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Multi-scale analysis, which involves combining advanced elements 
with computationally fast elements, is an effective method for 
assessing the behavior of large structures with deficient or complex 
members. One major challenge in multi-scale analysis is modeling 
the interface between the two types of elements. This study presents 
a new interface element for connecting a beam element to 
membrane elements, specifically formulated for reinforced concrete 
members. The proposed element considers reinforced concrete a 
composite material and is capable of computing linear and 
nonlinear stress distributions through the section and allows for 
transverse expansion at the interface section. The accuracy of the 
interface element is verified through analysis of a series of beam 
specimens presented in the literature. The improvements of the 
proposed method are compared against two commonly used 
beam-membrane coupling methods. Lastly, the application of the 
interface element is demonstrated by multi-scale analysis of a 
reinforced concrete frame structure with critical joints.

Keywords: beam-membrane coupling; multi-scale modeling; nonlinear 
analysis; reinforced concrete; shear behavior.

INTRODUCTION
In nonlinear finite element analysis, situations often arise 

where more than one type of element is required to model 
the structural system. This type of simulation is known as 
multi-scale or mixed-type modeling and has attracted much 
research interest over the past several years.1-8 One common 
application of mixed-type modeling is connecting beam 
elements and membrane elements for analysis of large, 
complex reinforced concrete structures. Beam elements are 
computationally fast and suitable for global analysis of struc-
tures. However, due to the limitations of their formulations, 
they are unable to accurately analyze members with highly 
nonlinear behavior (for example, disturbed regions) or accu-
rately represent local mechanisms in cracked reinforced 
concrete (for example, bond-slip effects, and stress condition at 
the crack). Compared to beam elements, membrane elements 
can capture detailed mechanisms and compute the response 
of the structure with better accuracy. However, modeling 
the entire structure with membrane elements is typically not 
practical due to computational time and memory storage 
limitations. With a mixed-type modeling approach, a combi-
nation of beam elements and membrane elements can be 
used to model the entire structure while taking into account 
local effects in critical members and members with complex 
or continuum-type of behavior. This requires having a good 
understanding of the structural behavior and recognizing the 
location of the critical regions prior to the analysis.

For coupling a beam element with membrane elements, 
special consideration must be given in modeling the interface 
section. Specifically, the rotation at the interface node of the 
beam element must be transferred to the equivalent displace-
ments of membrane elements, which usually only support 
translational degrees-of-freedom (DOFs). The procedure 
must satisfy compatibility and equilibrium requirements at the 
interface section. In addition, because the interface section is 
usually located close to a critical member of the structure and 
the distance, which is influenced by coupling the two elements 
is not known prior to the analysis, realistic stress distributions 
must be computed at the interface section.

The existing beam-membrane coupling methods can be 
categorized into three main types: rigid links, multi-point 
constraints (MPCs), and transition elements. Rigid links are 
the simplest type of coupling method in which extremely high 
stiffness members connect beam and membrane elements.1,2 
Although the rigid links method satisfies compatibility and 
equilibrium requirements, it does not provide a realistic 
stress distribution at the interface section. In addition, a 
set of transverse rigid members at the connection acts as a 
strong stirrup that does not allow transverse expansion at the 
interface, adding additional stiffness to the structure, which 
may affect the response of the system.

With the MPC methods, constraint equations define the 
relationship between the displacements at the interface DOFs 
of the beam and membrane elements. One popular type of 
MPC method is the energy-based approach proposed by 
McCune et al.3 In this method, the constraint equations were 
derived based on equating the work done by the stresses in 
each element type at the interface and the assumed stress 
distributions along the cross section. Ho et al.4 proposed 
constraint formulations based on defining equivalent forces 
and moment for the beam element at the connection section. 
Although the method resulted in a uniform and unperturbed 
stress distribution between the two types of elements, it 
assumed rigid displacements, which did not allow transverse 
expansion at the interface section. Wang et al.5 used the 
virtual work concept and developed an iterative procedure 
to formulate constraint equations by applying unit forces and 
moment on the beam submodel. While the method elimi-
nated the stress distribution assumptions made in previous 
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MPC methods, the expensive computations required to 
update the constraint equations prohibited its practical appli-
cation to nonlinear analysis.

