
  

  

Abstract— Image reconstruction for positron emission 

tomography (PET) can be challenging and the resulting image 

typically has high noise. The kernel-based reconstruction 

method [1], incorporates prior anatomic information in the 

reconstruction algorithm to reduce noise while preserving 

resolution. Prior information is incorporated in the 

reconstruction algorithm by means of spatial kernels originally 

used in machine learning.  In this paper, the kernel-based 

method is used to reconstruct PET images of sympathetic 

innervation in the heart. The resulting images are compared 

with standard Ordered Subset Expectation Maximization 

(OSEM) reconstructed images qualitatively and quantitatively 

using data from 6 human subjects. The kernel-based method 

demonstrated superior SNR with preserved contrast and 

accuracy compared to OSEM. 

I. INTRODUCTION 

Positron emission tomography (PET) is a medical imaging 
tool that is used to observe metabolic processes in the body 
using radioactive tracers. Although PET is a powerful imaging 
method to quantify the biochemical processes of different 
tissues and organs, it has limited accuracy due to detector 
resolution and statistical noise. Several methods have been 
proposed to increase PET image quality. However, if these 
effects can be accurately modeled during reconstruction, 
further post-processing might be avoided and could reduce 
bias in the final resulting image. One technique for increasing 
reconstructed image quality is to use prior information [2]. 
Prior information can be incorporated in the form of a 
regularization function [3]. Anatomical information from 
other image modalities such as computed tomography (CT) or 
magnetic resonance imaging (MRI) can be used as prior 
anatomical information. There are a few different methods 
which use anatomical information as a prior for image 
reconstruction. Nguyen et al have proposed a non-local means 
(NLM) approach [4]. In this method, a PET image is 
adaptively smoothed with a weight matrix. Weights are 
derived to reflect self-similarity in PET images by means of 
information provided by the anatomical image. One of the 
most common approaches to reconstruct PET images is to use 
maximum likelihood expectation maximization (MLEM) [5]. 
This method comes from the probability density function in 
PET and is a straight forward iterative update. The 
convergence of MLEM is slow, but can be accelerated using 
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Ordered Subset Expectation Maximization (OSEM) [6]. 
Although OSEM might not converge to the true maximum 
likelihood (ML) solution, it reduces the processing time 
proportional to the number of subsets, and with post-
reconstruction filtering the reconstructed images can have 
excellent quality. Therefore, OSEM is the method used in most 
clinical settings [3]. 

Wang et al incorporated prior information in a form of an 

image feature space [1]. Image intensity for each pixel of a 

PET image is a function of a set of features where the features 

are derived from prior information. This function is defined 

using a kernel method and is assumed to be linear in kernel 

space. The results of the kernel-based method were 

investigated using a Zubal head phantom and also real patient 

data for head scans, and is was shown that it was superior to 

standard OSEM. In this paper, we apply this method to 

dynamic patient scans of the heart. This is different from the 

head scan study, since the chest contains involuntary motion, 

but the head does not.  For instance, images of the heart are 

affected by both cardiac and respiratory motion which is 

always present and because of it, high quality PET images are 

harder to achieve; whereas the position of the head can be 

fixed. This paper is organized as follows: in section II, iterative 

and kernel-based PET image reconstruction is defined; section 

III explains the evaluation procedure and the two methods are 

compared in section IV; section V is the discussion and 

conclusion. 

II. THEORY 

A. Iterative Reconstruction for PET  

PET images represent the detection of high energy photon 

pairs produced through annihilation of positrons emitted from 

a radioactive tracer. Using radiation detectors, these photons 

are measured. The probability of measuring events follows a 

Poisson distribution. The Expectation Maximization (EM) 

algorithm maximizes the log-likelihood function and 

therefore helps to find the maximum likelihood estimate of 

image 𝑥. The result is an iterative update of the image [2].  

