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The lumped plasticity method is an efficient analytical approach 
to assess the system-level performance of reinforced concrete 
(RC) structures. Through this analysis approach, the nonlinearity 
effects are calculated using plastic hinges located in critical parts 
of the structure. Because of the complexity associated with shear- 
related mechanisms in RC members, the number of shear hinge 
models developed in the literature are limited. This paper pres-
ents a comprehensive shear hinge model for RC beams capable 
of capturing advanced mechanisms such as interactions between 
shear force and bending moment, effects of nonlinear stress and 
strain distributions through the section, and compression softening 
effect in concrete. The model provides closed-form equations for 
five key points on the shear force-shear deformation response by 
satisfying the compatibility, equilibrium, and constitutive relation-
ships. By comparing the performance of the model against test 
results, other analysis methods, and design codes at the component 
and system level, the effectiveness of the model in capturing the 
shear behavior is demonstrated.

Keywords: lumped plasticity; nonlinear analysis; reinforced concrete (RC) 
beams; shear behavior.

INTRODUCTION
Despite significant research over the last few decades, 

computing the shear behavior of reinforced concrete (RC) 
structures has still remained a challenging task. The shear 
response is not only dependent on complex material mech-
anisms, but can also be highly influenced by flexural and 
axial forces in a section. Besides, shear failure is inherently 
a brittle type of failure that could occur almost without 
warning, making it extremely dangerous. Catastrophic 
shear failures in recent years (for example, shear failure of 
Sleipner A offshore platform in 19911 and failure of the De 
la Concorde overpass bridge in 20062) have forced engi-
neers and researchers to develop analytical models capable 
of accurately predicting the shear response in RC structures.

Detailed finite element (FE) modeling with powerful 
two-dimensional (2-D) and three-dimensional (3-D) 
elements is perhaps the most accurate method for analyzing 
structures. However, because of the high computational 
demand and modeling effort, application of this method is 
mostly limited to analysis of RC structures at the compo-
nent level (beams, columns, and so on). For system-level 
analysis of RC structures, engineers typically use frame-type 
analysis methods because of their computational efficiency 
and simplicity in modeling. Nonlinearity effects in frame-
type analysis are taken into account based on either a distrib-
uted plasticity method or a lumped plasticity approach. The 
distributed plasticity approach (also known as fiber-based 
approach) calculates the nonlinear stresses and strains over 

the entire length of members typically based on the assump-
tion that plane sections remain plane, while the lumped plas-
ticity approach assumes that nonlinearity is concentrated at 
predefined critical locations (that is, plastic hinges) and that 
the remaining part of members have a linear elastic behavior. 
The majority of frame-type modeling methods are developed 
for analysis of RC structures under flexural loads and cannot 
accurately take into account the shear behavior. Consid-
ering the importance of system-level analysis in the perfor-
mance assessment of RC structures, there is a great need for 
the development of computationally efficient frame-type 
modeling methods capable of capturing the shear behavior.

The lumped plasticity method is computationally more 
efficient than the distributed plasticity method, making it 
more suitable for the analysis of large structural systems 
or when large number of analyses are required. However, 
as mentioned previously, most plastic hinges are developed 
for computing the flexural response (for example, flex-
ural plastic hinges by Bouchaboub and Samai3 and Simão 
et al.4), and the number of shear plastic hinges is limited 
due to the complexity of shear behavior. Pincheira et al.5 
presented a lumped plastic model for concrete columns 
that accounted for shear and flexural responses separately. 
Neglecting the flexural-shear interaction effects influenced 
the accuracy of the model in predicting the shear behavior. 
Shirai et al.6 formulated a macro element that considered 
both flexural and shear effects. However, they neglected the 
strength reduction due to concrete cracking and assumed the 
crack orientation remains constant throughout the analysis. 
Elwood7 introduced a shear hinge model with a trilinear 
response that incorporated a shear failure surface to deter-
mine the peak strength. The model was capable of capturing 
the response of RC columns under shear and axial loads and 
could account for shear strength degradation. However, it 
neglected the interaction effects between shear and bending 
moment. LeBorgne and Ghannoum8 proposed a similar 
analytical model for RC columns that consisted of a zero-
length shear spring placed in series with flexural elements. 
Although the model was capable of capturing nonlinearity 
effects and strength degradation due to shear, it required 
the calibration of strength and stiffness parameters prior to 
the analysis. Sae-Long et al.9 presented a nonlinear fiber 
frame element enhanced with a trilinear shear hinge model 
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for analysis of RC columns prone to shear or flexure-shear 
failure. Closed-form equations were proposed for the shear 
hinge model that considered strength degradation through a 
reduction factor calculated based on the curvature ductility 
of columns. In addition to the analytical models available in 
the research literature, ASCE/SEI-4110 recommends a gener-
alized load-displacement backbone curve that can be used 
to define shear plastic hinges for RC members. The back-
bone curve is presented in a normalized form to generalize 
its application. Thus, it requires defining the shear strength 
and deformation at the yielding point by the user.

This paper presents a new lumped plasticity model for 
analysis of shear-critical RC beams developed based on the 
Modified Compression Field Theory (MCFT).11 The MCFT 
is a smeared rotating crack model that treats stresses and 
strains in an average sense and allows cracks to gradually 
reorient as a result of change in loading or material behavior. 
Over the past 35 years, MCFT has been extensively veri-
fied against experimental tests, adapted to structural design 
codes, and implemented into various types of FE and 
sectional analysis software.12 These efforts have shown the 
ability of MCFT for computing the response of RC struc-
tures, particularly under shear. This paper, for the first time, 
extends the application of MCFT to analysis of shear-critical 

RC beams with and without shear reinforcement using the 
lumped plasticity approach.