Another type of coupling method is based on the use of 
transition elements. Most of the research in this area has 
been focused on shell-solid connections. For the beam- 
membrane coupling problem, Bathe6 proposed a transition 
element based on isoparametric finite element formulation 
of a one-dimensional (1-D) beam element. Kim and Hong7 
introduced a two-dimensional (2-D) transition element for 
analysis of coupled frame-shear wall structures. The stiff-
ness matrix of the transition element was formulated based 
on constraint equations that assumed linear and constant 
displacement distributions in the axial and vertical direc-
tions, respectively. Garusi and Tralli8 proposed a hybrid set 
of stress-assumed transition elements for beam-solid and 
beam-shell connections. Instead of formulating the stiffness 
matrix using relationships between displacements of DOFs, 
the method derived stiffness properties by assuming a stress 
field based on the Saint-Venant theory. However, these tran-
sition elements were prone to “spurious kinematic modes” 
that had to be suppressed through the introduction of a 
penalty strain energy term.

While the afore-mentioned beam-membrane coupling 
methods can satisfy the compatibility and equilibrium 
requirements at the interface section, they have limitations 
when applied to nonlinear analysis of reinforced concrete 
structures. Some of the methods impose a constant trans-
verse displacement distribution that does not allow for 
transverse expansion and accurate calculation of Poisson’s 
effects.1,2,4,6,7 Some of the methods do not consider stress 
distribution at the interface1,2,6,7 and the ones that do, analyze 
the effects of axial stresses and shear stresses separately.3-5 
However, in reinforced concrete structures, the axial and 
shear stresses are closely interrelated (for example, stress 
condition at the crack). Also, almost all the previous studies 
have focused on linear elastic analysis, but the behavior of 
reinforced concrete structures is highly nonlinear due to the 
low cracking strength and nonlinear compression response 
of the concrete, and yielding of the reinforcement.

In this study, a new beam-membrane (that is, frame- 
membrane) interface element, named the F2M element, is 
developed particularly for the analysis of reinforced concrete 
structures with an attempt to address the aforementioned 
limitations. An iterative procedure, formulated based on the 
Disturbed Stress Field Model (DSFM),9 is used to calculate 
linear and nonlinear stress distributions at the interface 

section. The procedure allows for transverse expansion and 
accounts for Poisson’s effects at the interface section. The 
performance of the F2M element is examined by mixed-type 
modeling of a series of beam specimens and comparing the 
results against experimental tests, stand-alone models, and 
two other commonly used coupling methods. In addition, to 
demonstrate the application of the F2M element, a rein-
forced concrete frame structure with critical joints is modeled 
and analyzed in a mixed-type manner.

RESEARCH SIGNIFICANCE
Integration of advanced membrane elements with compu-

tationally fast beam elements is an effective solution tech-
nique for multi-scale analysis of large, complex structures. 
The existing beam-membrane coupling methods are mostly 
limited to linear elastic problems and have several major defi-
ciencies when applied to reinforced concrete members (for 
example, considering the transverse expansion or the shear 
strength reduction due to the concrete cracking). This study 
presents a new type of beam-membrane interface element 
that eliminates limitations of the existing coupling methods 
and improves modeling of the connecting section. In multi-
scale analysis, accurate modeling of the connecting section, 
which is typically located close to a deficient member, can 
influence both the local and global behavior of the structure.

PROPOSED INTERFACE ELEMENT
Overview

The F2M interface element is a two-noded semi- deformable 
element that has to be used as a group of elements oriented 
perpendicular to the beam element and along the membrane 
elements at the connecting section. The algorithm of the 
proposed element includes three main parts: 1) stiffness 
of the element; 2) axial and shear stress distributions; and 
3) nonlinear material models. A comprehensive description 
of each part is provided in the following subsections.

As shown in Fig. 1, the stiffness matrix of the F2M element 
is set such that it has high stiffness values in the transverse 
and rotational directions (K22 and K33, respectively) and 
zero stiffness in the axial direction (K11). This enables the 
analysis to transfer the rotation from the beam elements to 
the equivalent translational displacements in the membrane 
elements based on the assumption that “plane sections 
remain plane.” In addition, having zero stiffness in the axial 
direction avoids the addition of extra stiffness to the system 
and allows lateral expansion at the connecting section. In 
a typical coupling method, the shear forces are transferred 

Fig. 1—Overview of F2M element and strain distributions through cross section at interface section.
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between the two elements using either the rigid links or a 
predefined stress distribution at the interface section. With 
the F2M element, because the axial stiffness is set to zero, 
an iterative procedure is used to compute shear and axial 
stress distributions at the interface section. The procedure 
accounts for the material nonlinearity effects based on the 
DSFM model.

