
321ACI Structural Journal/May 2022

ACI STRUCTURAL JOURNAL TECHNICAL PAPER

One of the most computationally efficient and practical modeling 
methods for nonlinear analysis of reinforced concrete (RC) struc-
tures is the lumped plasticity approach. Despite its popularity, 
the application of the lumped plasticity method to analysis of 
shear-critical RC structures has been limited mainly because 
of the lack of a robust shear hinge model. This paper presents a 
rational shear hinge model for nonlinear analysis of RC columns 
that is capable of capturing advanced mechanisms in RC and 
axial-flexure-shear interaction effects. The model is developed 
based on fundamental equations of equilibrium and compatibility 
in conjunction with well-recognized constitutive material models, 
enabling its application to a wide range of structures. The accu-
racy and application range of the model are assessed by analyzing 
a large number of shear-critical RC columns with various design 
parameters and comparing the results against those obtained from 
experimental tests and detailed finite element analyses. The effec-
tiveness of the proposed model for system-level analysis is also 
shown by modeling a multi-story frame structure. 

Keywords: lumped plasticity; nonlinear analysis; reinforced concrete 
columns; shear behavior.

INTRODUCTION
Performance and safety assessment of reinforced 

concrete (RC) structures using nonlinear analysis methods 
is constantly growing among researchers and engineers. 
Existing nonlinear analysis methods can be classified into 
three main groups: detailed finite element (FE) modeling, 
fiber-based analysis method, and lumped plasticity analysis 
method. The most comprehensive and accurate analysis 
method is FE modeling, which is typically used for evalu-
ating the response of individual structural members (beams, 
columns, joints, and so on). This analysis method enables 
detailed assessment of the behavior by dividing structural 
members into a large number of two-dimensional (2-D) or 
three-dimensional (3-D) elements and computing nonlinear 
stresses and strains for each element. However, FE analysis 
is computationally time-consuming and requires significant 
modeling effort, making it almost impractical to be used 
for analysis of large structural systems. The fiber-based 
and lumped plasticity modeling methods are more suit-
able for system-level analysis of structures. By using one- 
dimensional (1-D) frame-type elements and a set of simpli-
fying assumptions, these methods significantly improve the 
computational performance of the analysis. The fiber-based 
analysis method (also known as the distributed plasticity 
method) uses a set of fibers, often formulated based on 
the assumption that plane sections remain plane, to calcu-
late nonlinear stresses and strains along the cross section. 
In recent years, some researchers introduced novel multi-
scale modeling methods1,2 where the critical parts of the 

structure are modeled using FE analysis tools and the rest 
of the structure is modeled with a fiber-based analysis soft-
ware. Despite being accurate and computationally efficient, 
application of these methods requires a strong knowledge of 
computer modeling.

A more computationally efficient analysis method suit-
able for use in engineering offices is the lumped plasticity 
approach. With this analysis method, nonlinearity effects 
are assumed to be concentrated at specific points (that is, 
plastic hinges), which are expected to be critical regions of 
the structure, while linear elastic behavior is assumed for 
the rest of the structure. The accuracy of the lumped plas-
ticity analysis method is directly related to the ability of 
plastic hinges to capture nonlinearity effects. The number 
of plastic hinge models developed for nonlinear analysis 
of shear-critical RC columns is limited. A summary of the 
shear hinge models available in the literature is provided 
by Tabkhi and Sadeghian.3 Most of the existing models 
either have a limited application range,4,5 require extensive 
calibration,5 neglect important mechanisms such as axial- 
flexural-shear interaction effects,5 or require using an analysis 
tool for calculation of the shear force-shear deformation 
response.5,6 Also, none of the existing models account for 
second-order material effects in cracked reinforced concrete 
(for example, aggregate interlock and compression softening 
in concrete), which are known to have significant effect on 
the shear behavior.4-6  

Recently, the authors proposed a comprehensive rational 
plastic hinge model3 for nonlinear analysis of shear-critical 
RC beams formulated based on the Modified Compression 
Field Theory (MCFT),7 a well-recognized smeared rotating 
crack model for computing the response of RC structures. 
This paper extends the formulation of the recently developed 
plastic hinge model to the nonlinear analysis of shear-critical 
RC columns. This requires taking into account the effects of 
axial load on the shear force-shear displacement response 
at different structural damage states (concrete cracking, 
reinforcement yielding, and so on), while ensuring that the 
compatibility and equilibrium requirements are satisfied. The 
model is verified against experimental tests of shear-critical 
RC columns and its application range is evaluated through 
an extensive parametric study. Lastly, both shear plastic 
hinge models developed by the authors for analysis of beams 
and columns are used to demonstrate the effectiveness of the 
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proposed modeling approach for system-level performance 
assessment of a multi-story frame.

RESEARCH SIGNIFICANCE
The simplicity and computational efficiency of the lumped 

plasticity approach make it an ideal nonlinear analysis 
method for safety and performance assessment of RC struc-
tures at the system level. However, because of the lack of 
a robust shear hinge model, the application of the lumped 
plasticity method has been mostly limited to computing 
the flexural response of RC structures. This paper presents 
a comprehensive shear hinge model for nonlinear analysis 
of RC columns that improves the application of the lumped 
plasticity analysis approach to shear-critical structures. By 
considering nonlinearity effects due to shear at the system-
level, the proposed modeling approach will enhance the 
safety assessment of existing structures and contribute to the 
design of high-performance complex structural systems.