RESEARCH SIGNIFICANCE
Compared with flexural hinge models, the number of 

shear hinge models available in the literature for analysis of 
shear-critical RC structures is limited. Most of the existing 
shear hinge models are unable to take into account the inter-
actions between shear force and bending moment or consider 
advanced mechanisms in RC (for example, compression 
softening in concrete).

This paper addresses the limitations of existing models by 
presenting a comprehensive shear hinge model developed 
based on a rational theory capable of capturing nonlinear 
shear effects. The proposed model is expected to improve the 
system-level performance assessment of RC structures by 
accounting for shear deformations and shear failure modes.

MODEL DEVELOPMENT
The proposed lumped plasticity model estimates the shear 

force versus shear strain relationship by calculating five key 
points on the response: flexural cracking, shear cracking, 
yielding of shear reinforcement, ultimate shear strength, 
and shear failure. Figure 1 shows a schematic represen-
tation of the shear force-shear strain response used in the 
model, including the key points. A 2-D panel element is used 
to simulate the nonlinear shear behavior of the beam in a 
concentrated manner, as shown in Fig. 2. Unlike one-dimen-
sional spring elements used in most existing plastic hinge 
models, using a 2-D panel element enables capturing interac-
tions between axial, flexural, and shear forces. Closed-form 
equations (Eq. (1) to (9)) are developed based on MCFT to 
determine the shear force and shear strain values at the key 
points. These equations simplify the original formulation of 
MCFT, which is complicated and requires a trial-and-error 
procedure, making it suitable for lumped plasticity analysis. 
The formulation of MCFT used in the derivation of closed-
form equations is shown in Fig. 2. The model considers the 
nonlinear distribution of various parameters, such as crack 
inclination (θ), shear strain (γ), and shear stress (v) through 
the section in an average sense. Using a large number of 
sectional analyses performed based on the full MCFT model 
on a wide range of shear-critical RC beams, the nonlinear 

Fig. 1—Schematic shear force-shear strain response of 
proposed model.

Fig. 2—Representing shear behavior of beam in concentrated manner with panel element formulated based on MCFT equations.
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distribution of each parameter at different stages of the 
response is determined. The models are selected such that 
they cover a wide range of important parameters such as 
concrete compressive strength (from 20 to 100 MPa [2900 
to 14,500 psi]), yield strength of reinforcing bars (from 300 
to 600 MPa [43,500 to 87,000 psi]), beam height (from 200 
to 2000 mm [7.87 to 78.74 in.]), cross-sectional dimension 
ratio (h/b) (from 0.8 to 8.0), and the transverse reinforce-
ment ratio (ρz) between 0.00% and 2.25%. Simple equations 
are developed to approximate the nonlinear distribution with 
an average value for the entire 2-D panel representing the 
shear hinge in the beam. This approach makes it possible 
to develop a relatively simple model for lumped plasticity 
analysis that can capture nonlinearity effects with reason-
able accuracy. The typical distribution of shear strain, longi-
tudinal strain, and crack inclination along the beam height 
found from sectional analyses based on the full MCFT 
model are shown in Fig. 3. In the following, the develop-
ment of closed-form equations for the key points of the 
response is discussed.

Ultimate point
The shear strength (Vu) is calculated based on the shear 

design provisions of the Canadian concrete design code, 
CSA  A23.3,13 with some modifications. According to 
CSA A23.3, which is developed based on the MCFT model, 
the shear strength of a beam section can be expressed as

	 V V V f bd
A f d
sr c s c v

st yt v
u� � � � � � �� �cot 	 (10)

where Vc and Vs are the shear strength of concrete and trans-
verse reinforcement; β is the contribution factor accounting 
for the strength of cracked concrete; and θu is the inclination 
of crack at the peak shear stress. In the CSA A23.3 proce-
dure, θu is considered to be equal to (29 + 7000εx), where εx is 
the longitudinal strain at middepth of the member. However, 
Bentz et al.14 and Esfandiari and Adebar15 showed that for 
beams with stirrups the crack direction at ultimate load 
depends not only on εx, but also on the ratio of the yielding 
stress in the shear reinforcement to the compressive strength 
of concrete ρz × fyt/fc′. To perform a more thorough investiga-
tion, a wide range of RC beam sections with different ratios 
of ρz × fyt/fc′ is analyzed in this study using Response-2000,16 
which is a nonlinear sectional analysis software developed 
based on MCFT. The relationship between θu and εx calcu-
lated for different beams as well as the code predictions is 
shown in Fig. 4. It can be seen that because the influence of 
stresses in concrete and steel on θu is neglected, CSA A23.3 
provides an upper bound for θu, which results in conservative 
shear strength values. Using data presented in Fig. 4, a more 
refined equation for θu is developed for beams containing 
shear reinforcement (refer to Eq. (11)).

For beams without shear reinforcement, Bentz et 
al.14 showed that θu is approximately equal to (29 + 
7000εx)∙(0.88  + sze/2500), where sze is the crack spacing 
parameter estimated using equations in the Appendix. In this 

Fig. 3—Variations of longitudinal and shear strains and crack direction through section at five key points of response.
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study, using a parametric analytical study similar to that used 
for beams with stirrups, it is found that by relating θu to the 
square root of εx instead of εx, a more accurate equation for 
predicting θu can be obtained. This is shown in Fig. 5, where 
the predictions of the proposed equation are compared with 
the results of the full MCFT model reported by Bentz et al.14 
The proposed equations for calculating θu for both cases of 
beams with and without stirrups are shown in Eq. (2). All ki 
coefficients are described in the Appendix.