Stress distributions
An iterative procedure is used to transfer shear between 

the two submodels. The procedure is adopted from frame 
analysis software developed by Guner and Vecchio.10 In the 
first iteration of the analysis, the solution of the structural 
system is calculated assuming high stiffness in the axial 
direction for the F2M elements (that is, F2M elements 
initially act similarly to those in the rigid links method). In 
the subsequent iterations, the axial stiffness of the F2M 
elements is set to zero. Using a layered analysis approach 
that assumes plane sections remain plane, the longitudinal 
strains at each layer of the cross section can be calculated 
from the change in the length and curvature of the connecting 
beam element (refer to Fig. 1)
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where θ1 and θ2 are the rotations at the two ends of the 
connecting beam element; d and di are the heights of the 
cross section and i-th layer; Lo is the initial length of the 
element Lp and ϕp are the length and curvature of the element 
at iteration p; and εc and ɛi are the axial strains at middepth 
and i-th layer of the cross section, respectively. Using the 
computed shear force from the structural system solution, 
the shear strain at the middepth of the element (γc,p) can be 
estimated for elastic members as
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where V is the shear force; Gc is the elastic shear modulus 
as given by Eq. (5); At is the transformed cross-sectional 
area; and SF is the shear area factor for elastic members, 
which is taken as 1.20 and 1.11 for rectangular sections and 
circular sections, respectively, as suggested by Gere and 
Timoshenko11
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In Eq. (5), Ec and ν are the modulus of elasticity and the 
Poisson’s ratio of the concrete, respectively. Knowing the 

shear strain at the middepth of the cross section and assuming 
a parabolic shear strain distribution, the shear strain of each 
layer at iteration p of the analysis can be determined as
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The stress-strain constitutive relationship at the interface 
section can be written as:
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where {σ} and {ɛ} are the total stress and strain vectors; [D] 
is the composite material stiffness matrix; and {σo} is the 
pseudo-stress vector corresponding to the strain offsets as 
defined in the DSFM model.

The total strains in concrete can be expressed as a compo-
sition of: 1) net strains {ɛc}, which are used for calcula-
tions of stresses and stiffness moduli in the concrete; 2) 
elastic offset strains {ɛc

o} due to lateral expansion, thermal, 
shrinkage, and prestrain effects; 3) plastic offset strains {ɛc

p} 
due to permanent deformation resulting from cyclic loading; 
and 4) crack slip offset strains {ɛc

s} due to shear slip on the 
crack. The total concrete strains can be represented as

 ε ε ε ε ε{ } = { } + { } + { } + { }c c
o

c
p

c
s  (8)

Assuming perfect bond between the reinforcement and the 
concrete, the total strains developed in the i-th reinforcement 
component are equal to the total strains of the concrete at the 
same location. Therefore, in a similar manner, the total 
strains in the reinforcement can be expressed as a summa-
tion of: 1) net strains {ɛs}, which are used for calculations 
of the stress and stiffness modulus in the reinforcement; 
2) elastic offset strains {ɛs

o} due to thermal and prestrain 
effects; and 3) plastic offset strains {ɛs

p} due to steel yielding 
and damage resulting from cyclic loading. The total 
reinforcement strains can be written as
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p
i
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Because of the perfect bond assumption, the proposed 
interface element should be located an adequate distance 
from sections with critical bond-slip behavior (for example, 
interface of beam and column in joint panels). The distance, 
which is influenced by coupling the two types of elements, 
can be determined using a sensitivity analysis.

The pseudo-stress vector {σo} is computed from the 
summation of the pseudo-stress vector arising from strain 
offsets of the concrete, {σc

o}, and the pseudo-stress vectors 
resulting from strain offsets of all the reinforcement compo-
nents, {σs

o}
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where [Dc] and [Ds]i are the material stiffness matrices for the 
concrete and the i-th reinforcement component, respectively.

Assuming zero clamping stress at the interface section 
(σy = 0), an iterative procedure can be used to calculate the 
axial stress (σx) and shear stress (τxy) at each layer of the 
cross section without decoupling the effects of stresses. 
First, the axial strain (ɛx) and shear strain (γxy) are determined 
from Eq. (3) and (6), respectively. Assuming [Dc] and [Ds]i 
are known matrixes (developments presented in the next 
section), {σo} can be computed from Eq. (10) to (12) using 
the strain offsets. Thus, the constitutive relationship, Eq. (7), 
can be simplified to three equations and three unknowns in 
which the unknowns are the axial stress (σx), shear stress 
(σxy), and transverse strain (ɛy). Solving Eq. (7) provides the 
axial and shear stress distributions at the beam side of the 
interface section. Using the computed shear stress distribution 
and the tributary area concept, the equivalent axial forces at 
the F2M element nodes are computed. To transfer shear 
between the two submodels, the computed equivalent forces 
are applied in the opposite direction on the corresponding 
nodes of the connecting membrane elements.

