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Abstract—Positron emission tomography (PET) imaging is
used to track biochemical processes in the human body. PET
image quality is limited by noise and several methods have been
implemented to improve the quality. Kernel-based image recon-
struction is among the methods implemented to increase PET
image quality and commonly uses a Gaussian kernel to include
spatial correlations from image priors into the forward projec-
tion model of PET. Unfortunately, the Gaussian kernel tends to
smooth details in the reconstructed image. To reduce noise with-
out losing contrast details, a different kernel is needed. Wavelet
kernels can be more efficient than the Gaussian kernel in reducing
noise while keeping contrast details by better separating signal
from noise and thus, it does not over smooth peak values in the
final reconstructed images. In this work, we evaluate a wavelet
kernel for kernel-based PET image reconstruction. For this goal,
a wavelet kernel approach has been tested using simulated brain
data, physical phantom data, and patient data. Reconstruction
results are presented and discussed in detail comparing the
wavelet kernel method with the Gaussian kernel method. Our
results suggest that a wavelet kernel performs better in contrast
recovery for phantoms and also results in higher signal-to-noise
ratio (SNR) for real patient data.

Index Terms—Kernel-based expectation maximization (KEM),
positron emission tomography (PET), image reconstruction,
wavelet kernel.

I. INTRODUCTION

POSITRON emission tomography (PET) imaging monitors
a patient’s in vivo radiotracer distribution. PET scanners

acquire functional information of physiological processes in
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the body by measuring the coincident annihilation photons
ejected from the radiotracer in the patient’s body. These
measurements are then reconstructed into cross-sectional
images by iterative reconstruction methods.

Maximum-likelihood (ML) expectation maximization
(MLEM) is an iterative reconstruction method widely used
for PET image reconstruction. This method includes a Poisson
model in the reconstruction and results in a closed-form iterative
update for reconstruction [2]. Different variations of ML algo-
rithms were developed afterward that tried to overcome the
shortcomings of MLEM. MLEM is slow to converge and there-
fore, a faster variation was proposed by Hudson and Larkin called
ordered subset expectation maximization (OSEM) [3]. Another
problem with ML-based algorithms is their ill-posed nature
where low count statistics will present itself as high noise in
the reconstructed image. To improve PET image quality, several
methods have been proposed from filtering the reconstructed
image to modeling the noise in the reconstruction algorithm
and adding it as a smoothing penalty to the likelihood func-
tion [4]–[7]. These methods mostly include prior information
to improve PET image quality [8].

Prior information can come from other image modalities,
mostly the anatomical image modalities, such as computed
tomography (CT) or magnetic resonance imaging (MRI). Several
methods have used anatomical information as a regularizer in
the likelihood function. Bowsher et al. [4] proposed a model
that imposes greater smoothing among nearby voxels in the
PET image when they have higher similarity in MRI signals.
A number of papers use the concept of nonlocal means (NLMs)
for defining their regularizer term. Nguyen and Lee [9] developed
a nonlocal regularizer where the weight is defined based on
similarity between two patches in the PET image and also the
similarity between two patches centered in the anatomical image.
Compressed sensing was also proposed to explore the sparsity
in CT image sequences to reconstruct dynamic CT images from
highly under sampled projection data sets [5]. This compressed
sensing technique can be applied to PET image reconstruction as
well [10].

An alternative approach to defining a regularizer is to add
a denoising step at the end of image reconstruction. An NLM
filter has been applied for denoising the reconstructed image
in [6] and [7]. Newer methods have applied deep learning to
PET image denoising [11] where a deep neural network is
trained for PET image denoising.

The noise in PET images can be tackled by incorporating
image prior information directly into the forward projection
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model in the form of a kernel [12]–[21]. These papers use
either dynamic prior information [12], [13] or MR anatom-
ical information [14]–[18]. The kernel-based expectation
maximization (KEM) method proposed by Wang and Qi forms
a feature vector from prior information [12]. A set of fea-
tures from the prior information is extracted for each pixel
and the PET image intensity at the specific pixel is a lin-
ear function of those features. Then, the kernel method is
used to calculate the PET image intensity from the fea-
tures. Other forms of kernel methods have been proposed
in the literature as well. Wang [19] has extended the spatial
kernel method into a more generalized spatiotemporal kernel
method. Huang [20] has combined denoising with kernel-
based reconstruction by applying NLMs denoising after each
iteration of KEM update. In that article, the author defined
the kernel as a multiplication of the spatial kernel with a tem-
poral kernel that is obtained by comparing feature vectors of
the different frames. Gong et al. [21] used a kernel method
to incorporate MRI information into a Patlak reconstruction
model.