MODEL FORMULATION
Similar to the shear hinge model developed for beams 

by the authors,3 a multilinear curve for shear force versus 
shear strain relationship is proposed for columns, as shown 
in Fig. 1. Four key points on this curve are considered, repre-
senting the various stages of the shear response: concrete 
cracking, yielding of transverse reinforcement, ultimate 
shear strength, and shear failure. As shown in Fig. 1, the 
key points considered for the beam and column model have 
two major differences. First, the shear cracking point in the 
beam model is removed from the column model. In the beam 
model, this point was defined as when diagonal shear cracks 
approximately reach the middepth of the section. Because of 
the presence of axial compressive load in columns, however, 
the tensile zone in the section becomes relatively small, and 
the shear cracks typically do not reach the middepth prior 

to yielding of the transverse reinforcement (refer to  Fig. 1). 
This change also makes the model more simplified without 
affecting its accuracy.

The second change is in the definition of the post-peak 
response. For beams, the failure point was defined as a 
point where there was a 20% reduction in the peak shear 
strength, which was then followed by an abrupt decline in 
the response. This definition was considered acceptable as 
there has not been much research done on the post-peak 
response of shear-critical beams. In comparison, there 
are a few studies dedicated to the failure point of shear- 
critical columns. The model proposed by Elwood and 
Moehle8 developed based on the shear-friction theory, and 
the model proposed by Tran and Li9 formulated based on the 
energy concept are two examples of these studies. The post-
peak response of shear-critical columns will be discussed in 
more detail in the “Failure Point” section.

In general, there are two main differences between the 
characteristic behavior of RC beams and columns that need to 
be investigated. First, the presence of axial load on columns 
affects their shear behavior by changing the magnitude and 
distribution of strains, stresses, and the concrete crack incli-
nation. In this study, the effect of axial load is considered in 
conjunction with the other sectional forces (bending moment 
and shear force) by modifying the equilibrium and compati-
bility equations used for the development of the beam shear 
hinge model. This enables accounting for the axial-flexural- 
shear interaction effects, which is critical for accurate 
prediction of the shear behavior in RC columns. The second 
difference is the confinement effect in RC columns due to the 
lateral pressure produced by the transverse reinforcement. 
Although the confinement effect in columns can have a 
substantial impact on the flexural and axial response,10,11 its 
influence on the diagonal tension failure, which is the typical 
failure mode in shear, is negligible. This is because shear 

Fig. 1—Schematic shear force-shear strain curves for shear hinge models proposed for beams and columns.
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cracks in columns are typically initiated as vertical cracks 
along the tension reinforcement and then extend toward the 
compression reinforcement as diagonal cracks. The parts of 
the cross section that are mostly affected by shear cracks are 
often under high tensile strains and therefore confinement 
has not much of an influence on their behavior. Confine-
ment mainly affects the behavior in the compression zone of 
the column, which can be critical for the axial and flexural 
response because concrete crushing may take place in this 
zone. In this study, the confinement effect is considered in 
defining the concrete material properties of frame elements 
used to capture axial and flexural effects in columns.

As shown in Fig. 2, and similar to the procedure consid-
ered for beams, a 2-D panel element is considered at the 
critical section of the column to represent the nonlinear 
shear behavior in a concentrated form. The critical section 
is defined dv (that is, effective shear depth) away from the 
section having maximum shear force, which is approxi-
mately the location of diagonal shear cracks observed in 
experimental tests and is consistent with the shear-critical 
section defined in the Canadian Concrete Design Code.12 
In cases where the shear force is constant throughout the 
column length (for example, cantilever columns), the crit-
ical section is dv away from the section having the largest 
bending moment. This is because as the bending moment 
increases, the longitudinal strain increases, which reduces 
the ability of concrete to carry shear forces, resulting in a 
lower shear strength for the cross section.12,13

By evaluating the stresses and strains on the 2-D panel 
and using the original MCFT formulation, closed-form 
equations are derived to calculate the shear force and shear 
strain of each key point of the shear response demonstrated 
in Fig. 1. The original MCFT formulations, which are based 
on the equilibrium and compatibility conditions and stress-
strain relationships, are shown in Fig. 2. The development of 
closed-form equations requires estimating stresses, strains, 
and crack inclination at the critical section of the column. By 

analyzing a wide range of column cross sections using the 
Response-2000 sectional analysis software14 and VecTor2 
FE program,15 the nonlinear distribution of longitudinal 
strain (εx), shear strain (γ), and crack inclination (θ) along 
the section height is determined. Figure 3 shows an example 
of the nonlinear distribution of each parameter at different 
stages of the structural response. As it can be seen in this 
figure, the average value of the nonlinear distribution of each 
parameter is estimated using the equivalent area approach 
and then used for the development of closed-form equations. 
Unlike the original MCFT model, which is complicated and 
requires a trial-and-error procedure, the closed-form equa-
tions enable direct calculation of shear response, allowing 
the application of MCFT to the lumped plasticity analysis. 
Details of the closed-form equations developed for each key 
point of the shear response are discussed as follows. The 
similarities and differences between the equations proposed 
for columns and those previously developed for beams 
are highlighted.

It should be noted that the proposed shear hinge model 
follows a macro-modeling analysis approach and does not 
account for the effect of hook detailing in the reinforce-
ment. It assumes the hook is sufficient in terms of length 
and bend angle and meets typical design code requirements. 
Also, similar to the MCFT model, the proposed shear hinge 
accounts for the tension-stiffening effect in the stress-strain 
relationship of concrete rather than altering the stress-strain 
response of plain steel. An alternative method to consider 
this effect is to use embedded bar models as proposed 
by Gil-Martín et al.16,17 Unlike the MCFT model, which 
accounts for local stresses in the reinforcement at the crack 
location, the proposed model uses average reinforcement 
stresses in the formulation for simplicity. 