To satisfy equilibrium at the interface section, the computed 
force of the membrane node located at the cross-sectional 
middepth must be modified to account for the total shear force 
carried by the corresponding node in the frame submodel 
resulting from the system-level analysis. Without this force 
modification, the sectional shear force will be counted 
twice—once from the shear force carried by the connecting 
node of the frame submodel, and once from the external 
forces applied on the connecting nodes of the membrane 
submodel. As presented in Fig. 2 and Eq. (13), this modified 
force (P*) is equal to the difference between the total shear 
force (Pf) and the equivalent force of the membrane node at 
the cross-sectional middepth (Pc) and must be applied in the 
opposite direction of the equivalent force

 P* = Pf – Pc (13)

Without this force modification, the shear force at the 
interface section will be twice the correct value.

Material matrix formulation
To compute the composite material stiffness matrix [D] in 

the aforementioned iterative procedure, the behavior of 
cracked reinforced concrete is represented according to the 
DSFM model. This model is formulated based on the smeared 
rotating crack approach, where the cracks are considered as 
an average deformation spread out over the area of the finite 
elements. In the iterative procedure, first, an arbitrary value 
is assumed for the transverse strain (ɛy). Knowing all three 
strain components in the X- and Y- coordinate system, the 
concrete principal strains (ɛc1 and ɛc2) can be calculated
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Using available stress-strain relationships for concrete and 
steel, the concrete stresses in the principal directions (fc1 and 
fc2) and the steel stress in the direction of each reinforcing bar 
component (fsi) can be computed. In this study, the constitu-
tive formulations presented in the DSFM model are applied.

Based on the computed stresses and strains in the prin-
cipal directions, the composite material stiffness matrix 
[D] can be constructed by superposition of the material 
stiffness matrixes of the concrete and all the reinforcement 
components
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The concrete material stiffness matrix is calculated using 
effective secant moduli (Ēc1, Ēc2, Gc) defined with respect to 
the principal directions
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The [Dc]′ matrix can be transformed back to the X- and 
Y-axes

 [Dc] = [Tc]T[Dc]′ [Tc] (18)

Fig. 2—Transferring shear forces between beam and membrane elements.
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where [Tc] is the transformation matrix described by Cook 
et al.12

The contribution from the i-th reinforcement component 
to the material stiffness matrix is defined as
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where ρsi is the reinforcement ratio; ɛsi is the reinforce-
ment strain; and Esi is the effective steel modulus for i-th 
reinforcement component. Using a similar transformation 
matrix applied to the concrete material stiffness, [Ds]′i  can 
be transferred from the longitudinal axis of the reinforcing 
bar to the X- and Y-reference axes

 [Ds]i = [Ts]i
T[Ds]′i [Ts]i (21)

Knowing the composite material stiffness matrix [D], the 
stress-strain constitutive equation, Eq. (7), can be solved 
to determine new values of the transverse strain (ɛy). The 
procedure is repeated until the transverse strain (ɛy) values 

converge within a predefined error limit. After the conver-
gence has been achieved, the computed shear stress (τxy) 
values can be used to determine equivalent shear forces. 
Figure 3 indicates the main steps of the proposed beam- 
membrane coupling method.

VERIFICATION STUDY
The verification study was performed on a series of 12 

simply supported beams tested by Vecchio and Shim13 under 
a monotonic loading condition. The beams were categorized 
into three series of tests (Series 1, 2 and 3) according to their 
clear span length (3.66, 4.57, and 6.40 m, [4, 5, and 7 yd] 
respectively). Each series of tests comprised four beam speci-
mens with a different cross-sectional width and reinforcement 
configuration (Beams OA, A, B, and C). The beams had light 
amounts of transverse reinforcement, ranging from 0.0% to 
0.2%. Three different failure modes were observed during 
the experiment: diagonal-tension, shear-compression, and 
flexural- compression. The cross section and elevation details 
of the beams are presented in Fig. 4.

Finite element models
Stand-alone models—Two types of stand-alone models 

were created for each beam: a frame model (analyzed with 
VecTor5 program14) and a membrane model (analyzed with 
VecTor2 program15). Taking advantage of the symmetry of 

Fig. 3—Algorithm of proposed beam-membrane interface element.