Most of the existing work uses a Gaussian kernel [12],
but the Gaussian kernel has a smoothing effect on the
image, which might cause small details in the image to be
smoothed out.

In order to reduce noise while preserving small details, in
this article, similar to our initial work [1], we propose using
a wavelet kernel for kernel-based image reconstruction with
dynamic images as our source of prior information and we
have evaluated the method with different datasets.

A part of this work was previously presented in a con-
ference [1]. This work has been substantially extended by
an extensive simulation study and an evaluation using phys-
ical phantom data and real patient data. The remainder
of this article is organized as follows. In Section II, the
iterative reconstruction method and kernel-based reconstruc-
tion with conventional Gaussian kernel are described briefly.
In Section III, the wavelet kernel used is explained. Then,
in Section IV, the simulation study is discussed, and the real
data study is presented in Section V. Finally, the article is then
concluded in Section VI.

II. PET IMAGE RECONSTRUCTION

A. Iterative PET Image Reconstruction

The reconstructed image in iterative PET image reconstruc-
tion is found by solving an ill-posed inverse problem to find
emission image x from PET projection data y as

y = E
[
y
] = Px + r + s (1)

where P is the projection matrix, r is random events, s is scat-
ter events, and E[.] is expectation. To solve (1), the conditional
probability or likelihood function for y given emission image
x is estimated by independent Poisson distributions as given
by [8]

p(y|x ) =
M∏

i

e−yi
yi

yi

yi!
. (2)

The ML estimate of image x can be found by
maximizing (2) or similarly maximizing its log-likelihood
equivalent as

L(y|x ) =
M∑

i=1

yilog
(
yi
) − yi − log(yi!) (3)

where M is the total number of lines of response. The ML
estimate of the emission image x is found by

x̂ = arg max
x≥0

L(y|x ). (4)

The expectation maximization (EM) algorithm for PET
image reconstruction, proposed by Shepp and Vardi [2],
is commonly used to find the solution to (4) by the
iterative update

xn+1 = xn

PT1M

(
PT y

Pxn + r + s

)
(5)

where 1M is a vector of length M with elements of 1, n denotes
the iteration number, and the superscript “T” denotes a matrix
transpose. The vector multiplication and division in (5) are
elementwise operations [12].

B. Kernel EM for PET Image Reconstruction

In KEM, the information in the image representation is
encoded by using a kernel [12], [22]. The basic idea is to rep-
resent the PET image x by a linear function of transformed
features in a high-dimensional space. A feature vector fj is
picked out for pixel j with pixel intensity xj. The pixel intensity
in the reconstructed image is represented by a linear combina-
tion of feature vectors corresponding to the neighboring pixels.
From the feature vectors, the kernel is constructed. Using the
kernel coefficients, the reconstructed image is formed using

xj =
N∑

l=1

αlκ
(
fj, fl

)
(6)

where αl is the kernel coefficient and κ(fj, fl) measures the
similarity of features between pixel xj and pixel xl in its neigh-
borhood. N is the total number of pixels in the image. The
matrix form of (6) is

x = Kα (7)

where the (j, l)th entry of matrix K is given by κ(fj, fl) and α is
a vector with elements αl. Typically, a Gaussian kernel is used,
however, other kernels can be chosen, such as the polynomial
kernel [12]. The kernel representation of the image x can be
substituted in the PET forward projection model (1) and then
the resulting iterative update replacing (5) would be

αn+1 = αn

KTPT1M

.