Ultimate point
Similar to the beam model, the shear strength (Vu) of 

columns is calculated based on the Canadian Concrete 

Fig. 2—Estimating shear behavior of RC column in concentrated form with 2-D panel element formulated based on MCFT.
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Design Code, CSA A23.3,12 with a few modifications. 
Equation (10) shows the relationship provided in the Code 
for computing the shear strength of an RC section which 
includes the contributions of both the concrete and the trans-
verse reinforcement (Vc and Vs, respectively)

 V V V f bd
A f d
su c s c v

st yt v
u� � � � � � �� �cot  (10)

where θu and β are the crack inclination at the ultimate 
shear stress and the contribution factor accounting for the 
strength of cracked concrete, respectively. Both parameters 
are a function of the longitudinal strain at midheight of the 
section (εxu), which can be calculated based on sectional 
forces (bending moment, shear force, and axial load) using 
Eq. (11).13 This equation is simplified by defining two factors 
(k1 and k1′), which account for the effects of bending moment 
(M) and axial load (P) and will also be used in the rest of the 
equations presented in this study. All the k factors defined in 
this study are provided in the Appendix.
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In Eq. (11), α is the ratio of the bending moment to the 
shear force multiplied by the effective shear depth (M/V.
dv). Once εxu is calculated based on the sectional forces, θu 
can be found using Eq. (12). This equation was originally 
proposed for the beam model3 to improve the crack inclina-
tion relationship of the CSA A23.3 design code by adding 
the k6 factor in the equation to account for the effects of 
the yielding stress of the shear reinforcement (fyt) and the 
compressive strength of concrete (fc′) on θu.

 � �u xu k� �� � � �29 7000
6

.  (12)

Figure 4 shows that this equation is also valid for columns. 
In this figure, the average value of the crack inclination 
angle along the cross section of 12 shear-critical columns 
obtained from the VecTor2 nonlinear FE analysis software15 
is compared against the angle computed from Eq. (12). Over 
the last 30 years, VecTor2 has been extensively verified 
against experimental data of various shear-critical struc-
tural components18 and therefore can be considered as a 
reliable FE analysis tool for evaluating the performance of 
the proposed shear hinge model. It can be seen from Fig. 4 
that the average θu values correlate well, demonstrating the 
validity of the proposed equation for the calculation of θu of 
RC columns. Structural details of the RC columns consid-
ered in this study are summarized in Table 1.

By substituting Eq. (11) into Eq. (12) and Eq. (12) into 
Eq. (10) and following the same procedure as that described 
for the beam model, the shear strength of the column cross 
section can be derived solely as a function of material prop-
erties and section dimensions as expressed in Eq. (13). In 
this equation, setting the axial load factor (k1′) to zero results 
in the shear strength equation previously proposed for the 
beam model.
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Esfandiari and Adebar19 showed that yielding of the 
longitudinal reinforcement can limit the shear strength of 
RC members. Based on their work, the authors proposed 
Eq. (14) to calculate the shear strength of beams with a low 
amount of flexural reinforcement3

 V k k A f ku sl yl� � � � �� �
15

2

15 15
2  (14)

Fig. 3—Variations of longitudinal and shear strains and crack direction through section at first three key points of response.



325ACI Structural Journal/May 2022

Application of this equation to RC columns requires two 
modifications. First, the contribution of concrete to the shear 
strength was neglected in Eq. (14) and needs to be consid-
ered for columns. As previously discussed, the tension zone 
in columns is typically smaller than that in beams due to 
the axial load effect; therefore, there is more contribution 
from the concrete to the shear strength in columns. In this 
study, the concrete contribution is considered by adding the 
� �f bdc v  term to Eq. (14). To be on the conservative side, 
the β factor is taken as 0.05, which is the minimum value 
recommended by CSA A23.3.12 The second modification is 
to include the effect of axial load, in addition to the shear 
force and bending moment, in the derivation of Eq. (14). As 
a result of these two modifications, the following equation is 
proposed for the calculation of shear strength in RC columns 
with a low amount of flexural reinforcement

 V k k A f k P k f bdu sl yl c v� � � � � � � �� �
15

2

15 15 15
2 0 05.   

  (15)

The minimum value of Eq. (13) and (15) is taken as 
the shear strength of RC column sections for the lumped 
plasticity analysis.

The shear strain at the ultimate point (γu) can be found 
from Eq. (16), which is derived by modifying Eq. (6) of the 
original MCFT method (refer to Fig. 2) to account for the 
effective shear strain depth in the section as discussed for the 
beam model.3 Because Eq. (16) is determined solely based 
on the compatibility and strain transformation relationships, 
it can be used for columns as well.

 γ ε ε θu xu u u k= +( )⋅ ( )⋅2
2 9

cot  (16)

In Eq. (16), εxu is the longitudinal strain at the middepth of 
the section; ε2u is the average principal compressive strain of 
the section; θu is the average crack inclination angle; and k9 
is a modification factor to account for the shear strain distri-
bution over the depth. All these parameters are calculated 
at the peak shear stress (that is, the ultimate point) and are 

Fig. 4—Comparison of average crack inclination angle 
along cross section for 12 shear-critical RC columns 
computed by VecTor2 and proposed model.

Table 1—Parameters of RC columns considered for verification study

Researcher Column fc′, MPa fyl, MPa fyt, MPa b, mm h, mm d, mm a, mm s, mm Asl, mm2 Ast, mm2 P/fc′Ag BC

Tran24

SC-2.4-0.20 22.6 408.0 392.6 350 350 309 850 125 2513 56.5 0.200 DC

SC-2.4-0.30 49.3 409.0 392.6 350 350 306 850 125 3927 56.5 0.300 DC

SC-2.4-0.50 24.2 408.0 392.6 350 350 309 850 125 2513 56.5 0.500 DC

Kokusho25 372 19.9 524.0 351.6 200 200 170 500 100 532 68.4 0.197 C

Lynn26

3CLH18 26.9 331.0 399.9 457 457 394 1473 457 6334 143.2 0.089 DC

3CMH18 27.6 331.0 399.9 457 457 394 1473 457 6334 143.2 0.262 DC

3CMD12 27.6 331.0 399.9 457 457 394 1473 305 6334 244.4 0.262 DC

Imai and Yamamoto27 No. 1 27.1 318.0 336.0 400 500 443 825 100 5322 127.2 0.072 C