Fig. 4—Details of Vecchio-Shim beams. (Note: Dimensions in mm; 1 mm = 0.0394 in.)
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the beams and test setup, only half of the beam span was 
modeled. In the stand-alone frame analysis, 6-DOF layered 
frame elements with element lengths ranging from 200 to 
300 mm (7.87 to 11.81 in.) were used to model the beams. 
Each frame element was divided into 50 concrete layers, 
providing sufficient accuracy for the sectional analysis. The 
loading was applied as an imposed displacement with incre-
ments of 0.25 mm (0.01 in.) at the midspan of the beam. To 
model the support conditions, a roller support was defined at 
the left end of the beam by restraining the vertical DOF. In 
addition, to satisfy the condition of symmetry, both the hori-
zontal and rotational DOFs were restrained at the midspan 
nodes of the beam.

The stand-alone membrane model was created using 
8-DOF reinforced concrete rectangular elements with an 
approximate mesh size of 45 x 37 mm (1.77 x 1.46 in.) in the 
X- and Y-directions, respectively. Longitudinal reinforcing 
bars were modeled as discrete using 4-DOF truss bar 
elements; the transverse reinforcement was modeled as 
smeared. The loading plate was modeled using structural 
steel rectangular elements. Between the steel and concrete 
elements, a layer of unidirectional bearing elements was 
used to allow strain in the horizontal direction, providing a 
more realistic representation of the force distribution and 
crack pattern under the load.

Mixed-type models—For the beams without shear 
reinforcement (OA1, OA2, and OA3), the behavior was 
dominated by a diagonal-tension crack that continued as a 
sliding crack in the horizontal direction along the longitudinal 
reinforcement extending to the support (refer to Fig. 5). To 
accurately capture the failure mechanism, the membrane 
submodel was created on the support side of the beam and the 
frame submodel was created on the midspan side of the structure. 
Two types of mixed-type models were used: Mixed-Type 1 
(0.65L membrane submodel and 0.35L frame submodel), and 
Mixed-Type 2 (0.90L membrane submodel and 0.10L frame 
submodel), where L is the half-span length of the beam.

With the other types of the beams (A, B, and C), which 
contained transverse reinforcement, the failure was initiated 
by crushing of the concrete in the compression zone under 
the loading plate, which was followed by either a diagonal 
shear crack (Series 1 and 2) or flexural cracks at the midspan 
(Series 3). For these beams, because the location of the crit-
ical zones varied depending on the type of failure, two types 
of mixed-type models with opposite substructuring config-

urations were created (Mixed-Type 1 and Mixed-Type 2). 
In the Mixed-Type 1 configuration, the membrane submodel 
was located close to the support end of the beam, while in the 
Mixed-Type 2 configuration, the membrane submodel was 
located near the loading plate. In both mixed-type models, 
65% of the structure was modeled using membrane elements 
and 35% of the structure was modeled with frame elements.

The two submodels were connected using the proposed 
interface elements. A newly developed simulation frame-
work, named Cyrus,16 was used to combine the two programs 
and coordinate the analysis. Figure 6 shows the stand-alone 
and mixed-type finite element models.

It should be noted that the selected percentages for the 
length of the submodels (10% and 90% or 35% and 65%) 
are arbitrary numbers. Different length percentages and 
substructure configurations are used to demonstrate their 
influence on the structural behavior. In general, to have 
optimal results, the membrane submodel must include the 
critical regions and must be extended adequately to reduce 
possible stress fluctuations.

Comparison of results
Comparison against stand-alone analyses—The load-de-

flection responses of the mixed-type analyses are compared 
against the stand-alone analysis results and experimentally 
observed behaviors in Fig. 7.

Based on the stand-alone analysis results, both VecTor2 
(membrane model) and VecTor5 (frame model) were capable 
of computing the peak load capacity of the beams with a 
high level of accuracy. It is worth noting that most other 
frame-type analysis tools, unlike the VecTor5 program, do 
not consider shear-related mechanisms, which can result in 
significant overestimation of the load capacity and ductility. 
Although VecTor5 was capable of considering shear behavior 
relatively well, because of the limitations associated with its 
frame-type analysis nature, it underestimated the ductility 
and was unable to accurately capture the post-peak response. 
These facets were computed with much better accuracy by 
VecTor2, which uses more advanced types of elements.

For all types of mixed-type analyses, except the Mixed-
Type 2 configuration of the A beams, the load-deflection 
responses fell between the stand-alone analysis results of 
the membrane model and the frame model or were suffi-
ciently close to them, resulting in a high level of accuracy 
in capturing the behavior of the beams. Also for all mixed-

Fig. 5—Comparison of crack patterns of OA1 beam based on different mixed-type methods.
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type analysis cases, the location of the diagonal shear crack 
was consistent with the location of the critical section for 
checking the shear capacity of a member as defined in the 
CSA A23.3 standard17 (that is, effective shear depth dv from 
the support or loading plate). A more detailed description of 
the analysis results for each type of cross section is provided 
in the following discussion.