𝑥𝑛+1 =
𝑥𝑛

𝑃𝑇.  𝟏𝑀
. (𝑃𝑇 𝑦

𝑃𝑥𝑛+𝑟
)                         (1) 

Guobao Wang is an assistant professor with the Department of Radiology, 
UC Davis. (e-mail: gbwang@ucdavic.edu). 

Richard M. Dansereau is with the Department of Systems and Computer 

Engineering, Carleton University (e-mail: rdanse@sce.carleton.ca). 
Robert DeKemp is with the Ottawa Heart Institute and Ottawa University 

(e-mail: radekemp@ottawaheart.ca). 

Kernel-Based Reconstruction of C-11-Hydroxyephedrine Cardiac 

PET Images of the Sympathetic Nervous System 

Zahra Ashouri, Chad R. Hunter, Benjamin A. Spencer, Guobao Wang, Richard M. Dansereau and 

Robert A. deKemp  

978-1-5386-1311-5/19/$31.00 ©2019 IEEE 832

Authorized licensed use limited to: Carleton University. Downloaded on July 03,2024 at 14:49:28 UTC from IEEE Xplore.  Restrictions apply. 



  

Where: 𝑦 is the projection data and 𝑃 ∈ 𝑅𝑀×𝑁(𝑁 number of 

voxels), is the detection probability matrix. The unknown 

emission image 𝑥, is related to 𝑟 and defined as the 

expectation of random and scatter events, as shown below: 

𝑦̅ = 𝑃𝑥 + 𝑟                                   (2) 

B. PET Image Reconstruction using Kernel in EM 

For kernel-based expectation maximization (KEM), PET 

image reconstruction is accomplished by the use of kernels 

derived from machine learning methods [1]. For this method, 

a  feature vector 𝑓𝑗 is identified for pixel intensity 𝑥𝑗, and can 

be defined by a linear combination of feature vectors of the 

neighboring pixels. As shown in (3), this will form the kernel 

space. 
𝑥𝑗 = ∑ 𝛼𝑙𝜅(𝑓𝑗 , 𝑓𝑙) 𝑁

𝑙=1                             (3) 

Where 𝛼, is the kernel coefficient and 𝜅(𝑓𝑗 , 𝑓𝑙) identifies the 

similarity of feature, between pixel 𝑥𝑗 and pixel 𝑥𝑙  in its 

neighborhood. Equation (3) can be written in matrix form as  

𝑥 = 𝐾𝛼                                    () 

Where elements of matrix 𝐾 are given by 𝜅(𝑓𝑗 , 𝑓𝑙) for the 

(𝑗, 𝑙)th element. Different kernels can be used such as the 
Gaussian or polynomial kernel. Here, the radial Gaussian 
kernel has been used. The KEM method of reconstruction is 
derived by substituting (4) in (2). The iterative solution would 
be updated to: 

𝛼𝑛+1 =
𝛼𝑛

𝐾𝑇𝑃𝑇1𝑀
. (𝐾𝑇𝑃𝑇 𝑦

𝑃𝐾𝛼𝑛+𝑟
)                     (5) 

This iterative algorithm can be solved using OSEM with the 

kernel embedded in the iterative update. 