	 θ
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To find the shear strength in CSA A23.3, εx is calculated 
using the shear force (Vf) acting on the section. As the shear 
force increases, εx increases, resulting in a lower shear 

strength. The relationship between the applied shear force 
and the shear strength for a section is shown in Fig. 6. While 
this procedure works for designing a section with known 
sectional forces, it cannot be applied for an analysis case 
where sectional forces are not known prior to the analysis. 
In this study, by recognizing that the maximum applicable 
shear force on a section (Vu) occurs when the shear resis-
tance becomes equal to the applied shear force (Vr = Vf) 
(refer to Fig. 6) and by estimating cot(θu) as (1.73 – 300εx)
(ρz × fyt/fc′)0.23, a new equation is derived to express the shear 
strength solely in terms of cross-section dimensions and 
material properties of the beam
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In some cases where the flexural capacity of the beam is 
low, the longitudinal reinforcement may yield before beam 
reaches its ultimate shear capacity. When the transverse and 
longitudinal reinforcements both yield, there would not be 
additional capacity in the reinforcing bars to equilibrate the 
diagonal compression force in the concrete, resulting in a 
shear strength lower than that predicted by Eq. (12). For 
these cases, Esfandiari and Adebar15 proposed an equation 
to calculate the shear strength of RC beam sections

	 V k k A f ku s yl= ( ) + −α α
15

2

15 15
2 	 (13)

where α is the ratio of the bending moment to the shear force 
times the effective shear depth (M/(V × dv)). In this study, 
the minimum value of Eq. (12) and (13) is taken as the shear 
strength for the lumped plasticity analysis.

The ultimate shear strain (γu) is found from Eq. (6) of the 
original MCFT model multiplied by a factor accounting for 
the effective shear strain depth in beams (k9), as the shear 

Fig. 4—Comparison of crack inclination θ predicted by 
Response-2000 and CSA A23.3 for various values of ρz × fyt/
fc′ in beams with stirrups.

Fig. 5—Comparison of crack inclination (θ) predicted by full-MCFT method and proposed equation in beams without stirrups.
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strain in the compression zone is almost equal to zero (refer 
to Fig. 3)

	 γ ε ε θu xu u u k= +( )⋅ ( )⋅2
2 9

cot 	 (14)

where εxu and ε2u are the longitudinal strain at middepth 
and average principal compressive strain of the section 
at the peak shear stress, respectively; and θu is the crack 
direction at the peak shear stress, which can be determined 
from Eq. (11). CSA A23.313 approximates εxu to be equal to 
one-half of the strain in the flexural tensile reinforcement by 
assuming that the longitudinal strain at the top of the section 
is negligible. This is generally a conservative assumption 
that may be reasonable for calculating the shear strength, but 
it can result in inaccurate shear strain predictions. To obtain 
a more accurate estimation of εxu, the longitudinal strain at 
the top of the section needs to be considered, which requires 
estimating the height of the compression zone (Xu) (refer to 
Fig. 3). Xu can be calculated using Eq. (15) developed based 
on the equilibrium of the compression and tension forces in 
the section. According to Bentz and Collins,17 the tension 
force in the reinforcement is equal to Mu/dv + 0.5cot(θu)Vu. 
In beams with stirrups, the typical range of θu varies between 
20 and 35 degrees, while in beams without stirrups, θu is 
generally higher than 40 degrees. For simplicity, 0.5cotθu 
can be assumed to be equal to 1.0 and 0.0 for beams with and 
without stirrups, respectively. Additionally, the compression 
force in the concrete is determined to be 0.72fc′bXu from the 
equivalent rectangular stress block procedure.18 For beams 
without stirrups, however, the 0.72 factor is replaced with 
a term proportionally related to h and the square root of 
fc′. Thus, Xu can be determined using Eq. (15). After deter-
mining Xu, εxu can be found from Eq. (16) by calculating k1 
and k5 factors using equations provided in the Appendix.
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If imperial units are being used, the 56 in Eq. (15) should be 
replaced by 33.

The second parameter in Eq. (14) for determining γu is 
ε2u. To calculate this parameter, first, the principal compres-
sive stress in concrete (fc2u) is determined from Eq. (3) of the 
original MCFT model. In this equation, the average prin-
cipal tensile stress in concrete (fc1u) is neglected, considering 
that concrete is heavily cracked at this stage of the response. 
Thus, fc2u can be expressed as

	 f vc u u u u2
= +( )tan cotθ θ 	 (17)

fc2u can also be determined from Eq. (9) of the original 
MCFT model, which represents compressive stress-strain 
response of concrete based on the Hognestad model19 while 
including the compression softening effect. By equating 
Eq. (17) to Eq. (9) and using Mohr’s circle of strains, the 
following equation can be found for ε2u

	 ε2u = k8 ∙ ε0	 (18)

where ε0 is the strain corresponding to the compressive 
peak strength of concrete; and k8 is a factor provided in the 
Appendix in terms of the concrete material properties εxu, 
vu, and θu.