For the OA beams containing no shear reinforcement, the 
F2M interface element was able to compute the diagonal 
shear crack at the connection section and the sliding crack 
in the horizontal direction along the longitudinal reinforce-
ment (refer to Fig. 5). In the Mixed-Type 1 configuration, the 
shear failure occurred in the frame submodel, resulting in a 
response that was closer to the stand-alone frame analysis. In 

Fig. 6—FE model for stand-alone and mixed-type analyses of Vecchio-Shim beams.

Fig. 7—Comparison of midspan load-defection responses for Vecchio-Shim beams. (Note: 1 mm = 0.0394 in.; 1 kN = 0.225 kip.)
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the Mixed-Type 2 configuration, in which a greater portion of 
the structure was modeled with membrane elements, the shear 
failure occurred in the membrane submodel and, therefore, the 
response leaned toward the stand-alone membrane analysis.

The A beams, having the lowest amount of shear  
reinforcement among the beams containing stirrups (ρt = 0.1%), 
exhibited the most challenging behavior to capture using the 
mixed-type analysis. In these beams, all the three types of 
mechanisms contributed to the final failure. In the Mixed-
Type 1 configuration, the failure was governed by crushing 
of the top layers of frame elements in the compression zone, 
leading to a response that was closer to the stand-alone frame 
analysis. In the Mixed-Type 2 configuration, having the 
frame submodel on the support side of the beams compro-
mised the ability of the mixed-type analysis to fully capture 
the horizontal sliding crack, resulting in overestimations of 
the peak load and ductility.

With the B and C beams, having higher amounts of shear 
reinforcement (ρt = 0.15% and 0.2%, respectively) compared 
to the OA and A beams, the influence of the horizontal sliding 
crack on the response of the structure was insignificant. 
Consequently, the analysis results computed by both the 
Mixed-Type 1 and Mixed-Type 2 configurations had excel-
lent agreement in terms of the peak load and ductility with 
the stand-alone analysis responses and correlated reasonably 
well with the experimentally observed behavior. Depending 
on whether the critical region of the beam was located in the 
membrane submodel or the frame submodel, the mixed-type 
analysis response followed a similar path as the stand-alone 
membrane or frame analysis response.

A more detailed comparison of the results in terms of 
the peak load and corresponding displacement values is 
provided by Sadeghian.18

Comparison against other mixed-type methods—To 
further assess the performance of the F2M interface element, 
the analysis results were compared against two other existing 
coupling methods that have been widely used in previous 
studies: the Rigid Links method1,2 and the McCune et al. 
method.3 The investigation was conducted on the Mixed-
Type 1 model of Beam OA1, which exhibited a dominant 

shear behavior in both the stand-alone analysis and in the 
experiment.

The midspan load-deflection responses and crack patterns 
computed by different types of mixed-type methods are 
presented in Fig. 8 and Fig. 5, respectively. In Fig. 8, the 
accuracy of different mixed-type models should be eval-
uated based on the response of the stand-alone membrane 
model rather than the experiment; the stand-alone membrane 
model is the most accurate analysis that can be obtained 
using the VecTor2 and VecTor5 programs. It can be seen 
that the Rigid Links method greatly overestimated the peak 
load and ductility of the beam due to the use of high stiff-
ness elements at the connection section between the two 
submodels. A set of high stiffness elements located along 
the height of the section performed as a strong stirrup that 
suppressed the formation of a diagonal shear crack at the 
interface section.

The McCune et al. method3 computed the linear response 
of the structure well; however, as expected, after cracking of 
the concrete, it failed to capture the behavior of the beam, 
resulting in a significant stress concentration at the longi-
tudinal reinforcement layer and consequently a premature 
local failure. To investigate the McCune et al. method3 in 
more detail, another mixed-type model was created in which 
the longitudinal reinforcement was modeled as smeared in a 
tributary area of approximately 7.5 times the bar diameter, 
as recommended by CEB-FIP.19 Although this prevented 
the local failure at the longitudinal reinforcement layer, the 
analysis response underestimated the stiffness and peak load 
compared to the stand-alone analysis results. In addition, the 
analysis was not able to capture the diagonal shear crack and 
computed a horizontal crack located at approximately the 
middepth of the elements containing smeared longitudinal 
reinforcement. It is worth reiterating that the McCune et al. 
method3 was developed for linear elastic problems and was 
not intended to be applicable to nonlinear analysis of 
reinforced concrete structures.