C. Kernel Reconstruction  

To generate the prior image in the kernel-based method, 

composite frames are made by summing multiple time frames 

from the dynamic image series. This helps to preserve spatial 

information apparent in most frames at the expense of losing 

temporal information. Wang et al have tested different 

numbers of composite frames and concluded that for their 

problem three composite frames worked best [1]. A 

compromise is needed in selecting the number of composite 

frames. A large number will result in high noise in the 

composite frames and a small number will make the kernel 

ineffective. Composite frames should preserve the image 

contrast and reduce the noise at the same time.  We used three 

composite frames, the first frame describes the blood input, 

the second encompasses the transitional phase of the tracer 

and the final frame describes the uptake in important organs 

and tissues. These composite frames are then reconstructed 

using the standard OSEM algorithm. This is a fast 

reconstruction as there are only three frames. From these 

reconstructed frames, the features for building the kernel 

matrix are extracted. The feature vector is the average of the 

reconstructed composite frames for each pixel. Matrix 𝐾, is 

constructed by comparing the feature vectors for a pixel with 

all the feature vectors of its neighboring pixels. A cubic 

window centered on a pixel of interest defines where the 

neighboring pixels are located.  A radial Gaussian filter is 

used to calculate the weights on the neighboring pixels.  The 

size of the neighborhood is chosen to be 7 × 7 × 7 and the 

Gaussian parameter (𝜎) is 1 in this study. To further sparsify 

the kernel the 50 highest weight values in the neighborhood 

are selected to contributed to the matrix and the rest are set to 

zero. 

III. METHOD 

To evaluate the KEM method, the reconstructed images are 

compared to OSEM reconstruction. For this comparison the 

left ventricle, liver and a region inside the left ventricle blood 

cavity are chosen. The left ventricle is segmented using our 

clinical in-house developed software called FlowQuant™. 

First, the images reconstructed using OSEM were segmented, 

then the same mask is mapped to KEM and also OSEM with 

various post-filtering. Kinetic modelling was achieved using 

a one-tissue compartment model. Compartment models are a 

way of mathematical modeling biological processes. In this 

paper, the compartment model will explain tracer absorption 

and distribution in body organs. The one compartment model 

assumes a homogeneous distribution throughout the volume 

of blood or tissue and that the decay rate of the tracer in the 

organ is constant [7]. The output of left ventricle segmentation 

is the signal we are looking at; now we need to calculate 

background noise to be able to calculate SNR.  For this goal, 

an area inside the blood cavity of the left ventricle is chosen 

manually. We expect this area to be homogeneous and 

therefore to have low standard deviation in reconstructed 

pixel intensities. This standard deviation is considered as 

noise. Liver is also expected to be homogeneous; therefore, a 

manually selected area in the liver is defined and standard 

deviation and mean values in this region is calculated. We 

used real patient data and therefore there is no ground-truth or 

gold standard. With no gold standard in hand, SNR and 

contrast are defined in equations (6) and (7) with the signal 

value in the left ventricle and noise calculated in the blood 

cavity. In these equations, “𝐿𝑉” is defined as the left ventricle 

wall and “𝐵𝑙𝑐” is the blood cavity in a region inside the left 

ventricle. To show  

 

𝑆𝑁𝑅 =
𝑀𝑒𝑎𝑛(𝐿𝑉)

𝑠𝑡𝑑(𝐵𝑙𝑐)
                                (6) 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
𝑚𝑒𝑎𝑛(𝐿𝑉)−𝑚𝑒𝑎𝑛(𝐵𝑙𝑐)

𝑚𝑒𝑎𝑛(𝐿𝑉)
                   (7) 

 

The study population includes dynamic PET imaging 

acquired from 6 patients with C-11-hydroxyephedrine (HED) 

tracer. The HED tracer is widely used for myocardium 

neuronal imaging and has an isotope half-life of 20 min. The 

scans are acquired by GE D600 PET/CT scanner. The scan 

time was 60 min split into 25 time frames defined as follows: 

9×10s, 3×30s, 2×60s, and 11×300s. Final reconstructed 

images had 47 axial slices of the heart region. These frames 

are split to three 20 min length composite frames by summing 

the frames in 20 minute consecutive intervals, and then from 

this the kernel is produced. This kernel is then used to 

reconstruct all dynamic frames. SNR, contrast and LV activity 

were compared  between OSEM and KEM using paired 

sampled T-test [8] with 𝑃 < 0.05 considered as significant. 
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IV. RESULTS 

In fig. 1. SNR versus contrast is shown. The values presented 

in this figure were averaged over the last four uptake frames. 

In our analysis, we have focused on the later frames or uptake 

frames where the tracer uptake is largely in heart tissue. Later 

in fig. 3 we will show the values for each frame separately. 