Yielding point
The shear force corresponding to the yielding of stirrups 

(Vy) is found from Eq. (2) of the original MCFT by assuming 
clamping stresses in the beam are negligible (fz = 0),14 and 
multiplying the stress with the effective shear area

	 V
f f

bdy
z yt c y

y
v=

+
⋅

ρ
θ

1

tan
	 (19)

fc1y, which is the principal tensile stress in concrete when 
stirrups yield, is assumed to be equal to 20% of the concrete 
tensile strength (0.2ft′). This assumption is made by incor-
porating the original formulation of the MCFT model and 
the post-cracking tension stiffening model of Tamai et al.20 
According to Eq. (5) of the original MCFT, the principal 
tensile strain in concrete at the yielding point (ε1y) will be in 
the same order as the yielding strain of stirrups (εzy), consid-
ering that εzy is relatively larger than εxy and ε2y at this stage 
of the response. Assuming that the typical yielding strain of 
stirrups (εzy) is approximately 0.002 and using the tension 
stiffening model of Tamai et al.,20 fc1y can be approximated 
as 0.2ft′. It is worth mentioning that because of the relatively 
gentle slope of the postpeak tensile response of concrete due 
to the tension stiffening effect, the influence of approxima-
tions made in determining fc1y is insignificant.

To estimate θy in Eq. (19), the relationship between V and θ 
after the flexural cracking point (point 1) and before reaching 
the peak point (point 4) in the response is investigated for a 
wide range of RC beam sections using Response-2000. It is 
found that the relationship can be expressed in the form of 

Fig. 6—Variation of shear strength with applied shear force 
according to CSA A23.3.
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Eq. (20), where “n” is the shape factor, which can be varied 
from 0.5 to 1.0 in various beam sections. For simplicity, 
the shape factor at the yielding point is considered as 1.0, 
resulting in a linear relationship between V and θ. Equa-
tion  (20) can be further simplified by approximating the 
shear force at the formation of flexural cracks (Vfcr) as 10% 
of the shear strength (Vu), and estimating the initial crack 
direction (θfcr) as 45 degrees, which is a reasonable assump-
tion for RC sections. Applying these simplifications and 
rearranging Eq. (20) results in Eq. (21) for θy.
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By substituting θy from Eq. (21) into Eq. (19), the shear 
force at the yielding point (Vy) can be found as
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The calculation of shear strain at the yielding point is 
similar to that described for the peak shear strain and can be 
determined using Eq. (23)

	 γ ε ε θ γy xy y y uk= +( )⋅ ( )⋅ ≤2
2 13

cot 	 (23)

where εxy is estimated by calculating the average of longitu-
dinal strains at the top and bottom of the section (εxy.top and 
εxy.bot.), as shown in Eq. (24). εxy.top is approximately equal to 
the top longitudinal strain at the peak point (εxu.top). Using 
this approximation, and εxu and Xu calculated in the previous 
section, εxy.top and εxy.bot can be determined from Eq. (25) and 
(26), respectively
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The last parameter that needs to be determined in Eq. (23) 
is ε2y. Using the results of the parametric study discussed 
previously, ε2y is related to ε2u

	 ε ε
2 2
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where ε2u can be calculated using Eq. (18). Finally, the 
parameter k13 in Eq. (23) is defined to account for the effec-
tive shear strain depth, as previously described for k9 factor 
used for the ultimate point.

Flexural cracking point
The flexural cracking point is where the first crack perpen-

dicular to the longitudinal axis of the beam develops. The 
flexural cracking moment is equal to ft′ × bh2/6. Therefore, 
the shear force corresponding to the cracking moment (Vfcr) 
can be determined according to Eq. (29).

	 V
f bh
dfcr
c

v

=
′0 33

6

2
.

α
	 (29)

The shear strain corresponding to the flexural cracking 
(γfcr) point is simply determined by dividing the shear force 
by the initial shear stiffness, as follows

	 γ fcr
fcr

v

V
Gbd

= 	 (30)

Shear cracking point
After the section cracks, as the shear force increases, 

cracks start to rotate toward the concrete compression strut, 
forming diagonal shear cracks. According to the results of 
the parametric study, when the diagonal shear cracks reach 
approximately the middepth of the section, the neutral 
axis is located at the middepth of the section. In this study, 
this point is defined as the “shear cracking point” (refer to 
Fig. 1 and 3). Assuming a parabolic shear stress distribution 
through the section height, the average shear stress (vscr) will 
be equal to two-thirds of the shear stress at the middepth of 
the section (vscr.mid.)

	 v vscr scr mid=
2

3
. .

	 (31)

According to Eq. (3) of the original MCFT, vscr.mid. can 
be determined from the principal tensile and compressive 
stresses in concrete (fc1.scr.mid., fc2.scr.mid.) and the crack incli-
nation (θscr.mid.) at the middepth of the section. Substituting 
Eq. (3) into Eq. (31) results in the following equation for the 
shear cracking force (Vscr)

	 V
f f

scr
c scr mid c scr mid

scr mid scr mid

=
+

( ) +
2

3

1 2. . . . . .

. . .
tan cotθ θ

..( ) bdv 	 (32)

where fc1.scr.mid. can be estimated as ft′ = 0.33√fc′ (MPa) 
(4√fc′  [psi]), because the shear cracking point is defined 
as when the concrete tensile stress at the middepth of the 
section reaches the cracking stress. fc2.scr.mid. is relatively 
small compared to fc1.scr.mid. at the shear cracking point. 
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Nevertheless, using the results of the parametric study, the 
following relationship between fc2.scr.mid., fc′, and α can be 
found

	 f
f

f
c scr mid

c

c
2 1 6

7 7

. . . .