Unlike the other two mixed-type methods, the F2M 
interface element computed a load-deflection response that 
was between the stand-alone detailed FE analysis and the 
stand-alone frame analysis results. With respect to the crack 
pattern, the F2M element was able to capture the diagonal 
shear crack at the connection section and also the horizontal 
sliding crack along the longitudinal reinforcement layer.

The computed stress distributions at the interface section 
of the membrane submodel for pre- and post-cracking condi-
tions are presented in Fig. 9 and 10, respectively. For the 
proposed F2M element, prior to cracking, the computed 
axial and shear stresses are almost identical to the stand-
alone membrane model. After cracking of the concrete, the 
F2M element was able to accurately capture the stress reduc-
tion in the cracked elements located at the bottom of the 
cross section and the increase in stresses of the uncracked 
elements at the top of the cross section. Compared to the 
stand-alone membrane model, the axial stresses correlated 
very well and the shear stresses were reasonably accurate. 
For the vertical stresses, the proposed procedure assumes 
no clamping stress at the interface section. However, the 
external forces applied through the section to transfer the 

Fig. 8—Load-deflection responses of OA1 beam based on 
different mixed-type methods.
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shear force between the two submodels can cause some fluc-
tuations in the vertical stress distribution. It is worth noting 
that the amount of overestimation of the vertical stresses 
computed by the F2M method is much less than that of the 
other two coupling methods.

The other two coupling methods showed major limita-
tions in determining the interface stresses. Although the 
Rigid Links method accurately captured the axial stresses 
in both pre- and post-cracking conditions, the computed 
shear and vertical stresses appeared to have random distri-
butions. Prior to cracking, the McCune et al. method3 was 
unable to capture the shear stresses of concrete membrane 
elements that were connected to truss elements representing 
reinforcing bars (that is, discrete modeling). Alternatively, the 
longitudinal reinforcing bars were modeled as a component 
of membrane elements (that is, smeared modeling). While the 
smeared modeling approach produced a correct shear stress 
distribution, it limits considering some of the mechanisms 
such as bond-slip effects, which can be critical in other types 
of structures. After cracking of the concrete, both the smeared 
and discrete models of the McCune et al. method3 were unable 
to accurately capture the shear stress distribution.

APPLICATION EXAMPLE
The application of the proposed interface element and 

advantages of using the mixed-type analysis method are 
demonstrated through modeling a reinforced concrete frame 
structure previously tested by Calvi et al.20 The frame was 
designed for gravity loads only based on typical Italian 
construction practice common in 1970s (that is, smooth 
reinforcing bars, no stirrups in the joints, and the longitudinal 
bars in the exterior joints anchored with short, 180-degree 

end-hooks). The lateral loads were applied in a hybrid 
force-displacement control manner; the displacement at the 
top floor was increased in a reversed cyclic regime while 
maintaining a linear force distribution along the height of the 
structure. In addition, a gravity load of 73 kN (16.41 kip) 
was applied on the first and second floors, and 54.2 kN 
(12.18 kip) was imposed on the third floor. Dimensions of 
the frame and imposed loads are shown in Fig. 11. According 
to the test results, the poor detailing of the reinforcement led 
to a brittle failure mode with most of the damage concentrated 
in the exterior beam-column joint regions of the first floor.

Stand-alone model
A frame model of the entire structure was analyzed 

using VecTor5. The modeling procedure was similar to that 
described for the beam specimens in the Verification Study 
section. A total of 338 layered beam elements each divided 
into 30 layers were used. The joint regions were represented 
with stiffened elements to avoid artificial damage. The 
gravity loads were modeled as nodal and element forces 
representing the externally applied loads and self-weight 
of the structure, respectively. Because the hybrid force-dis-
placement type of loading is not available in VecTor5, instead 
of applying the lateral loads in a reversed cyclic manner, a 
pushover analysis was performed. The lateral loads were 
modeled with nodal forces and monotonically increased up 
to the failure point in increments of 0.5 kN (0.112 kip).

The load-deflection response of the push-over analysis 
is compared to the experimentally observed behavior in 
Fig. 12(a). The stand-alone frame analysis response agreed 
reasonably well with the experimental results up to the point 
where the joints began to crack. However, beyond this point, 

Fig. 9—Stress distributions through section prior to cracking (applied displacement = 0.5 mm).

Fig. 10—Stress distributions through section after cracking (applied displacement = 4.0 mm).
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due to the limitations of the beam elements, the analysis 
began to overestimate the strength and stiffness, resulting in 
much higher failure load than the experiment.