(
KTPT y

PKαn + r + s

)
(8)

where n is the iteration number. Using existing OSEM recon-
struction with the kernel inserted in the iterative update, the
above algorithm can be solved. From it, the PET image is
estimated using (7).
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C. Dynamic PET Composite Frames and Gaussian Kernel

In order to use the kernel method, we first need to define
the source of our prior information. One method of creating
the prior information is to form composite image frames. The
summation of raw projection data from multiple frames of the
dynamic series forms composite frames. This method helps to
improve counting statistics and therefore, reduces noise. There
is a tradeoff in setting the number of composite frames. A large
number of composite frames mean that fewer time frames are
used for ensemble averaging to form each composite frame;
this will preserve temporal information but noise reduction is
hindered in the composite frames. On the other hand, a small
number of composite frames, which is the case when more
time frames are ensemble averaged to form the composite
frames, will result in lower noise but temporal information
related to redistribution of the tracer to different tissues may
be lost.

After defining composite frames in the projection space,
OSEM reconstruction is used to reconstruct composite frames.
OSEM reconstruction would be fast with only a few composite
frames in comparison to the whole dynamic series. The pixel
values in the reconstructed composite frames form the feature
vectors as

fj =
[
xcomp

j,1 , xcomp
j,2 , xcomp

j,3 , . . .
]

(9)

where xcomp
j,t is the image intensity value at pixel j in compos-

ite frame t. From the feature vectors, the kernel is constructed.
The neighborhood can be defined by different methods. One
method is to use the k-nearest neighbor (kNN) method [23],
which finds the k closest neighbors for each pixel based on
the Euclidean distance between fj and fl. Alternatively, a cubic
window centered on a pixel of interest can be used to define
where its neighboring pixels are located. Then, the chosen
kernel is used to calculate the weights based on the neighbor-
ing pixels. For the Gaussian kernel, the (j, l)th element of the
kernel matrix is calculated as

Kj,l = exp

(

−
∥∥fj − fl

∥∥2

2σ 2

)

(10)

where Kj,l is a measure of the similarity of features fj and fl
between pixel xj and pixel xl in its neighborhood and σ is the
chosen standard deviation (SD). The choice of the neighbor-
hood parameter is based on the voxel size and the tissue being
imaged.

III. PROPOSED WAVELET KERNEL METHOD

Although the Gaussian kernel increases signal-to-noise ratio
(SNR) in reconstructed images [12], it tends to over smooth
small targets and tissue boundaries. To address this problem,
we can propose a kernel that does not have the same smoothing
effect of the Gaussian kernel.

A principal component analysis (PCA) can be used to map
the data into a new feature space that contains more linearly
separable features than those in the original input space. The
transformation from an original input space into a transform

Fig. 1. 1-D Gaussian function versus proposed Morlet wavelet.

feature space in which the data are projected onto linear com-
ponents can be done through the use of kernels. This mapping
is referred to as kernel PCA (KPCA) [24].

Wavelet KPCA can be used to better capture data similarity
measures in the kernel matrix [24]. Wavelet kernels are con-
structed from a given mother wavelet function to improve the
performance of KPCA as the feature extraction method. Many
options exist for the mother wavelet, which is just a basis func-
tion satisfying the admissibility condition that is shifted and
scaled in a wavelet transform. Because of their high flexibility,
wavelet kernels have been successfully used in support vec-
tor machine (SVM) learning for classifying data [24]. Besides
classification, wavelet kernels can be used in the process of
feature extraction [24]. One form of single-scale translation
invariant (SSTI) wavelet kernel is given as

g(v, w) =
N∏

i=1

h
(

vi − wi

a

)
(11)

where v, w ∈ Rn, a is the dilation coefficient, and h(·) is the
mother wavelet. For an SSTI kernel to be used as a kernel
in KPCA, the kernel matrix constructed from the SSTI kernel
should be positive semidefinite [24]. We used an SSTI wavelet
kernel based on the Morlet mother wavelet function given
in [25] as

h(z) = cos(1.75z) exp

(

−z2

2

)

. (12)

In general, a (real) Morlet mother wavelet consists of
a sinusoid [cos(ωz)] windowed by a Gaussian function
[exp(−[z2/2a2])], so other choices for the parameters can
also be made. Other mother wavelets can also be consid-
ered, but the Morlet wavelet is often selected given the clear
use of a localized frequency. The central frequency ω of the
mother wavelet (1.75 in our paper) corresponds to the num-
ber of oscillations within the Gaussian window. As stated
in the discussion section of [26], which tests different val-
ues of ω, low values of ω improve the location detection
capabilities of the wavelet. The 1-D form of the Gaussian func-
tion and the proposed wavelet function is shown in Fig. 1.
Due to the valleys in the wavelet function around peak,
the proposed wavelet kernel should be better able to pre-
serve edge information and show higher contrast between
the edges and their surrounding compared to the Gaussian
function.
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Fig. 2. (a) Digital phantom with A, B, C, and D being regions in the
blood pool, gray matter, white matter, and tumor region, respectively. (b) Time
activity curve for different regions.