.
=

′

′( )α
	 (33)

If fc′ is expressed in imperial units, the 7.7 in Eq. (33) 
should be replaced by 22,000. θscr.mid. can also be found by 
calculating the average crack direction (θscr) and considering 
the distribution of the crack direction through the section 
height at the shear cracking point, as shown in Fig. 7. It 
can be seen that the distribution of crack direction can be 
approximated with a parabolic curve at the top half of the 
section and a constant value at the bottom half of the section. 
Using the weighted average concept, the crack direction at 
middepth can be estimated as approximately 1.5 times the 
average crack direction through the section

	 θscr.mid. = 1.5θscr	 (34)

θscr is determined with the same concept as that provided 
for Eq. (20) at the yielding point, assuming that Vscr/Vu 
equals to 0.4 and 0.7 for beams with and without stirrups, 
respectively
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The results of the sectional parametric study showed that 
the influence of the initial assumption for Vscr/Vu on the final 
value of Vscr is insignificant.

The shear cracking strain (γscr) is simply estimated by 
dividing the shear force by 75% of the initial shear stiffness 
of concrete, as presented in Eq. (36). The shear stiffness at 
this point can vary from Gbdv to 0.5Gbdv. For simplicity, the 
average value of this range, 0.75Gbdv, is used for calculation.

	 γ scr
scr

v

V
Gbd

=
0 75.

	 (36)

Failure point
For beams without stirrups or beams with stirrups that 

do not have adequate flexural reinforcement, the post-peak 
response is assumed to be negligible due to the brittle nature 
of the failure. For beams that contain stirrups and have 
adequate flexural reinforcement, a post-peak response is 
calculated to consider the residual shear strength and ductility 
of the beam after reaching the ultimate shear strength point. 
For these beams, the shear stress at failure is considered as 
80% of the ultimate shear strength based on the recommen-
dations from the literature.21 To find the shear strain, it is 
assumed that the principal compressive strain in concrete at 
failure (ε2f) is equal to the strain corresponding to the peak 
compressive strength of concrete (ε0). Using this assumption 
and Eq. (6) of the original MCFT, the shear strain at failure 
can be found from Eq. (37).

	 γ ε ε θf xf f k= +( ) ( )2
0 14

cot 	 (37)

Solving Eq. (37) requires estimating the average longi-
tudinal strain (εxf) and the average crack direction (θf) at 
failure. It can be seen from various sectional analysis results 
that values of εx and θ at the postpeak response are approx-
imately equal to those corresponding to the same shear 
force at the prepeak response. Thus, values of εx and θ at the 
failure point are approximated with the prepeak values at 
80% of the shear strength. εxf can be found from the longi-
tudinal strain at the top and bottom of the section (εxf.bot. and 
εxf.top) using Eq. (38)

	 ε
ε ε

εxf
xf bot xf top

xu=
−

≥. . .

2
	 (38)

where εxf.top is equal to εxy.top as the top longitudinal strain 
does not vary significantly from the yielding point to the 
failure point and can be calculated using Eq. (25). Also, εxf.bot 
can be calculated using Eq. (26) by replacing Vy with 0.8Vu. 
The next parameter required to calculate the shear strain at 
failure is θf, which can be estimated by replacing Vy with 
0.8Vu in Eq. (21). This results in the following simplified 
equation for θf.

	 θf = 10° + 0.78θu	 (39)

Finally, the parameter k14 is defined to account for the effec-
tive shear strain depth as previously described for k9 and k13 
factors used for the ultimate and yielding points, respectively.

The step-by-step procedure on how to use the aforementioned 
equations to calculate the five key points and generate the shear 
force-shear strain relationship is demonstrated in Fig. 8.

Fig. 7—Variation of crack direction through section at shear 
cracking point.
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VERIFICATION AT COMPONENT LEVEL
A total of 11 shear-critical beams experimentally tested by 

Podgorniak-Stanik,22 Frosch,23 Cladera,24 and Sherwood25 
and one flexural-critical beam tested by Kassem et  al.26 
were selected to assess the performance and accuracy of the 
proposed model. To provide an unbiased comparison of the 
results, different beams were selected for the verification 
study than those considered in the previous section for the 
derivation of model equations. The main characteristics of 
the beams are shown in Table 1. The beam sections covered 
a wide range of key parameters to provide a comprehensive 
assessment of the proposed model. All beams were simply 
supported and subjected to a point load at the midspan, 
except for “ST-6” beam that was loaded under two symmet-
rical point loads.

The beams were modeled in the OpenSees27 software using 
two-noded frame elements, each having a series of fibers 
representing the nonlinear behavior at the section level. As 
mentioned previously, the frame element in OpenSees is not 
capable of capturing the shear behavior in an RC member, 
because it is designed to consider only the biaxial flexure 
and axial behavior. To account for shear effects, the proposed 
shear hinge model was added to the FE model using Zero-
Length elements (refer to Fig. 9). A ZeroLength element (that 
is, shear hinge) was placed on each side of the beam at dv 
distance away from the applied load. This is considered to be 
the critical section for shear because the shear force distribu-
tion is constant throughout the beam and the largest bending 
moment occurs at the midspan under the loading plate. 
As the bending moment increases, the longitudinal strain 
increases, resulting in a lower shear strength and a more crit-
ical section (that is, shear force-bending moment interaction 
effect). Because of the high concentrated compressive force 
under the loading plate, the shear-critical section is typically 
assumed to be at the dv distance away from the loading plate. 
This location correlates reasonably well with the location 
of diagonal shear cracks observed in experimental tests. It 
should be noted that this location is suitable only for simply Fig. 8—Step-by-step procedure for calculation of five key 

points for proposed model.