For fig. 1 the level of post-reconstruction smoothing is 

accomplished with a gaussian spatial filter set to a specific full 

width half maximum (FWHM). We can see that by increasing 

the level of post-reconstruction filtering for OSEM, the SNR 

initially increases as the contrast decreases. 

 

Figure 1: SNR versus contrast for OSEM with different smoothing filters 

and KEM. 

 
Figure 2. Transaxial slice of the last frame from one of the patients 

comparing KEM reconstruction with OSEM reconstruction using different 

levels of post filtering. 
 

After reaching certain level of post-reconstruction filtering, 

the SNR decreases with further increased filtering. However, 

KEM produces a high SNR without a significant impact on 

contrast. From fig. 1, we can choose the post filtering which 

gives the highest SNR among others with no significant 

reduction in contrast and compare it with KEM. FWHM = 4 

mm (herein called FWHM4) seems to satisfy these conditions 

and is therefore chosen for the rest of the comparisons.   

Fig. 2 shows a transaxial slice of the heart in the last frame 

for one of the patients showing the results of KEM and OSEM 

with different levels of post filtering. As greater post-

reconstruction smoothing is used the image resolution and 

contrast both suffer and therefore the quality degrades. 

SNR and contrast values averaged over all patients in each 

frame are shown in fig. 3. The first two dynamic frames are 

excluded since the activity in those frames was very low and 

it caused the standard deviation and mean value at these 

frames to be negligible, thus leading to an unreliable SNR and 

contrast value. In addition, this shows that the SNR is much 

higher in KEM than OSEM, even with optimal post-

reconstruction filtering. 

 

 

 
 

Figure 3. Average SNR and contrast for all the patients for KEM and 

OSEM with 4mm post filtering. 

 

The mean and standard deviation values in different tissue 

types (blood cavity, heart and liver) for OSEM with 4 mm 

post filtering and KEM are presented in fig. 4. As expected, 

KEM does not change the mean value in the tissues of interest 

but decreases the standard deviation mainly due to reduced 

noise. The standard deviation in the left ventricle does not 

change significantly since it is a small structure with high 

counts and therefore does not contain as much noise.  

The uptake polar maps for one normal and one ischemic 

patient are shown in fig. 5, in the units of kBq/cc, which 

shows that KEM does not change the uptake mean values in 

the left ventricle. In this figure “S” corresponds to septal wall, 

“L” is the lateral wall and “P” represents the posterior wall of 

the left ventricle. 

For a statistical comparison, we have combined all the 

normalized polar map segmental values from KEM and 
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compared it to OSEM using paired T-test [8]. The mean value 

of the normalized segmented regions is 83.41 for KEM and 

83.64 for OSEM and the 𝑃 value is 0.035. This P value 

indicates that there is a significant difference between two 

data sets; but the absolute difference of mean values is very 

small (0.25%).  
 

 
a)KEM for normal case 

 
b)OSEM-FWHM4 for normal case 

 
c)KEM for ischemic case 

 
d)OSEM-FWHM4 for ischemic case 

Figure 5. Polar map of the left ventricle distribution in the uptake frames 

 

V. CONCLUSION  

KEM PET image reconstruction was compared to OSEM for 

cardiac images of C-11-HED uptake. Our results shows that 

the kernel-based method can improve SNR for different 

frames while keeping the contrast high. It should be noted that 

because of the way the kernel is constructed, it might miss 

small objects and thus result in low resolution on small 

objects. There is a tradeoff between SNR and resolution and 

depending on the application clinicians should decide if the 

loss in resolution is worth the gain in SNR. Future work will 

involve optimization of this trade off by experimentation on 

the kernel to try to preserve the resolution in small targets. 
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Figure. 4: Mean and standard deviation (Std) of late uptake values in different tissue regions for the normal subjects (right) and ischemic patients (left). LV 

is the left ventricle, Blc is the blood cavity region in the left ventricle. Liver and blood Std was significantly reduced using KEM compared to OSEM. 
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