Yoshimura and Yamanaka28 FS0 27.0 387.0 355.0 300 300 255 900 75 3438 138.6 0.260 C

Zimos et al.29 SC_1 32.8 565.0 565.0 300 300 254 832 320 2413 100.5 0.061 C

Ikeda30
44 19.6 434.0 558.0 200 200 173 500 100 796 58.4 0.100 C

46 19.6 434.0 558.0 200 200 173 500 100 796 58.4 0.200 C

Note: “BC,” “DC,” and “C” stand for the Boundary Condition, Double Curvature, and Cantilever, respectively; 1 mm = 0.0394 in.; 1 MPa = 0.1450 ksi.
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affected by the axial load in columns. εxu can be calculated 
from Eq. (17), which is similar to the equation used for the 
beam model developed based on the equilibrium require-
ments. The main difference in the calculation of εxu is the 
addition of the k1′ factor to the equation to account for the 
effect of axial load. In addition, a lower bound is considered 
to ensure that the value of εxu would not fall below the limit 
of longitudinal strain under pure axial load condition.

 ε
ρxu

u

c x s

k V k
k P

bh E E
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+ ′
⋅ ≥

+( )
1 1

5

750 0 5.
 (17)

In Eq. (17), the k5 factor is a function of the compression 
zone depth in the section (Xu), which can be calculated using 
Eq. (18) developed based on the equilibrium of compression 
and tension forces in the section with the consideration of 
axial load
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 C T P V P A f Pu sl yl� � � �� � �� ��min . ,1 0 5�  (19)

where C and T are the summation of the forces acting on the 
compression and tension sides of the neutral axis, respec-
tively; and P is the applied compressive axial load, which 
should be considered with a negative sign. A more accurate 
and complicated version of Eq. (18) that considers the effect 
of longitudinal compression reinforcement is provided in the 
Appendix. In Eq. (18), εxu.Ten. is the strain of the tension rein-
forcement at the peak shear stress, which can be computed 
using Eq. (20) developed by Bentz and Collins.20

 �xu Ten
uk V k

. .
�

� �
1 1

750
 (20)

The second variable in Eq. (16) is ε2u, which can be 
calculated by finding the principal compressive stress in the 
concrete (fc2u). Using Eq. (3) of the original MCFT method 
and neglecting the principal tensile stress in the concrete 

(fc1u) because of high tensile strains at this stage of the 
response, fc2u can be expressed as

 f vc u u u u2
� �� �tan cot� �  (21)

For the beam model, fc2u and θu in Eq. (21) represented 
the average values of concrete stress and crack angle for 
the entire cross section. While this approach works well for 
beams, its application to columns requires some modifica-
tions. Because of the axial load, the compression depth of the 
section in columns is considerably larger than that in beams. 
To consider the contribution of the stresses in the compres-
sion zone to the average fc2u of the section more accurately, 
instead of applying Eq. (21) to the entire cross section, fc2u 
values of the compression and tension zones of the section 
are calculated separately using Eq. (22a) and (22b). The 
weighted average technique is then used to compute the 
average fc2u of the section, as expressed in Eq. (23)

 f vc u Ten u u Ten u Ten2 . . . . . .
tan cot� �� �� �  (22a)

 f vc u Comp u u Comp u Comp2 . . . . . .
tan cot� �� �� �  (22b)

 f
f X f h X

hc u
c u Comp u c u Ten u

2

2 2�
� �� �. . . .  (23)

where θu.Ten. and θu.Comp. are the average crack inclination 
angle in the tension and compression zones of the section, 
respectively. The distribution of fc2u and θu along the section 
height obtained from the VecTor2 model as well as the 
average values for the tension and compression zones esti-
mated by the proposed lumped plasticity model are shown 
in Fig. 5. To determine θu.Ten. and θu.Comp., the distribution of 
the crack angle along the section is simplified into a constant 
and a parabolic distribution for the tension and compression 
zones, respectively. Using the simplified distributions and 
the average θu of the section calculated from Eq. (12), θu.Ten. 
and θu.Comp. can be estimated from Eq. (24).

Fig. 5—Variation of principal compressive stress and crack direction through section at ultimate point.
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By equating Eq. (23) to Eq. (9) of the original MCFT 
method, which represents the compressive stress-strain 
response of concrete based on the Hognestad model21 while 
accounting for the compression softening effect (refer to 
Fig. 2), Eq. (25) can be derived for calculation of the prin-
cipal compressive strain in concrete (ε2u).

 � �
2 8 2 0

1 1u c u ck f f� � � �� ��max , /  (25)

The overall concept for calculating ε2u is the same for both 
the beam and column models. The only difference between 
the two models is in the consideration of the compression 
softening effect. As the axial compressive load increases in 
a column section, the principal tensile strain in concrete (ε1) 
reduces, and as a result the reduction factor for the compres-
sion softening effect that is equal to 1/(0.8 + 170ε1) (refer to 
Eq. (9)) may become greater than 1.0, which is not correct. 
Therefore, the maximum reduction factor for the compres-
sion softening effect is limited to 1.0, which occurs when 
the principal tensile strain in concrete is extremely low and 
the compression softening effect is negligible. This limit is 
included in the derivation of Eq. (25).