Table 1—Parameters of RC beams considered for verification study

Researcher Beam fc′, MPa fyl, MPa fyt, MPa b, mm h, mm d, mm a, mm s, mm Asl, mm2 Ast, mm2 Vu,exp./Vu,cal.

Kassem et al.26 ST-6 40.8 460 460 200 300 235 875 80 600 200 1.04

Podgorniak-Stanik22

BN50 37.0 483 — 300 500 450 1350 — 1100 — 1.14

BH50 99.0 483 — 300 500 450 1350 — 1100 — 0.93

BN100 37.0 550 — 300 1000 925 2700 — 2100 — 0.93

Sherwood25
S-10H 77.3 494 — 122 330 280 810 — 285 — 1.03

L-10H 73.6 452 — 300 1510 1400 4050 — 3500 — 0.97

Podgorniak- Stanik22 BM100 46.0 550 508 300 1000 925 2700 600 2100 142.6 1.11

Frosch23 V1&V2 36.5 475 483 457 914 851 2553 372 3870 142.6 1.04

Sherwood25
S-10HS 77.3 502 496 122 330 280 810 160 458 19.6 1.13

L-10HS 73.6 452 494 300 1510 1400 4050 235 5600 71.3 1.07

Cladera24
H50/4 49.9 500 540 200 400 351 1080 210 2098 100.6 1.04

H100/4 87.0 500 540 200 400 351 1080 210 2098 100.6 0.99

Note: 1 mm = 0.0394 in.; 1 MPa = 0.145 ksi.
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supported beams subjected to a concentrated load at the 
midspan. For beams with other types of boundary or loading 
conditions, the location of shear hinge might be different 
and should be selected based on the shear force and bending 
moment diagrams. A multilinear uniaxial material model 
was assigned to the ZeroLength elements. The response of 
the material model was defined using the values of the shear 

force and shear deformation at each key point obtained from 
the procedure described in Fig. 8. The shear deformation 
was calculated by multiplying the shear strain by 1.5 times 
the section height (h), as recommended by Guner.28

Figure 10 shows the comparison of load-deflection 
responses of the beams obtained from: 1) the experiment; 
2)  OpenSees with and without the proposed shear hinge 
model; 3) OpenSees with a shear hinge model defined 
according to the ASCE/SEI 4110 backbone curves; and 4) 
VecTor5,29 a distributed plasticity analysis software with 
shear analysis capability. Before investigating the shear- 
critical beams, a flexural-critical beam (ST-6) was analyzed 
to verify the modeling procedure in OpenSees. It can be seen 
from Fig. 10 that the results of OpenSees models with and 
without the shear hinge for the flexural-critical beam were 
nearly identical and correlated well with the experimen-
tally reported data. Thus, incorporating shear hinges into 
the OpenSees model did not have a noticeable effect on the 
behavior of the flexural-critical beam as expected. It is worth 

Fig. 9—OpenSees model of beam with proposed shear hinge 
model.

Fig. 10—Comparison of force-displacement curves between OpenSees models with and without proposed shear hinge, experi-
ment, OpenSees with ASCE/SEI 41 shear hinge model, and VecTor5. (Note: 1 mm = 0.0394 in.; 1 kN = 0.225 kip.)
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noting that for this beam the shear deformations were negli-
gible compared with flexural deformations.

After verifying the FE modeling procedure in OpenSees, 
the ability of the proposed shear hinge model to capture 
shear behavior was investigated. It can be seen from Fig. 10 
that the OpenSees model with the proposed shear hinge 
computed force-displacement relationships of the shear-crit-
ical beams reasonably well. In general, the model was able 
to capture the initial elastic response, reduction in stiffness 
caused by concrete cracking or yielding of the transverse 
reinforcement, peak strength and deformation, and failure 
due to shear. In some cases (H50/4 and H100/4), the model 
overestimated the initial stiffness, resulting in relatively more 
stiff responses with somewhat lower deflections. It is worth 
mentioning that the overestimation of the initial stiffness 
for these two beams was common for all analysis methods 
including the ASCE/SEI 41 shear hinge model and VecTor5. 
One reason for this could be that these beams might have 
already been in their cracked state prior to the test due to the 
shrinkage effect, which resulted in a lower initial stiffness 
compared with an uncracked beam. Another reason could 
be the inherent variation in the behavior of shear-critical test 
specimens due to the complexity and variability associated 
with shear mechanisms. An example of this variation can 
be seen in the experimentally reported peak strengths of V1 
and V2 beams, which had identical material and structural 
characteristics.

As shown in Fig. 10, the OpenSees model without the 
shear hinge could not account for shear effects, leading to 
significant overestimation of the peak strength and deforma-
tion. For this model, the analysis continued until the beam 
reached its flexural capacity, resulting in wrong failure 
modes. It should be mentioned that frame elements with 
fiber sections in OpenSees are not intended to capture the 
shear behavior or to be used for analysis of shear-critical 
structures. The reason this modeling approach is included in 
this study is to demonstrate the consequence of using frame 
elements in OpenSees for structures with considerable shear 
effects and the importance of enhancing these elements with 
shear modeling capability.