Mixed-type model
A more accurate response of the structure can be obtained 

using a mixed-type model, where the critical regions 
(external joints in the first floor) were modeled using 
membrane elements (VecTor2 program) while the rest of the 
frame was modeled with layered beam elements (VecTor5 
program). The interface between the membrane elements 
and beam elements was modeled with the F2M element. 
Cyrus was used to combine the two programs and coordi-
nate the analysis. For the membrane submodel, the modeling 
procedure was similar to that described for the beam speci-
mens in the Verification Study section. The only difference 
was defining link elements between rectangular elements 
and truss elements to capture bond-slip effects. Details of 
the mixed-type model are shown in Fig. 11.

Based on the load-deflection responses presented in 
Fig. 12(a), the mixed-type model predicted the peak load 
and stiffness values much more accurately than the stand-
alone analysis. The mixed-type analysis computed a large 
amount of slip in the longitudinal reinforcement of the 
beams at the interface section, resulting in a significant 
reduction in the stiffness of the system. The analysis also 
showed post-peak decay in strength due to local failure in 

the joints. The computed crack pattern agreed well with the 
experimentally observed behavior (refer to Fig. 12(b)). 
None of these mechanisms were captured in the stand-alone 
frame analysis, illustrating the effectiveness of the mixed-
type simulation.

It is worth noting that the analysis times of the stand-alone 
and mixed-type models on a desktop computer with an Intel 
Core i7 processor were approximately 4 and 9 minutes, 
respectively, which were considered acceptable. Modeling 
the entire structure with membrane elements results in a 
much higher analysis time that may not be practical, partic-
ularly if a cyclic or a dynamic type of analysis is required.

SUMMARY AND CONCLUSIONS
In this study, a new beam-membrane interface element, 

the F2M element, which was specifically formulated for 
mixed-type analysis of reinforced concrete structures, was 
presented and verified. The procedure satisfies equilibrium 
and compatibility requirements at the connection section. 
The main contributions of the proposed interface method, 
not available in other known mixed-type methods, can be 
summarized as: 1) computing linear and nonlinear axial 
and shear stress distributions at the interface section with 
a high level of accuracy without decoupling the axial, flex-
ural, and shear effects; 2) allowing for transverse expansion 
and accurate calculation of Poisson’s effects at the inter-
face section using offset strains; 3) considering reinforced 

Fig. 11—Mixed-type model of frame. (Note: Dimensions in mm and forces in kN; 1 mm = 0.0394 in.; 1 kN = 0.225 kip.)

Fig. 12—Experimental and analytical: (a) load-deflection responses; and (b) crack patterns for frame.
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concrete as a composite material enabling the use of truss 
elements in addition to the membrane elements at the inter-
face section. Beside these advantages, the assumptions used 
in the proposed procedure make it not suitable for coupling 
elements with high clamping forces or elements located at 
disturbed regions.

The performance of the F2M element was verified through 
mixed-type modeling of a series of 12 shear-critical beam 
specimens which exhibited different types of failure modes. 
In addition, the application of the F2M element and mixed-
type modeling approach was demonstrated by analysis of 
a frame structure with critical joints. The following conclu-
sions can be drawn from the verification and application 
examples:

1. Overall, the mixed-type analysis based on the F2M 
element provided reliable and consistently accurate calcu-
lations of initial stiffness, peak load, and ductility of the 
beams. For all beams considered, using a proper substruc-
turing configuration, the mixed-type analysis results were 
sufficiently close to the stand-alone analysis results and the 
experimentally reported values.

2. The F2M element was able to capture the shear failure 
at the interface section and accurately compute the reduc-
tion in stress levels of the cracked concrete elements and, 
consequently, the increase in the stress values of uncracked 
elements. This resulted in axial and shear stress distribu-
tions which correlated reasonably well with the stand-alone 
membrane model. Contrary to the F2M element, the Rigid 
Links method and the McCune et al. method3 had major 
limitations in capturing both the global and local behavior of 
cracked reinforced concrete members.

3. Mixed-type modeling of the frame specimen, with 
proper modeling of the connecting section using the F2M 
element, enabled detailed analysis of the critical regions 
(external joints in the first floor) while considering the global 
response of the structure. Unlike the stand-alone frame 
model, the mixed-type model was able to capture the damage 
in the external joints, resulting in a structural response that 
had a much better correlation with the experimental results.

4. Caution must be taken in using a mixed-type simulation 
method. Creating a proper mixed-type model requires having 
a good understanding of the expected behavior of the struc-
ture and an anticipation of the location of critical regions prior 
to the analysis. For a single member structure (for example, 
beam specimens), this can be difficult; for a multi-member 
structure (for example, frame specimen), the location of 
potentially critical member(s) is typically more intuitive.
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