Yielding point
The shear force corresponding to the yielding of the trans-

verse reinforcement (Vy) can be found using Eq. (26), which 
is derived from Eq. (2) of the original MCFT method as 
described in the beam model.3

 V
f f

b dy
z yt c y

y
v=

+
⋅ ⋅

ρ
θ

1

tan
 (26)

In Eq. (26), the effect of axial load is considered in the calcu-
lation of the principal tensile stress in concrete (fc1y), which is 
estimated from the principal tensile strain (ε1y). From Eq. (5) 
of the original MCFT shown in Fig. 2, ε1y equals the summa-
tion of the yielding strain of stirrups (εzy), the longitudinal 
strain at the yielding point (εxy), and the principal compressive 
strain in concrete at the yielding point (ε2y). Considering that 
εzy is typically approximately 0.002 and is relatively greater 
than εxy and ε2y at this stage of the response,3 fc1y can be esti-
mated as 0.2ft′ (20% of the concrete tensile strength) based 
on the tension-stiffening model of Tamai et al.22 According 
to the authors’ previous study,3 this approach works well 
for beams where the compression depth of the section (Xu) 
is relatively small compared to the tension zone. However, 
the compression depth of the section in columns is gener-
ally much larger than that in beams because of the axial load 
effect, and therefore the contribution of ε2y and ε1y becomes 
more significant in comparison with εzy. This effect is taken 
into account in the calculation of fc1y by including the ratio 

of the compression depth to the total height of the column 
section (Xu/h), as can be seen in Eq. (27).

 f
X
h

fc y
u
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0 2 0 3� ��
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�

�
�
� �. .  (27)

The next parameter that needs to be calculated in Eq. (26) 
is θy. For the beam model, the authors3 showed that there 
is a linear relationship between the crack angle and shear 
strength at the yielding point (θy and Vy) and those calculated 
at the ultimate point (θu and Vu). In this study, the application 
of this linear relationship, which is expressed in Eq. (28), to 
RC columns is evaluated by computing the crack angle and 
shear strength of 12 shear-critical columns that were previ-
ously mentioned in the “Ultimate Point” section using the 
VecTor2 FE analysis software. It can be seen from Fig. 6 that 
the FE analysis results correlate well with the predictions of 
Eq. (28), demonstrating that this equation is applicable to 
columns as well.
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Substituting Eq. (28) into Eq. (26), the following equation 
can be derived for Vy
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(29)

The shear strain at the yielding point (γy) can be calculated 
with a similar approach to that described for the shear strain 
at the peak point (γu)

Fig. 6—Relationship between principal compressive strain 
in concrete, crack direction, and shear strength at yielding 
point and ultimate point of response.
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where εxy is the longitudinal strain at the middepth of the 
cross section; and ε2y is the principal compressive strain in 
the concrete, both calculated at the yielding point. Similar 
to the procedure used for beams,3 εxy can be calculated as 
the average of longitudinal strain at the outermost tensile 
and compressive fibers of the section (εxy.Ten. and εxy.Comp.), as 
shown in Eq. (31)
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εxy.Comp. is approximately equal to the longitudinal strain 
in the outermost compressive fiber of the section at the peak 
point (εxu.Comp.).3 Therefore, similar to the procedure used at 
the peak point, εxy.Comp. can be computed using Eq. (32). εxy.

Ten. can also be determined from Eq. (33), which is exactly 
the same as Eq. (20) used for the peak point, except that Vu 
is replaced by Vy.
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To calculate ε2y in Eq. (30), a linear relationship between 
the principal compressive strain in the concrete and the shear 
force calculated at the yielding point and the peak point of 
the response is derived. This relationship, which is expressed 
in Eq. (34) and shown in Fig. 6, is found by regression  
analysis of data obtained from FE analysis of the aforemen-
tioned 12 RC column specimens with VecTor2. In Fig. 6, 
in addition to the linear relationship derived for columns, 
the results of a parabolic relationship previously found for 
beams3 are also shown. It can be seen that the data points 
calculated by VecTor2 for columns correlate better with the 
linear equation.
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Finally, the parameter k13 in Eq. (30) is defined to account 
for the effective shear strain depth as previously described 
for the k9 factor used in Eq. (16) for the ultimate point.

Cracking point
The cracking point is when initial flexural cracks develop 

in a section prior to the development of the shear crack. 
Flexural cracks develop when the longitudinal stress due to 
the bending moment and axial load in the section (M/S-P/A) 
reaches the concrete tensile strength (ft′). Using the relation-
ship between stresses and the parameter α = M/V.dv, which 
relates the bending moment to the shear force, Eq. (35) can 
be derived for the shear force at the cracking point. Setting 
P = 0 in this equation leads to the formula previously developed 
for the beam model.3
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The shear strain at the cracking point (γcr) can simply be 
calculated by dividing the shear force by the initial shear 
stiffness (G)

 γ cr
cr
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=  (36)

Failure point
The post-peak response of shear-critical RC columns 

can be assumed to be linear with the ultimate shear strain 
(γf) occurring at the zero shear force as recommended by 
Elwood et al.23 γf can be calculated from Eq. (37) proposed 
by Elwood and Moehle8 based on a shear-friction model
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where θf is the crack inclination angle at the failure point, 
which is suggested to be taken as 30 degrees for columns 
with axial load ratios less than 20%, and 25 degrees for 
columns with higher axial load ratios. As the axial compres-
sive load increases, the longitudinal strain reduces, which 
leads to a lower crack inclination angle.

Figure 7 summarizes all the aforementioned equations 
into a four-step procedure for the calculation of the shear 
force and shear strain at key points of the proposed plastic 
hinge model.

VERIFICATION AGAINST EXPERIMENTAL 
TEST RESULTS

The performance and accuracy of the proposed model 
were assessed by comparing the results of 12 shear-critical 
RC columns experimentally tested by Tran,24 Kokusho,25 
Lynn,26 Imai and Yamamoto,27 Yoshimura and Yamanaka,28 
Zimos et al.,29 and Ikeda.30 The key characteristics of the 
columns, including dimensions, material properties, rein-
forcing bar area, axial load, and boundary conditions, are 
shown in Table 1. While there are many other experimental 
studies on RC columns available in the literature,31-33 the 
columns were selected from test programs with different 
sets of design parameters, allowing thorough performance 
assessment of the proposed model. Shear behavior played a 
significant role in the response of all the selected columns.

