Data Analytics - Measuring Habit Variations to Identify Drivers

B Wallace ${ }^{1}$, R Goubran ${ }^{1,2}$, F Knoefel1², ${ }^{\text {S Marshal }}{ }^{3}$, M Porter ${ }^{4}$

${ }^{1}$ Carleton University, ${ }^{2}$ Bruyere Research Institute, ${ }^{3}$ Ottawa Hospital Research Institute, ${ }^{4}$ University of Manitoba

Canada's Capital University

Objective and Background

- Chronic illness is increasing and impacts driving
- Clinicians must report driving concerns
- No agreed standardized tests for driving risk.
- In-car "black box" data provides new data source

Vehicles are typically shared by multiple drivers

- This project explores the identification of a driving signature to distinguish between drivers and to provide a foundation for future analysis of driving signature change as a predictive tool of driving ability

Methodology

- Collaboration with Candrive project at OHRI
- Candrive is in the 5th year of collecting GPS and Engine Computer data
- Analyze for attributes that distinguish drivers
- Trip measures: Time of day, Distance, Duration
- Driver Choices: Road types (city, highway)
- Driving Habits: Velocity, Acceleration, Throttle use, Speeding
- Techniques and goa
- Use signal processing and data analysis
- Identify features that distinguish drivers
- Build towards a driving signature tool

Block diagram of the data collection architecture along with an image of the Persentech OttoView-CD data collection device.

The Data Set

- Over 1000 drivers enrolled in program in Canada Australia and New Zealand.
- For Ottawa drivers - now collecting the $5^{\text {th }}$ year data. On average ~1000 hours of driving collected for each enrolled vehicle

Global data set ~1TB

Number of participants	256
Participant age at entry	
Mean	76.3
Std Deviation	4.5
Range	$70-92$
$70-74$	106
$75-79$	90
$80-84$	47
$85-89$	12
$90+$	1
Gender	36%
F	64%
M	

Summary demographic information for the Ottawa Candrive participants at entry to the project.

Parameter	Measure Value	Sensor					
Time	Date/time (second)	GPS	$	$	Location	Latitude/Longitude Fix accuracy	GPS
:---	:---	:---					
Velocity	$\mathrm{km} / \mathrm{hr}$	GPS					
Speed Limit	$\mathrm{km} / \mathrm{hr}$	GPS/GIS mapping					
Alerts	text (e.g., school zone)	GPS					
Trip Data	Trip counter RFID tag \#	OBDII recorder					
Engine data	Engine RPM Absolute throttle position	OBDII recorder					
Speed	Vehicle speed sensor (dashboard)	OBDII recorder					

Information captured by Candrive sensor system. All data captured at a 1 Hz sampling rate.

Acknowledgements

Natural Sciences and Engineering Research Council (NSERC) and industrial and government partners, through the Healthcare Support through Information Technology Enhancements (hSITE) Strategic Research Network. Candrive prospective study (www.candrive.ca) funded by the Canadian Institutes of Health Research (CIHR) Bruyère Academic Medical Organization (Innovation Funding).