Fig. 3. Basis image reshaped from a column of the two kernel matrices that
corresponds to a pixel in the tumor region of the simulated brain.

In (11), v i and w i are replaced by the features fi
j and fi

l.
Therefore, the (j, l)th element of the matrix K would become

Kj,l =
Q∏

i=1

⎡

⎢
⎣cos

⎛

⎝1.75

⎛

⎝

(
fi
j − fi

l

)

a

⎞

⎠

⎞

⎠ exp

⎛

⎜
⎝−

(
fi
j − fi

l

)2

2a2

⎞

⎟
⎠

⎤

⎥
⎦(13)

where Q is the number of composite frames. Although
the kernel function will have negative values, as explained
in [25, Sec. III-B], this kind of wavelet kernel is an admissi-
ble kernel since it satisfies Mercer’s condition. This wavelet
kernel-based image reconstruction is referred to as WKEM in
this manuscript.

IV. SIMULATION STUDY

A. Simulation Setup

For the simulation study, dynamic PET scans were simu-
lated similar to Wang et al.’s paper [12] using a Zubal head
phantom [see Fig. 2(a)] [27]. The scanning time consisted of
24 time frames: 4×20, 4×40, 4×60, 4×180, and 8×300 s.
Regional time activity curves shown in Fig. 2(b) were assigned
to different brain regions. The simulated brain dataset con-
tains dynamic 2-D images of the brain. By forward projecting
dynamic activity images and adding scatter and random noise,
sinograms were generated. The expected total number of
coincidence events over 60 min was 16 million. Ten real-
izations were generated with the same scatter and noise
level.

Fig. 3 shows the basis image reshaped from a column of
the Gaussian and wavelet kernel matrices. The chosen column
refers to a pixel in the tumor region of the simulated brain

data. In this figure, we can see that the chosen pixels in the
wavelet kernel are more localized, meaning that the wavelet
kernel is able to better identify similar pixels; therefore, it can
preserve edge properties better.

B. Implementation Parameters

We chose to have three composite frames, each correspond-
ing to 20 min of the scan time: the first frame consists of
first 16 time frames and largely corresponds to the tracer in
the blood, the second composite frame consists of the next
four time frames and largely refers to the transition of the
tracer from blood to tissue, and the final composite frame
consists of the last four time frames and largely contains
the uptake in important organs and tissues. For the simula-
tion study, a kNN with 48 nearest neighbors was used for
both Gaussian kernel and wavelet kernel. Following [12], the
kernel parameter σ for the Gaussian kernel was set to 1 and
for the wavelet kernel, different values for a were tested.
For values smaller than 1, the wavelet was too thin and
did not produce acceptable reconstruction results. For values
larger than 1 mean square error (MSE) increased for most of
the frames with the increase in a value, especially in early
frames in which the WKEM showed greater improvement.
Therefore, a was chosen to be equal to 1 for the wavelet
kernel.

C. Evaluation Method

For each dataset, the evaluation method is defined based
on the information available. For the simulation study, the
ground truth is available and, therefore, SNR and contrast
recovery coefficient (CRC) are defined accordingly and based
on using different realizations. For quantitative comparison
between different reconstruction methods, CRC of the blood
pool and tumor is also calculated by simulating ten noisy real-
izations and reconstructing them independently. The CRC is
calculated by

CRC =
1

10

∑10
i=1

(
Ri−yBi

Bi

)

(
Rtrue−Btrue

Btrue

) (14)

where R refers to region of interest (ROI), B is the background
region and i is the ith realization of the simulated data. The
white matter was the background region. Background SD was
derived pixelwise over ten realizations and was then averaged
over all the pixels in the background region and normalized
by the true background value.