Comparison of the load-deflection responses calculated 
by VecTor5, which considers shear effects using a distrib-
uted plasticity approach with those obtained from the 
proposed lumped plasticity shear hinge model in Fig. 10,  
demonstrated a good agreement between the results. 
Although the lumped plasticity model is based on a rela-
tively less complicated analysis approach, where the nonlin-
earity effects resulting from shear are concentrated at the 
hinge locations, it can be seen that this approach resulted 
in the same or even higher level of accuracy compared with 
VecTor5. This can be due to an approximation made in the 
formulation of VecTor5, which assumes a predefined shear 
strain distribution (either parabolic or uniform) through the 
section for the entire analysis. This assumption, however, 
is only accurate for the initial stages of the response. After 
concrete starts to crack, shear strains at the cracked layers 
become considerably larger than those at the uncracked 
layers, resulting in a more complicated strain distribution. 
With the proposed shear hinge model, on the other hand, 

the actual shear strain distribution in different stages of 
the response was considered in the derivation of the model 
equations in an average sense (refer to Fig. 3), which led to 
more accurate results for most of the analysis cases.

The performance of the proposed model was also eval-
uated against another shear hinge model defined based on 
the ASCE/SEI 41 backbone curves and implemented into 
OpenSees. It can be seen from Fig. 10 that this model could 
not accurately capture the strength and ductility of beams 
without stirrups, particularly if they had relatively high depth 
or high concrete compressive strength. One reason for this is 
the inability of the ASCE/SEI 41 model to consider the size 
effect, which is known to have a significant influence on the 
response of beams with little or no shear reinforcement.30 
For beams containing stirrups, the load-deflection responses 
calculated by the ASCE-41 model generally showed better 
agreement with the experimental results.

The shear strength of the beam sections predicted by 
the CSA A23.313 and ACI 318-1931 design codes are also 
shown in Fig. 10. ACI 318 and CSA A23.3 equations are 
not applicable to beams that have fc′ of greater than 70 and 
80 MPa (10.15 and 11.60 ksi), respectively. Therefore, the 
results related to these beams are not presented. The peak 
strength calculated by the proposed shear hinge model and 
CSA A23.3 for beams without stirrups were close to each 
other and showed better agreement with the experimental 
results when compared with the peak strength obtained from 
ACI 318. For beams with stirrups, the proposed shear hinge 
model computed the peak strength of beams more accurately 
than both of the design codes.

VERIFICATION AT SYSTEM LEVEL
The application of the proposed model at the system level 

was investigated on a two-story, single-span RC frame with 
shear-critical beams tested by Duong et al.32 The geometry 

Fig. 11—Duong et al.32 test frame. (Note: 1 mm = 0.0394 in.; 
1 kN = 0.225 kip.)
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of the frame, as well as cross-section dimensions and rein-
forcement details, are shown in Fig. 11. The base shear 
versus lateral roof displacement responses reported from the 
experimental test and calculated by the analysis procedures 
mentioned in the previous section are shown in Fig. 12. It can 
be seen that there was good agreement between the results of 
the OpenSees model with the proposed shear hinge model, the 
VecTor5 model, and the experiment. Both analytical models 
captured the damage sequence and failure mode of the frame 
accurately. First, the first-story beam failed in shear, causing 
a significant drop in the load-deflection response, which was 
shortly followed by the shear failure of the second-story 
beam, resulting in complete failure of the frame. The other 
two analytical models (OpenSees model without shear hinge 
and OpenSees model with ASCE/SEI 41 shear hinge) both 
significantly overestimated the peak strength and ductility. 
The OpenSees model without shear hinge only computed 
the flexural response of the frame and neglected the shear 
behavior, as expected. The OpenSees model with the ASCE/
SEI 41 shear hinge captured the shear failure but signifi-
cantly overestimated the peak shear strength and ductility of 
the frame. One reason for the overestimation of the results 
is that the ASCE/SEI 41 model does not take into account 
the influence of yielding of longitudinal reinforcement on 
the shear capacity, as discussed in the derivation of the ulti-
mate strength equation in the Model Development section. 
The overestimation in the strength led to significantly higher 
lateral roof deformations, especially because at this stage of 
the response, the flexural reinforcement at the base of the 
columns had yielded.

SUMMARY AND CONCLUSIONS
A nonlinear lumped plasticity model was developed based 

on the Modified Compression Field Theory (MCFT) to 
capture the shear behavior of reinforced concrete (RC) beams. 
The compatibility, equilibrium, and constitutive relationships 
of the original MCFT model, which requires a complicated 

trial-and-error procedure, were simplified into closed-
form equations using a wide range of parametric studies on 
shear-critical RC beams. Nonlinear distribution of stresses, 
strains, and crack direction through the section at different 
stages of the response was considered in the development of 
the model equations. Using the proposed model, the shear 
force and shear deformation values at five key stages of the 
response can be calculated, enabling detailed representation of 
the shear behavior. By implementing the proposed model into 
OpenSees, its performance was assessed against experimental 
tests, the ASCE/SEI 41 lumped plasticity model, and a distrib-
uted plasticity model at both the component and system level. 
It was demonstrated that the proposed model can compute 
the failure mode and load-deflection response of the test 
specimens with better accuracy compared with the other two 
modeling approaches. The analysis results also  highlighted 
the consequences of using a frame-type analysis procedure 
such as OpenSees for shear-critical structures without giving 
special consideration to modeling shear effects. Lastly, the 
ultimate shear strength values estimated from the proposed 
model were compared against those obtained from the CSA 
A23.3 and ACI 318 design codes. It was shown that although 
the basis of the proposed model is similar to CSA A23.3 
for the calculation of the ultimate shear strength, the model 
provided more accurate results because of the improvements 
made in the formulation.

