crime link-

age decisions, other metrics that provide this information, such as

positive predictive value and negative predictive value, should also

be reported.

5.5.2 | Positive and negative predictive values

Positive and negative predictive values (PPV and NPV, respectively)

can be useful in the crime linkage context, although they are not

relied on in this literature yet. In the crime linkage context, the PPV

would indicate the percentage of crime pairs predicted to be linked

that have in fact been committed by the same offender (Altman &

Bland, 1994). In other words, the PPV provides information about

the likelihood that a positive prediction truly means the crimes are

the work of the same person (Chu, 1999). With reference to Table 1,

researchers can simply calculate the PPV as a/(a + b) (Blakely &

Salmond, 2002). In comparison, the NPV indicates the percentage of

crime pairs predicted to be unlinked that are indeed committed by

different offenders. Again, the calculation for the NPV is quite

straightforward: d/(c + d).

As indicated above, unlike the AUC, predictive values incorporate

a particular sample's base rates into their calculation (Shaikh, 2011).

When the event of interest is relatively rare (as will be the case when

carrying out pairwise crime linkage), the PPV will always remain low,

even if the AUC itself is high (Altman & Bland, 1994). Thus, just like

with DE and MR, because of their dependence on base rates, predic-

tive values calculated from a particular sample should not be com-

pared across samples (Parikh et al., 2008). However, predictive values

provide specific information about a model's performance on a partic-

ular sample, and they include information that is absent when only

presenting the AUC (Akobeng, 2007).
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For example, a low PPV in the crime linkage context would indi-

cate a high number of false alarms. Drawing on the data from Table 1,

the PPV can be calculated as 0.05, suggesting that among crimes pre-

dicted to be linked, the probability of the crimes actually being linked

is less than 5%. In comparison, the NPV for the model that produced

the data included in Table 1 is 0.99, which indicates that among

crimes predicted to be unlinked, there is a 99% likelihood of them

being committed by different offenders. Again, this is information that

is simply unavailable from the AUC that this data produced (0.81) and

provides valuable information (for researchers and practitioners alike)

about the performance of the model, especially if the goal is to cor-

rectly link crimes committed by the same offender.ix

5.5.3 | Likelihood ratios

Along with PPV and NPV, likelihood ratios (LRs) can also be used to

provide important information about the methods used to predict

whether crimes pairs have been committed by the same offender or

different offenders. In the context of crime linkage analysis, the LR

indicates the likelihood that a given “test result” (e.g., a predicted

probability from a logistic regression model that exceeds a specific

threshold, triggering a “linked” decision) would be expected for a

crime pair that was committed by the same offender compared to the

likelihood of that the same test result would be expected for a crime

pair that was committed by different offenders.

Likelihood ratios can be presented for a positive test result (LR+)

and a negative test result (LR�). LR+ is equal to the probability that a

crimes pair committed by the same offender receives a positive test

score (i.e., a probability score that triggers a “linked” decision) over

the probability that a crime pair committed by different offenders

receives a positive test score (i.e., LR + =pH/pFA). Using the data

from Table 1, LR+ is calculated as [a/(a + c)]/[b/(b + d)]. LR� is equal

to the probability that a crime pair committed by the same offender

receives a negative test score (i.e., a probability score that triggers an

“unlinked” decision) over the probability that a crime pair committed

by different offenders receives a negative test score (i.e., LR� = pM/

pCR). As per Table 1, LR� is calculated as [c/(a + c)]/[d/(b + d)].

Using Table 1 from the Finnish dataset, LR+ is 8.3, while LR� is

0.62. What do these values mean? It is generally understood that a

predictive test with a LR of 1.0 is not useful: there is no difference in

the probability of a given “test result” between crimes pairs that

have been committed by the same offender versus different

offenders (i.e., the linkage method under investigation has no dis-

criminatory value). Essentially, linkage methods with very high LR+

values and very low LR� values have the greatest discriminatory

value. In medical settings, LR+ values above 10 and LR� values

below 0.1 generally considered “good” (Grimes & Schulz, 2005).