D. Results

Fig. 4 shows images of the reconstructed brain phantom
for two sample time frames using 40 iterations. The WKEM
achieved a higher SNR than KEM for the early Frame 2 in
which the blood pool has a high activity. For the late Frame
24, the two approaches had the same SNR. Nonetheless, the
shape of the tumor using WKEM is more consistent with the
ground truth. In Fig. 5, CRC versus background SD percentage
is shown for the blood pool and the tumor region by varying
the iteration number from 20 to 60 with 20 iterations having
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Fig. 4. Ground truth and reconstructed images of three different reconstruction methods for two different time frames of the brain phantom.

Fig. 5. Contrast recovery versus background standard deviation for Zubal
head phantom. Blood pool is calculated in frame 2 and the tumor is calculated
in frame 24.

the smallest CRC value and 60 iterations having the largest
CRC value in each method. WKEM had a higher CRC than
KEM while with a similar background SD. The improvement
for the blood pool is higher than for the tumor. This result
is also seen in Fig. 4 where SNR and the visual quality of

Fig. 6. Mean square error (MSE) for different reconstruction methods shown
for each frame with the standard deviation error bars for ten realizations.

the reconstructed images are higher with WKEM for the low
count frames, and for the higher count frames (later frames),
WKEM is acting similar to KEM. MSE with error bar for
all three reconstruction methods is shown in Fig. 6. In this
figure, the iteration number is set to 40 and the error bars
show the variability between ten realizations. The variability
is the SD of the MSE over ten realizations. This figure shows
that WKEM has a smaller MSE than KEM for earlier frames,
which is consistent with the SNR trends from Fig. 4. For later
frames, KEM and WKEM have similar performance in terms
of MSE.

V. REAL DATA

We conducted a physical phantom study and real patient
study to further evaluate the WKEM reconstruction method.
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Fig. 7. Contrast recovery versus background variability for all sphere sizes, with sphere 1 being the smallest sphere and sphere 6 being the largest sphere.

For the implementation of the kernel method in each study,
a cubic window was chosen as the neighborhood and differ-
ent sizes of the neighborhood window were tested for each
study. A window of 7×7×7 showed effective in noise reduc-
tion while not losing significant features of the tissue being
imaged. Note that using this local neighborhood instead of
global kNN decreases the computational complexity such that
the method is more practical for 3-D reconstruction [12]. To
include the spatial distance between the pixel of interest and
neighboring pixels in the cubic neighborhood, we have given
a Gaussian weight to the pixels in the neighborhood such that
the pixel of interest has the largest weight and as the pix-
els are further away in the neighborhood, they would have
smaller weight in the kernel. These weights are then multi-
plied in the calculation of kernel coefficients in (10) and (13).
This spatial weighting was not applied in the simulated 2-D
brain data since using a global kNN was feasible. However,
for the real data, we have dynamic volumetric data, which
means the data in each time frame are 3-D and kNN is not
desirable since it is computationally inefficient and therefore,
spatial weighting is included in the kernel construction. To
make the kernel sparser, the 50 highest weight values in each
neighborhood are selected to form the matrix and the rest of
the weights are set to zero. This reduction in the number of
kernel coefficients will speed up the reconstruction and it does
not change the reconstructed image noticeably. For both the

wavelet kernel and Gaussian kernel, the parameters σ and a
were set to 1.

A. NEMA Phantom

To evaluate the performance of reconstruction, we used the
National Electrical Manufacturers Association (NEMA) stan-
dard phantom [28]. A dynamic study was performed using
this phantom and the resulting sinograms are reconstructed
with OSEM, KEM, and WKEM reconstruction methods. The
NEMA phantom consists of six spheres with varying diame-
ters, which are filled with radiotracer. For the measurements,
each sphere is filled with 1.5 MBq of F-18 diluted in about
55 mL of water. The background is injected with 80 MBq
of F-18 diluted in about 10 L of water. The dynamic frames
follow an exponential determined by F-18 decay. The scan
time is 15 min and consists of 26 time frames as follows:
15×10, 5×30, 5×60, and 1×300 s. Composite frames were
chosen so that each corresponds to 5 min of the scan time:
the first composite frame is from the first 20 time frames, the
second composite frame contains the next 5 time frames, and
the final composite frame corresponds to the last time frame.
For the NEMA phantom, we still have a known ground truth.
Therefore, for comparison, we looked into the contrast and
noise calculations in each of the spheres [29]. For this goal,
a ROI with the same size of the sphere is drawn manually
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Fig. 8. Reconstructed image of a frame from NEMA phantom. (a) CT image.
(b) OSEM 4mm. (c) KEM. (d) WKEM.