The OpenSees software34 was used to model the columns 
with two-noded frame type elements. The nonlinear axial 
and flexural behavior of the columns was considered through 
a series of fibers defined along the cross section. To consider 
the confinement effect in fiber sections, the stress-strain rela-
tionship of concrete was defined according to the model of 
Saatcioglu and Razvi.10 Because frame elements with fiber 
sections cannot account for the shear effects in RC members, 
a ZeroLength element with a multilinear uniaxial material 
behavior was added to each shear span of the columns, as 
shown in Fig. 1. The multilinear response of the uniaxial 
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material model assigned to the zero-length elements was 
defined based on the shear force and shear deformation values 
computed by the proposed plastic hinge model according to 
the equations presented in the previous section. The shear 
deformation was computed by multiplying the shear strain 
by the shear plastic hinge length, which can be estimated 
as the length of the projection of the shear crack along the 
longitudinal axis of the member (dvcot(θ)).35 Knowing that 
the crack inclination angle in columns ranges between 15 
and 35 degrees, the plastic hinge length can be approximated 
as twice the section height (2h).

In Fig. 8, the lateral force-displacement responses of 
the columns computed by the OpenSees model with the 
proposed shear hinge elements were compared against the 
results of experimental tests and VecTor2. It can be seen 
that the force-displacement results of the OpenSees model 
that included the shear hinge model were in good agree-
ment with the experimental results in terms of stiffness, 
peak strength, and displacement. The proposed modeling 
approach provided the same level of accuracy as the VecTor2 
nonlinear FE analysis software with much less modeling and 
computing effort. Therefore, it can be regarded as a prom-
ising analysis approach for shear-critical RC structures. 
To demonstrate the consequences of neglecting the shear 
effects, the results of the OpenSees model without including 
shear hinge elements are also shown in Fig. 8. As expected, 

neglecting the shear behavior resulted in significant over-
estimation of strength and ductility for the shear-critical 
columns. Because the frame elements with fiber sections 
cannot capture shear failure, the analysis continued until the 
fibers failed due to flexural and axial load effects, resulting 
in highly unsafe results.

PARAMETRIC STUDY
To further verify the accuracy of the proposed shear hinge 

model and evaluate its application range, a comprehensive 
parametric study was conducted by modeling and analysis 
of 48 shear-critical cantilever RC columns. The VecTor2 
FE analysis software was used to assess the performance 
of the proposed shear hinge model under various geomet-
rical, material, and loading conditions. The selected columns 
varied in terms of six key design parameters—namely, the 
cylindrical compressive strength of concrete (fc′), the ratio 
of the applied axial load to the axial capacity of the concrete 
section (P/fc′Ag), the transverse reinforcement ratio (ρz), the 
ratio of the shear span to the section effective depth (a/d), 
cross-section dimensions (b or h), and the aspect ratio of the 
cross section (b/h). The total area of longitudinal reinforce-
ment and the yield strength of all reinforcement are assumed 
to be 4200 mm2 (6.51 in.2) and 400 MPa (58.02 ksi), respec-
tively. Other characteristics of the columns are shown in 
Table 2.

The characteristics of the load-deflection responses of the 
aforementioned columns were evaluated by determining 
five performance indicators for each response: 1) shear 
strength (Vu); 2) displacement corresponding to the peak 
strength (Δu); 3) shear force at the yielding of the trans-
verse reinforcement (Vy); 4) area under the pre-peak portion 
of the response (Apre-peak); and 5) total area under the load- 
deflection response (Atotal). For each performance indicator, 
the ratio between the prediction of the proposed lumped 
plasticity analysis approach and the FE analysis (LP-to-FE) 
was computed.

To identify the application range and the limitations of the 
proposed lumped plasticity model, the variation of LP-to-FE 
ratios for the five performance indicators are presented in 
Fig. 9 as a function of design variables considered in the 
parametric study. Figure 9(a) shows the performance of the 
model as fc′ varies from 20 to 80 MPa (2.90 to 11.60 ksi). 
It can be seen that, for all values of fc′, the LP-to-FE ratios 
for all performance indicators were close to 1.0, meaning 
that the predictions of the lumped plasticity model agreed 
well with the FE analysis results. However, the accuracy 
of the model reduced as the concrete compressive strength 
increased above 50 MPa (7.25 ksi). This was expected 
because the Hognestad equation was used for the concrete 
compressive stress-strain relationship in the development 
of the proposed model, which is not an ideal constitutive 
material model for predicting the response of high-strength 
concrete members.

The effect of axial load is shown in Fig. 9(b). It can be 
seen that the proposed model accurately calculated almost 
all the performance indicators for axial load ratios ranging 
from 0.05 to 0.8. The only inconsistency was in the predic-
tions of Δu for columns with axial load ratios between 0.4 

Fig. 7—Step-by-step procedure for calculation of four key 
points for proposed model.
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and 0.6, where Δu was overestimated to some extent by 
the proposed model. Nevertheless, this did not affect the 
overall performance of the model for these columns, as the 
rest of the performance indicators, including the total area 
and the area under the pre-peak response, were predicted 
with good accuracy. From Fig. 9(c), it can be seen that the 
proposed model calculated the response of RC columns that 
contained at least the minimum amount of shear reinforce-
ment specified according to the CSA A23.3 design code12 
reasonably well.