Thus, according to those cut-offs, the LR values are not as high

(or as low) as one would hope.x That being said, these clinical guide-

lines might not be relevant in contexts where crime linkage is con-

ducted, for example where crime linkage is used to informally guide

a police investigator.

5.6 | Use precision-recall graphs

A slightly more radical proposal is for crime linkage researchers to

supplement ROC graphs with precision-recall (PR) graphs, something

that has never been done in this context as far as we are aware,

despite such graphs being commonly used in other settings

(e.g., information retrieval) and being easy to construct using

widely available statistical analysis software like SPSS and R. These

graphs are likely to be more informative in cases where extremely

low base rates are an issue—in other words, when there is a signifi-

cant imbalance between the diagnostic alternatives (Saito &

Rehmsmeier, 2015)—and are therefore well-suited to the pairwise

crime linkage task. In this task, researchers will always encounter

many more crime pairs committed by different offenders com-

pared to the same offender, and good performance will always be

attributable largely to the high number of correct rejections that

will be made.

Instead of plotting the false alarm rates on the x-axis and hit rates

on the y-axis, like we do with ROC analysis, PR graphs plot hit

rates (recall) on the x-axis and PPV (precision) on the y-axis.xi Refer-

ring back to the formula for these parameters, one can see that the

(inevitably large number of) correct rejections made are not consid-

ered at all when calculating the values plotted on a PR graph, but they

are when constructing a ROC graph. Another key difference between

the two types of graphs is the reference point that is used to judge

performance. Whereas the positive diagonal (AUC = 0.50) is used in

ROC analysis to assess the degree to which the performance of a

classification model varies from chance (random) performance, ran-

dom performance in PR graphs is determined by the base rate in the

dataset under examination (i.e., positive cases/[positive cases+

negative cases]) and is represented as a horizontal line at that point

on the graph. Just like in ROC analysis, the ideal classifier will be

represented by a curve on a PR graph that is higher than this refer-

ence line, but instead of the top left corner representing optimal

performance, which was the case with ROC analysis (hit rate = 1,

false alarm rate = 0), the optimal operating point on the PR graph is

the top right corner (precision and recall = 1). Basically, a PR curve

that falls along the upper and right axis of the graph indicates

perfect performance.

For illustrative purposes, we provide a PR plot in Figure 5 that

was generated from the logistic regression model developed for the

Finnish burglary dataset we described above (predicting linkage status

from a combined across-crime similarity score using all behaviors in

the dataset). Recall is plotted on the x-axis and precision on the y-axis,

across various decision thresholds. The base rate of 0.6% is reflected

on the graph by the horizontal line. A number of interesting things can

be inferred from this graph. First, despite the high AUC associated

with this logistic regression model (AUC = 0.81), the PR curve clearly

does not reflect near perfect performance. This suggests that while

the logistic regression model can generally classify crimes committed

by the same offender versus different offenders into linked and

unlinked crime categories reasonably well (not a surprise when nearly

all of the data are crime pairs committed by different offenders), high
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similarity scores do not correlate well with crimes committed by the

same offender. Second, despite not performing very well, the logistic

regression model is clearly not performing at chance levels with

respect to recall and precision. Recall that while the performance floor

is AUC = 0.50 for ROC graphs, the performance floor is the positive

base rate in our dataset for the PR graph (0.6%), and the model is

obviously exceeding that. Finally, we can draw specific conclusions

about recall and precision at various decision thresholds. For example,

the model can achieve relatively high levels of recall, but precision

levels remain consistently low regardless of what threshold we use.

This suggests that we need to be cautious when the regression model

is classifying cases as linked because the false alarm rate is higher than

we would like (low precision). However, depending on the threshold

we use, we can be fairly confident that we are not missing many link-

ages when crimes have in fact been committed by the same offender

(high recall).