Fig. 9. Example showing left ventricle (LV) wall segment and blood
cavity (Blc) area inside the left ventricle.

for each sphere with the help of the corresponding CT image
and the mean value in these spheres is the average number
of counts. For comparison, contrast recovery is calculated for
each reconstruction method using

CRj =
Cs,j−CB,j

CB,j

as−aB
aB

× 100 [%] (15)

where Cs,j is the average counts in the ROI for sphere j and
CB,j is the average counts in the background ROI for sphere j.
The background ROIs are drawn inside the phantom away
from the spheres and are concentric to each other with diam-
eter equal to the referring sphere. as and aB are the activity
concentration in the hot spheres and background, respectively.
The percentage of background variability Nj is a measurement
of image noise for sphere j with SDj (in an ideal case = 0%)
and is calculated using

Nj = SDj

CB,j
× 100 [%]. (16)

Fig. 10. Average SNR and contrast over all frames for OSEM (with 4mm
post filtering), KEM, and WKEM.

SDj is the SD in the background ROI for sphere j.
Fig. 7 shows contrast recovery versus background variability
for different sphere sizes by increasing the iteration number.
Contrast recovery and background variability are averaged
over the time frames. In this study, there are 24 subsets in
the reconstruction, and the number of iterations varies from
1 to 4 (for smaller spheres, the iteration number is increased
to 6 to have convergence for CRC) with one iteration hav-
ing the smallest background variability value and 4 (6 for
sphere 1 and 2) iterations having the largest background vari-
ability value in each method. As can be seen from Fig. 7,
both KEM and WKEM have significantly smaller background
variability in comparison to OSEM. However, WKEM has
the best performance in terms of contrast recovery and back-
ground variability tradeoff, especially for smaller spheres. In
the smallest sphere (sphere 1), OSEM achieves a much higher
contrast recovery value in comparison to WKEM, which is
expected as KEM and WKEM have smoothing included in
the reconstruction process. But, since the background vari-
ability is larger for OSEM, overall, it is not as effective as
WKEM. Also, OSEM is clinically always followed by post-
filtering to reduce noise and as the figure suggests, OSEM
with 4mm postfiltering reduced contrast recovery to a level
lower than WKEM. Fig. 7 also demonstrates that for the
smallest sphere with the highest iteration number, there is
an increase of around 20% in the contrast recovery value
between KEM and WKEM, which is significant. There is
also an increase of around 10% for sphere 2 between KEM
and WKEM. For other larger spheres (spheres 3–6), the
increase in the contrast recovery value is around 1%–3%.
These results affirm the statement about this wavelet kernel
being better than the Gaussian kernel at retrieving small
objects. This result can also be seen in Fig. 8, in which
a reconstructed frame of the NEMA phantom is shown and
the contrast, especially in the smallest sphere, is best preserved
in WKEM.
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Fig. 11. Transaxial slice of the heart for OSEM, KEM, and WKEM. Each row corresponds to one of the patients and shows the last frame. (a) OSEM-4mm.
(b) KEM. (c) WKEM.

B. Patient Data

The patient data are from Ottawa Heart Institute and were
acquired as part of a research ethics board approved study.
All images were anonymized before analysis. For patient data,
there is no ground truth available and, therefore, SNR and
contrast are defined based on tissue regions. To evaluate the
KEM and WKEM methods on real patient data, i.e., with no
ground truth, SNR and contrast are defined as

SNR = mean(LV)

std(Blc)
(17)

Contrast = |mean(LV) − mean(Blc)|
mean(LV)

. (18)

where “LV” makes reference to the left ventricle (LV) wall
and the blood cavity (Blc) inside the LV is represented as
“Blc” [22]. These regions are shown in Fig. 9. The LV wall
is segmented using the FlowQuant software developed at the
Ottawa Heart Institute [30] and the mean value of the seg-
mented LV wall is calculated. In order to calculate background
noise, the SD of an area inside the Blc of the LV is cal-
culated. The mean value of this region is used for contrast
calculation.