After successful application of MCFT to various design 
procedures and nonlinear FE and sectional analysis programs 
over the last 35 years, this study for the first time demonstrated 
that this viable theory can also be highly effective for the  
analysis of shear-critical RC structures using the lumped plas-
ticity approach. Considering the computational efficiency 
of the lumped plasticity approach, the proposed shear hinge 
model will be beneficial for the analysis of large RC structural 
systems. It enables the nonlinear shear response of structures 
to be accurately taken into account while using computation-
ally efficient frame-type analysis procedures.
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NOTATION
Asl	 =	 area of tensile longitudinal reinforcement
Ast	 =	 area of transverse reinforcement
a	 =	 shear span
b	 =	 beam width
d	 =	 effective depth
dv	 =	 effective shear depth, taken as the greater of 0.9d or 0.72h
Es	 =	 modulus of elasticity of steel
fc'	 =	 cylindrical compressive strength of concrete
fc1	 =	 principal tensile stress in concrete
fc2	 =	 principal compressive stress in concrete
fsx	 =	 average stress in x-reinforcement
fsz	 =	 average stress in z-reinforcement

Fig. 12—Comparison of base shear versus lateral roof 
displacement for Duong et al.32 test frame. (Note: 1 mm = 
0.0394 in.; 1 kN = 0.225 kip.)
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ft′	 =	 modulus of rupture of concrete
fx	 =	 stress applied to element in x-direction
fyl (fyx)	 =	 yield strength of longitudinal reinforcement
fyt (fyz)	 =	 yield strength of transverse reinforcement
fz	 =	 stress applied to element in z-direction
G	 =	 initial shear modulus of concrete
h	 =	 beam height
n	 =	 shape factor used in Eq. (20)
s	 =	 spacing of transverse reinforcement
sz	 =	 crack spacing parameter, as defined in CSA A23.3
sze	 =	 equivalent value of sz that allows for influence of aggregate size
V	 =	 shear force
Vc	 =	 shear resistance provided by concrete
Vf	 =	 shear force acting on a section
Vr	 =	 shear resistance
Vs	 =	 shear resistance provided by transverse reinforcement
v	 =	 shear stress
vc	 =	 shear stress in concrete
vci	 =	 shear stress on crack surfaces
X	 =	 distance from extreme compression fiber to neutral axis
α	 =	 M/Vdv
β	 =	 contribution factor accounting for strength of cracked concrete
Δf	 =	 flexural deformation
Δs	 =	 shear deformation
ε0	 =	 strain in concrete at peak stress fc′
ε1	 =	 principal tensile strain in concrete
ε2	 =	 principal compressive strain in concrete
εx	 =	 longitudinal strain
εz	 =	 transverse strain
γ	 =	 shear strain
θ	 =	 angle between crack inclination and x-axis
ρx	 =	 longitudinal reinforcement ratio
ρz	 =	 transverse reinforcement ratio
Subscripts u, f, y, scr, and fcr are related to each of the five key points 
in the model. Also, subscripts mid., top, and bot. show the location of the 
parameter through the height of the section. Parameters without the loca-
tion subscripts indicate the average value through the height. For example, 
θy denotes the average crack inclination angle at the yielding point, and  
fc1.scr.mid. denotes the principal tensile stress in concrete at the middepth of 
the section at the shear cracking point.
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ACI Faculty 
Network

The Faculty Network is a support group for educators 
interested in ACI and the concrete industry. Members receive 

notifications about classroom resources, fellowships and 
scholarships, funding for research, online learning, and  

calls for papers and presenters.

Join online at www.concrete.org/educatorsandresearchers/facultynetwork

Free 1-Year Educator Membership
ACI offers complimentary membership to teaching professionals who have not been an ACI member within  
the past 5 years.

Free Desk Copies 
Faculty Network members can request a complimentary print or pdf copy of:

• ACI 318-19, Building Code Requirements for Structural Concrete
• SP-4, Formwork for Concrete
• ACI 530, Building Code Requirements and Specification for Masonry Structures and Companion Commentaries
• MNL-17, The ACI Reinforced Concrete Design Handbook
• MNL-5(19): Contractor’s Guide to Quality Concrete Construction, 4th Edition
• ACI 562-19, Code Requirements for Assessment, Repair, and Rehabilitation of Existing Concrete Structures

Networking
ACI hosts a Faculty Network Reception twice a year during the ACI Concrete Conventions, giving an opportunity 
to exchange ideas and network.

Faculty Network members receive a complimentary annual subscription that 
provides users with convenient digital interactive access to ACI CODE-318-19, 

along with in-document access to related resources and enhanced digital search features through all code 
provisions and commentary. The platform allows professors and students to view and share digital notes and the 
additional resources within the platform.

The Professors’ Workshop is designed 
to provide instructors in civil engineering, 
architecture, architectural engineering, 
materials science, and construction 
management programs the tools 
to engage students in the latest 
developments in concrete design, 
construction, and materials.

The Concrete Research Council (CRC) 
seeks concrete research projects that 
further the knowledge and sustainability 
of concrete materials, construction, 
and structures in coordination with 
ACI Committees. Annual Request for 
Proposals (RFP) are received between 
August 1 and December 1. 

Professors’ Workshop

Materials | Pavements | Structures

COSPONSORED BY PCA EDUCATION FOUNDATION AND ACI FOUNDATION

Why Join the 
Faculty Network