Figure 9(d) shows the performance of the model for shear 
span-depth ratios (a/d) from approximately 1 to 6. It can be 
seen that as the a/d reduced below 2, the accuracy of the 
proposed model started to deteriorate. This is because the 
model was developed based on the assumption that plane 
sections remain plane (that is, beam action) and the arch 
action, which occurs in deep members, was not considered 
in its formulation. The effect of size and the aspect ratio 
of the cross section were investigated in Fig. 9(e) and (f). 
It is shown that the proposed model was able to calculate 

the shear response of RC columns with cross-section sizes 
varying from 250 to 1500 mm (9.84 to 59.06 in.) and aspect 
ratios between 0.5 and 2.0 with good accuracy. For larger 
cross sections, the accuracy of the model was slightly lower, 
which could be due to the size effect in concrete.

VERIFICATION AT SYSTEM LEVEL
The effectiveness of the proposed shear hinge model for 

the system-level performance assessment of RC structures 
was evaluated by analyzing a four-story three-span frame 
structure representing an RC building constructed in the 
late 1990s in Vancouver, BC, Canada. The geometry of the 
frame as well as properties of member cross sections are 
shown in Fig. 10. The frame was designed according to the 
requirements of CSA A23.3-94,36 which was the applicable 
design code at the time of construction. However, due to the 
improvements made in the Canadian design practice over the 
last 25 years, the frame does not meet some of the require-
ments of the current edition of the code (CSA A23.3:1912). 
One of the most noticeable changes in the Canadian design 

Fig. 8—Comparison of force-displacement responses between OpenSees models with and without shear hinge elements, exper-
iment, and VecTor2. (Note: 1 mm = 0.0394 in.; 1 kN = 0.225 kip.)
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Table 2—Properties of RC columns used for parametric study

Model fc′, MPa P/fc′Ag ρz, % a/d h, mm b/h Model fc′, MPa P/fc′Ag ρz, % a/d h, mm b/h

C1 30 0.20 0.20 2.39 400 1.00 C25 30 0.20 0.08 2.39 400 1.00

C2 20 0.20 0.20 2.39 400 1.00 C26 30 0.20 0.07 2.39 400 1.00

C3 25 0.20 0.20 2.39 400 1.00 C27 30 0.20 0.20 1.19 400 1.00

C4 35 0.20 0.20 2.39 400 1.00 C28 30 0.20 0.20 1.49 400 1.00

C5 40 0.20 0.20 2.39 400 1.00 C29 30 0.20 0.20 1.79 400 1.00

C6 45 0.20 0.20 2.39 400 1.00 C30 30 0.20 0.20 2.09 400 1.00

C7 50 0.20 0.20 2.39 400 1.00 C31 30 0.20 0.20 2.69 400 1.00

C8 60 0.20 0.20 2.39 400 1.00 C32 30 0.20 0.20 2.99 400 1.00

C9 70 0.20 0.20 2.39 400 1.00 C33 30 0.20 0.20 3.58 400 1.00

C10 80 0.20 0.20 2.39 400 1.00 C34 30 0.20 0.20 4.48 400 1.00

C11 30 0.05 0.20 2.39 400 1.00 C35 30 0.20 0.20 5.97 400 1.00

C12 30 0.10 0.20 2.39 400 1.00 C36 30 0.20 0.20 2.39 250 1.00

C13 30 0.30 0.20 2.39 400 1.00 C37 30 0.20 0.20 2.39 300 1.00

C14 30 0.40 0.20 2.39 400 1.00 C38 30 0.20 0.20 2.39 500 1.00

C15 30 0.50 0.20 2.39 400 1.00 C39 30 0.20 0.20 2.39 600 1.00

C16 30 0.60 0.20 2.39 400 1.00 C40 30 0.20 0.20 2.39 800 1.00

C17 30 0.70 0.20 2.39 400 1.00 C41 30 0.20 0.20 2.39 1000 1.00

C18 30 0.80 0.20 2.39 400 1.00 C42 30 0.20 0.20 2.39 1200 1.00

C19 30 0.20 0.80 2.39 400 1.00 C43 30 0.20 0.20 2.39 1500 1.00

C20 30 0.20 0.40 2.39 400 1.00 C44 30 0.20 0.20 2.39 400 0.50

C21 30 0.20 0.27 2.39 400 1.00 C45 30 0.20 0.20 2.39 400 0.75

C22 30 0.20 0.16 2.39 400 1.00 C46 30 0.20 0.20 2.39 400 1.25

C23 30 0.20 0.13 2.39 400 1.00 C47 30 0.20 0.20 2.39 400 1.50

C24 30 0.20 0.10 2.39 400 1.00 C48 30 0.20 0.20 2.39 400 2.00

Fig. 9—Performance of proposed shear hinge model for RC columns with various design parameters. (Note: 1 mm = 0.0394 in.; 
1 kN = 0.225 kip.)
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code has been the addition of stringent requirements for 
volumetric transverse reinforcement in columns located in 
seismic regions. The lack of these requirements in the older 
versions of CSA A23.3 design code has raised concerns about 
the safety of some existing RC structures under earthquakes.

The structure was modeled using frame-type fiber-based 
elements in OpenSees and VecTor537 software. VecTor5 
is a distributed plasticity analysis software for RC frames, 
developed based on the MCFT model.7 Unlike most frame-
type analysis software, the fiber-based elements in VecTor5 
can capture nonlinearity effects due to shear in addition to 
the flexural and axial behavior. In the OpenSees model, 
the shear behavior was considered based on the lumped 
plasticity models presented in this paper and the previous 
study by the authors,3 while the flexural and axial behavior 
were considered using the distributed plasticity approach 
with fiber-based elements. The stress-strain relationship 
of concrete for fiber sections was defined according to the 
confinement model of Saatcioglu and Razvi.10 To consider 
shear effects, zero-length elements with shear hinge models 
were added to the ends of columns and beams of the frame, 
as shown in Fig. 10.