The study includes dynamic PET scans acquired from
ten patients with C-11-hydroxyephedrine (HED) tracer on
a GE D600 PET/CT scanner. The scan time was 60 min split
into 25 time frames, which is defined as follows: 9×10, 3×30,
2 × 60, and 11 × 300 s. Three composite frames were created,
each corresponding to 20 min of scan time; therefore, the first
composite frames was from first 17 frames, the second com-
posite frame was derived from the next four frames, and the
last one is from the last four frames of the dynamic series.
For this study, the iteration number was 3 with 32 subsets.
The Gaussian kernel parameter σ is set to 1 and for WKEM,
a is 1 as discussed.

Fig. 10 shows the average SNR and contrast over all
ten patients for different time frames and different reconstruc-
tion methods. In the first couple of frames of the dynamic
series, the tracer has not been detected since there is a very
low number of photons. This will cause the mean value and
SD to be zero or very close to zero in these time frames;
therefore, the resulting SNR and contrast value would be
inconsistent with the rest of the frames. Because of this reason
they have been removed from this study and are not shown in
the SNR and contrast calculations. As can be seen from (18),

Authorized licensed use limited to: Carleton University. Downloaded on July 03,2024 at 14:48:42 UTC from IEEE Xplore.  Restrictions apply. 



572 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 6, NO. 5, MAY 2022

Fig. 12. SNR versus contrast of uptake frames (last four frames) averaged
over all patients for OSEM (with 4mm postfiltering), KEM, and WKEM.

the contrast is the normalized difference of the regions in the
LV and Blc. In early frames, the tracer is mainly in the blood
so the difference is large. Then, at some point in time, the
tracer is in both the blood and LV and, therefore, their dif-
ference is small. Then, later, the tracer is taken up in the LV
and again the difference between these two regions is large.
Fig. 11 shows a transaxial slice of the heart for three patients.
As explained in Section III, a wavelet kernel is better able
to preserve edge information. Fig. 11 affirms this statement
by showing that WKEM preserves high intensity values better
than KEM, especially in the LV wall.

In Fig. 12, SNR versus contrast is shown for WKEM and
is compared to KEM and OSEM (with 4mm postfiltering).
For this figure, the uptake frames, which are the last four
frames, are included, and the mean value of contrast and
SNR over the last four frames of all patients is calculated.
From Fig. 12, we see that WKEM presents a higher SNR
value compared to KEM and OSEM with postfiltering and it
also preserves contrast.

VI. DISCUSSION AND CONCLUSION

Morlet wavelet is used here as a proof of concept. The
method is still applicable to other wavelets as well. Morlet
wavelet is picked because of its simple form and closed
form, which makes it easily fitted in the kernel reconstruc-
tion framework. Other Morlet wavelets and in general, other
wavelet functions maybe tested to have a more comprehensive
overview of the method.

Our patient data are a limited dataset. For a more compre-
hensive comparison, it would be useful to have more patient
data with other tracers as well. This work did not include
motion compensation in the reconstruction and may further
benefit from a reconstruction method, which included motion
compensation. The emphasis in this manuscript is on tempo-
ral spatial information from the movement of the radioactive
tracer. We did not focus on the effect of the method in diag-
nosis accuracy. Our future work will be to further improve
the kernel method by using the multiresolution property of
wavelets with dynamic imaging as prior information and
also using other anatomical imaging methods as our prior
information.

In this article, a wavelet kernel method is evaluated with
computer simulation, physical phantom, and patient scan
datasets for PET image reconstruction. Our results from sim-
ulated data show that WKEM can achieve higher contrast
recovery than conventional KEM for low count frames. The
NEMA phantom study suggests WKEM can reconstruct the

phantom with higher contrast recovery, especially for smaller
spheres. In line with that the study using patient data demon-
strates clear improvement of the SNR in WKEM method over
KEM and OSEM methods.
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