6 | CONCLUSION

Crime linkage decisions are important. To advance knowledge in this

area we need a method for assessing the accuracy of linkage deci-

sions. ROC analysis, and the AUC specifically, has been used for this

purpose in many studies. The AUC is associated with numerous ben-

efits, but it also has limitations. Researchers need to recognize and

mitigate these limitations. We hope that the recommendations out-

lined above help researchers do this. We believe that if the recom-

mendations are followed, it will make the resulting research more

useful and will provide practitioners with the sort of information

they need to make more informed decisions when they attempt to

link serial crimes. Given that ROC analysis is used in many areas of

psychology to examine a wide range of prediction tasks, we hope

that our recommendations benefit those outside of the crime link-

age context as well.
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ENDNOTES
i Of course, we recognize that there can be delays with this form of crime

linkage analysis as well. For example, there can be substantial delays in

analysts receiving case files from investigators and inputting data from

those files into databases that are used to assist with the crime

linkage task.
ii When calculating across-crime similarity for a pair of crimes, Jaccard's

coefficient ranges from 0 to 1 and is calculated as a/(a + b + c), where

“a” refers to the frequency of behaviours present in both crimes, and “b”
and “c” refer to the frequency of behaviours present in one crime but

absent in the other. Joint non-occurrences in behaviour are not taken

into account when using Jaccard's coefficient, which may be appropriate

given that joint non-occurrences in behaviour may not imply higher

levels of behavioural similarity. This is because behaviours may be absent

from two crimes committed by the same offender for various reasons,

only one of which is the offender deciding not to exhibit the behaviours

(e.g., victims failing to report the presence of such behaviours).
iii Throughout this paper, we have opted to use the terms hits, correct

rejections, false alarms, and misses rather than the synonymous terms

true positives, true negatives, false positives, and false negatives, which

are often used in contexts where ROC analysis is conducted. This is

because the former terms are relied on almost exclusively in the crime

linkage literature. For the same reason, when referring to the axes of

ROC graphs, we use the terms hit rate (pH; for the y-axis) and false

alarm rate (pFA; for the x-axis) rather than the synonymous terms sensi-

tivity and 1-specificity, which are sometimes used by other researchers.
iv The probability of misses, pM, and correction rejections, pCR, are also

illustrated on ROC graphs, but usually not labelled. They fall on the

opposite axes to pH and pFA, respectively.
v Other guidelines also exist. For instance, Hosmer and Lemeshow (2000)

suggest that an AUC between 0.70 and 0.80 indicates acceptable dis-

crimination, AUCs between 0.80 and 0.90 indicate excellent discrimina-

tion, and AUCs above 0.90 indicate outstanding discrimination.
vi Note that a number of crime linkage studies using ROC analysis have

been published since this time (e.g., Pakkanen et al., 2020; Tonkin

et al., 2017; Woodhams et al., 2019), but the range reported by Bennell

et al. (2014) appears to still be accurate.
vii It should be noted that sometimes this may not have been the fault of

the authors. For instance, some journals may prohibit the inclusion

of several figures in a single article. The use of supplemental and online

appendices will help with this issue.
viii This situation may be more common under certain conditions, such as

when drawing on small samples or using data that generates only a lim-

ited number of across-crime similarity scores (e.g., Jaccard coefficient

values). Under these circumstances, ROC curves are unlikely to be smooth

because there are less points on the curve to connect. The jagged nature of

these curves can result in increased overlap between the curves.
ix Of course, if the goal is something other than making binary yes–no
type crime linkage decisions, such as using a statistical algorithm to gen-

erate a prioritized list of potentially linked crimes for investigators to

investigate more thoroughly, then this argument may not apply.

F IGURE 5 An example precision-recall plot from a logistic
regression model generated from the Finnish serial burglary Dataset.
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x An LR+ value of 8.3 means there is an 8.3-fold increase in the odds of a

crime pair committed by the same offender having a positive “test
result”. An LR value of 0.62 means there is s 1.61-fold decrease (1/0.62)

in the odds of a crime pair committed by the same offender having a

negative “test result”.
xi Recall reflects the ability to detect positive cases; in other words, it

reflects the ability of a model/decision-maker to accurately link crimes

committed by the same offender. Precision reflects the credibility of a

claim that a case is positive; in other words, it reflects the degree to

which we should have confidence that a crime pair is actually committed

by the same offender when a model/decision-maker suggests it should

be linked.
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