Pushover analyses were conducted on the OpenSees 
and VecTor5 models to simulate the seismic loads on the 
structure. The frame was subjected to a monotonically 
increasing lateral displacement applied through a series of 
rigid elements attached to the frame structure using simply 
supported connections. The location of the applied lateral 
load and the configuration of the rigid elements were 
selected such that the lateral seismic force distribution in the 
structure was proportional to the floor level height and the 
mass of each story.38 Gravity loads (dead, live, and snow) 
for a typical residential building as defined in NBCC:199539 
were also applied on the beams.

The base shear versus the lateral roof-displacement 
response is shown in Fig. 10 for three different analysis 
cases: the OpenSees analysis with and without the shear 
hinge models and the VecTor5 analysis. It can be seen in 

Fig. 10 that both the force-deflection responses and the 
sequence of failure obtained from VecTor5 and the OpenSees 
model with the shear hinges were similar. Both analysis 
methods predicted that the structural collapse was initiated 
by the shear failure of the shorter beam in the first story (B2), 
followed by the shear failure of the adjacent column C5 and 
beam B1, which then resulted in complete collapse of the 
structural system. As shown in Fig. 10, the OpenSees model 
without the shear hinges resulted in a completely different 
damage sequence and mode of failure along with consid-
erable overestimation of the strength and ductility of the 
frame. In terms of the analysis time, the OpenSees model 
with the shear hinges was approximately 78% faster than the 
VecTor5 model, where the shear behavior was considered 
in a distributed manner. For larger structural systems or 3-D 
models, the difference between the analysis time of the two 
modeling methods is expected to be even higher. 

SUMMARY AND CONCLUSIONS
A new lumped plasticity model was developed based on 

the Modified Compression Field Theory (MCFT) method 
to predict the response of shear-critical reinforced concrete 
(RC) columns. The model represents the nonlinear shear 
behavior of columns in a concentrated manner through 
a set of closed-form equations derived by simplifying the 
complex procedure of the original MCFT method. The 
model formulation takes into account the shear-flexure-
axial interaction effects and complex material mechanisms 
in RC such as tension stiffening and compression softening. 
Moreover, it considers the nonlinear distribution of stresses, 
strains, and the crack inclination through the section height 
in an average sense.

The accuracy of the proposed model was verified through 
analysis of 12 shear-critical RC columns tested by different 
researchers using the OpenSees software. It was shown 
that the model can calculate the response of shear-critical 
columns reasonably well in terms of strength, ductility, and 
stiffness. The analysis results also indicated that neglecting 

Fig. 10—System-level OpenSees model and base shear versus lateral roof displacement responses of RC frame. (Note: 1 mm = 
0.0394 in.; 1 kN = 0.225 kip.)
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the nonlinearity effects due to shear can result in significant 
overestimation of the peak strength and ductility, leading 
to unsafe predictions. Afterward, using a comprehensive 
parametric study on columns with various design parame-
ters, the application range and the limitations of the model 
were identified. The design parameters that were investi-
gated included material properties, loading condition, and 
cross-sectional details. The model performed well for almost 
all RC columns, except those with a shear span to effective 
depth ratio of less than 2.0, which was expected as the arch 
action was not considered in the model formulation. Also, 
the accuracy of the model was reduced for high-strength 
concrete columns or columns with transverse reinforcement 
ratios less than the minimum value specified by the Cana-
dian design code.12 Finally, the effectiveness of the proposed 
model for the system-level analysis of RC structures was 
evaluated by modeling a multi-story frame structure with 
shear-critical members. The results demonstrated that the 
proposed lumped plasticity model can effectively consider 
nonlinear shear deformations and shear failure modes in RC 
frames with the same level of accuracy as the distributed plas-
ticity method but with considerably less computational time.

The use of the proposed shear hinge model for columns 
and the previously developed model for beams will assist 
engineers to evaluate the safety and performance of large RC 
structures while considering the nonlinear shear behavior of 
different structural members in an accurate and practical 
manner. The proposed shear hinge models can be easily used 
with any type of frame analysis software without requiring 
any changes to the software formulation.
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NOTATION
Apre-peak = area under pre-peak portion of response
Asl = area of tensile longitudinal reinforcement
Ast = area of transverse reinforcement
Atotal = total area under load-deflection response
a = shear span
b = beam width
C =  summation of forces acting on compression side of cross 

section
d = effective depth
dv = effective shear depth, taken as greater of 0.9d or 0.72h
Es = modulus of elasticity of steel
fc′ = cylindrical compressive strength of concrete
fc1 = principal tensile stress in concrete
fc2 = principal compressive stress in concrete
fsx and fsz = average stress in longitudinal and transverse reinforcement
ft′ = modulus of rupture of concrete
fx and fz = stress applied to element in x- and z-directions
fyl = yield strength of longitudinal reinforcement
fyt = yield strength of transverse reinforcement
G = initial shear modulus of concrete
h = beam height
P = axial compressive load (negative sign for compression)

s = spacing of transverse reinforcement
sz = crack spacing parameter, as defined in CSA A23.3
sze =  equivalent crack spacing that allows for influence of aggre-

gate size
T = summation of forces acting on tension side of cross section
V = shear force
Vc = shear resistance provided by concrete
Vs = shear resistance provided by transverse reinforcement
v = shear stress
vc = shear stress in concrete
vci = shear stress on crack surfaces
X = distance from extreme compression fiber to neutral axis
β =  contribution factor accounting for strength of cracked 

concrete
εx = longitudinal strain
εz = transverse strain
ε0 = strain in concrete at fc′
ε1 = principal tensile strain in concrete
ε2 = principal compressive strain in concrete
γ = shear strain
θ = angle between crack inclination and x-axis
ρx and ρz = longitudinal and transverse reinforcement ratios
Note: Subscripts “u,” “f,” “y,” and “cr” = related to each of four key points in model.
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Table A1—Appendix (equations for factors)
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Note: Factors that are added/changed to/from beam model3 are in shaded cells.
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NOTES:


