Purely Automated Attacks on
PassPoints-Style Graphical Passwords*

P.C. van Oorschot, Amirali Salehi-Abari, Julie Thorpe
School of Computer Science, Carleton University

Abstract

We introduce and evaluate various methods for purely automated attacks against PassPoints-
style graphical passwords. For generating these attacks, we introduce a graph-based algorithm
to efficiently create dictionaries based on heuristics such as click-order patterns (e.g., 5 points
all along a line). Some of our methods combine click-order heuristics with focus-of-attention
scan-paths generated from a computational model of visual attention, yielding significantly
better automated attacks than previous work. One resulting automated attack finds 7-16% of
passwords for two representative images using dictionaries of approximately 226 entries (where
the full password space is 243). Relaxing click-order patterns substantially increased the attack
efficacy albeit with larger dictionaries of approximately 23° entries, allowing attacks that guessed
48-54% of passwords (compared to previous results of 1% and 9% on the same dataset for two
images with 2%° guesses). These latter attacks are independent of focus-of-attention models, and
are based on image-independent guessing patterns. Our results show that automated attacks,
which are easier to arrange than human-seeded attacks and are more scalable to systems that
use multiple images, pose a significant threat to basic PassPoints-style graphical passwords.

1 Introduction

Graphical passwords are an alternative to text passwords, whereby a user is asked to remember an
image (or parts of an image) instead of a word. They are motivated in part by the well-known fact
that people have superior memorability for images [19], and the promise of their suitability for small
devices such as smart phones. Graphical passwords have become an active topic of research with
many new proposals (see surveys [21, 29, 26]). One proposal of interest, PassPoints [37, 35], involves
a user creating a 5-point click sequence on a background image. Usability studies have indicated
that these graphical passwords have reasonable login and creation times, acceptable error rates,
decent general perception [36, 37, 5], and less interference between multiple passwords [20, 11, 4]
when compared to text passwords.

Our research improves our understanding of the security of PassPoints-style graphical passwords,
i.e., schemes closely resembling PassPoints, wherein a user creates a click sequence of r points (e.g.,
r = 5) on a single background image. PassPoints-style graphical passwords have been shown to be
susceptible to hot-spots, which can be exploited in human-seeded attacks [31, 32], whereby human-
computed data (harvesting click-points from a small set of users) is used to facilitate efficient
attacks. These attacks require that the attacker collect sufficient “human-computed” data for the
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target image, which is more costly for systems with multiple images. This leads us to ask whether
more scalable attacks exist, and in particular, effective fully-automated attacks.

To address this question, in the present work we introduce and evaluate a set of purely automated
attacks against PassPoints-style graphical passwords. Our attack method is based on the hypothesis
that users are more likely to choose click-points relating to predictable preferences, e.g., logically
grouping the click-points through a click-order pattern (such as five points in a straight line), and /or
choosing click-points in the areas of the image that their attention is naturally drawn towards. To
find parts of the image that users are more likely to attend to (salient parts of the image), we use
Itti et al.’s [16] model of visual attention. We also examine click-order patterns both alone and in
combination with these more salient parts of the image.

Our attacks employ sets of graphical passwords that we hypothesize are “more likely” to be
chosen than others; these sets naturally define dictionaries for use in a dictionary attack. A suc-
cessful such attack must be able to efficiently generate a dictionary containing highly probable
passwords. In existing literature, the size of a dictionary is normally considered the most impor-
tant cost for a dictionary attack, whereas the cost of dictionary generation is often neglected; the
latter is reasonable if a one-time precomputation can be reused. Alternately, if the dictionary must
be generated on-the-fly, or recomputed each time (e.g., for a different background image), then the
cost of dictionary generation may become as or more important than the size of the dictionary
itself.

We present a graph-based algorithm for attack dictionary generation whose computational cost
is on the order of the number of dictionary entries. It can efficiently generate r-permutations
of a given alphabet, which satisfy a predefined set of conditions (e.g., click-order heuristics), as
opposed to generating all possible r-permutations and then checking which one satisfies a predefined
condition.

Our methods are substantially more successful than previous purely automated attacks. Tested
on the field study database of Thorpe et al. [31], some of our dictionaries find 19-83% as many
passwords as human-seeded attacks (when based on independent probabilities), with only about
3% as many dictionary entries.

Our contributions include the best purely automated attacks to date against PassPoints-style
graphical passwords, an evaluation of how the model of Itti et al. [16] relates to user-selected
click-based graphical passwords, an efficient heuristic dictionary generation algorithm, and a new
spatial clustering algorithm for grouping nearby click-points. We found that a “lazy” approach to
click-order patterns (e.g., loosening the definition of a line to five points lying within some tolerance
of a line) produced a substantially more successful automated attack than previous methods with
comparable dictionary sizes and images [31, 10]. A click-order pattern based only on locality (all
five points being near one another) was also very successful. We show how some click-order pattern
dictionaries can be further optimized by applying distance constraints. Furthermore, we were able
to improve these click-order pattern dictionaries using Itti’s model, producing dictionaries whose
relative guessing accuracy is better than human-seeded attacks based on independent probabilities
[32]. These results show that purely automated attacks pose a significant threat to PassPoints-style
graphical passwords.

The remainder of this paper proceeds as follows. Section 2 discusses background and termi-
nology, including computational models of visual attention. We describe purely automated attack
generation methods in Section 3, results in Section 4, related work in Section 5, and a discussion
with concluding remarks in Section 6.



2 Background

Our original idea was that a significant percentage of users will choose points relating to the order
that the points draw their visual attention as components of their click-based passwords, and
thus that computational models of visual attention may help identify more probable click-points.
As our attacks are motivated by this idea and a subset of them use computational models of
visual attention, we provide some background on models of visual attention in Section 2.1. Other
terminology is presented in Section 2.2.

2.1 Models of Visual Attention

Computational models of bottom-up visual attention are normally defined by features of a digital
image, such as intensity, color, and orientation [16, 15]. Feature maps are then created and used to
generate a saliency map, which is a grayscale image where higher-intensity locations define more
conspicuous areas.

Computational models of top-down visual attention can be defined by training [23]. The dif-
ficulty of these models is that the top-down task must be pre-defined (e.g., find all people in the
image), and then a corpus of images that are tagged with the areas containing the subject to find
(e.g., people) must be used for training. Navalpakkam et al. [22] discuss an alternate method to
create a top-down model, based on guided search [38], which weighs visual feature maps according
to the top-down task. For example, with a task of locating a red object, a red-sensitive feature
map would gain more weight, giving it a higher value in the resulting saliency map. In both cases,
assumptions regarding what sort of objects people are looking for are required to create such a
model.

In this work, we focus on bottom-up visual attention, using the computational model of visual
attention of Itti et al. [16]. We chose this model as it is well-known, and there is empirical evidence
that it captures people’s bottom-up visual attention [24]. The general idea is that areas of an
image will be salient (or visually “stand out”) when they differ from their surroundings. Given
an input image, Itti’s model outputs a focus-of-attention scan-path to model the locations and the
order in which a human might automatically and unconsciously attend these parts of the image.
The model first constructs a saliency map based on visual features. Then it uses a winner-take-all
neural network with inhibition of return to define a specific focus-of-attention scan-path, intended
to represent the order in which a user would scan the image.

In stage 1, the saliency map is created by decomposing the original image into a set of 50
multi-level “feature maps”, which extract spatial discontinuities based on color opponency (either
red-green or blue-yellow), intensity, or orientation. Each level defines a different size of the center
and its surround, in order to account for conspicuous locations of various sizes. All feature maps
are then combined into a single saliency map.

In stage 2, the neural network detects the point of highest salience (as indicated by the intensity
value of the saliency map), and draws the focus of attention towards this location. Once an area
has been attended to, inhibition of return will prevent the area from being the focus again for a
period of time. Together, the neural network with inhibition of return produces output in the form
of spatio-temporal attentional scan-paths, which follow the order of decreasing saliency as defined
by stage 1. Two different normalization types (producing different scan-paths) can be used with
the model: LocalMax and Iterative (cf. Figure 1). In LocalMax normalization, the neural network
will have a bias towards those areas that are closer to the previously attended location. In Iterative
normalization, the neural network will find the next most salient area that has not been inhibited.
We use LocalMax herein (Iterative was found to have inferior performance [28]).



(a) LocalMax normalization (b) Iterative normalization

Figure 1: pool image (unmodified version from [35, 37]) with the first 7 steps in the scan-path.

2.2 Terminology and Identifying Distinguishable Points

Our overall method is based on the hypothesis that users are more likely to choose passwords
consisting of click-points, each of which is a distinguishable point, defined as a point on a digital
image that can be easily distinguished and relocated by a user — e.g., by using referencable points
on the image (such as a corner), or calculable points based on other referencable parts of the image
(such as object centers). Thorpe et al. [31] used corner detection to find referencable points, and
Dirik et al. [10] used centroids to find calculable points. We use both approaches to define a
distinguishable points map 9, as detailed below.

Regarding additional terminology, suppose that a user chooses a click-point ¢ as part of a pass-
word. The tolerable error or tolerance t is the error allowed (in vertical and horizontal directions)
for a click-point entered on a subsequent login to be accepted as c. This defines a tolerance region
(T-region) centered on c. For an implementation using ¢t = 9 pixels, the T-region is a 19 x 19 pixel
square, matching the dataset [31], used herein for evaluation and comparison.

A window cluster is a square region of n X n pixels for some positive integer n. A cluster is
a set of one or more points that lie within a window cluster. The geometric center of a window
cluster is used as the representative of all the points within the window cluster. An alphabet is a
set of distinct window centers.

Corner Detection. A corner is defined as the intersection of two edges, where an edge is
defined by the points in a digital image where there are sharp changes in intensity [12]. We use
Harris corner detection [13] as implemented by Kovesi [18]. This first identifies the edges. Those
edges are then blurred to reduce the effect of any noise. Next, based on the edges, an energy map
is generated, containing local maxima and minima. A local maximum indicates the presence of a
corner. We use the recommended parameters o = 1, § = 1000 and r = 3, where o is the standard
deviation of a smoothing Gaussian filter, 0 is a threshold for the maximum number of corners, and
r is an inhibition radius, measured in pixels around a detected corner. Figure 2 shows the pool
image where each detected corner is illustrated by a ‘4.

We also create a binary corners map (a specialized type of binary map or one-to-one mapping
from its pixels of value 0 or 1 to the pixels of the original image): when a pixel is a corner in the
original image, its corresponding value is 1; otherwise 0.

Centroid Detection. To find the centers of objects, we first partition the digital image into
segments using image segmentation, by the mean-shift segmentation algorithm [7], which takes a
feature (range) bandwidth, spatial bandwidth, and a minimum region area (in pixels) as input.



Figure 2: Corner detection (left) and center detection (right) for pool image.

We set these parameters to 7, 9, and 50 respectively, which we found empirically to provide an
acceptable segmentation with the smallest resulting number of segments.

After segmentation, we calculate the center (Xg, Yg) of each segment (centroid) S from the arith-
metic mean of each coordinate of the segment’s points: Xg = ﬁ Y icsvi and Yg = ﬁ > ies Yi-
Here z; and y; are pixel coordinates, and n(S) denotes the total number of pixels in segment S. The
x coordinates of all points in S are involved in calculating Xg, not only those along the maximum
width.

Figure 2 (right) illustrates the resulting segments of the pool image. The center of each segment
is denoted by a ‘+’. We also create a centers map, which is a binary map of the same size as the
original image. If a pixel is a center of a segment in the corresponding image, its value is 1 in the
centers map; otherwise 0. Our distinguishable points map § is the binary map that is the logical
(inclusive) “or” of the binary centers map and binary corners map.

3 Experimental Methodology

Our attack methods are motivated by the following conjectures related to user choice. Regardless
of the degree to which these conjectures are true, they have led us to significantly improved attack
algorithms, which is our objective herein, rather than proving or disproving these conjectures per
se.

Conjecture 1 Users are likely to collectively prefer some areas of an image more than others, with
the aggregate effect that a significant subset of users will choose passwords composed of click-points
that are among the collectively preferred click-points.

Conjecture 2 Points that are collectively preferred can be identified by image processing tools (e.g.,
models of visual attention).

Another factor that could influence the complexity (and thus a user’s preference) of a password
is the relationship between click-points that compose a password. People are better at recalling
fewer pieces of visual information [8], motivating Conjecture 3.



Conjecture 3 Since people find it easier to recall fewer pieces of information, a significant subset
of users are likely to choose sets of points that can be grouped, e.g., by following one of a set of
simple click-order patterns (such as left to right).

Conjectures 1, 2, and 3 lead us to pursue attacks that use click-order patterns and image
processing methods to create efficient, ordered attack sub-dictionaries. Some of our dictionaries
use a window clustering algorithm, described in Section 3.1, to represent a set of click-points in
a more compact way. We describe our attack alphabets in Section 3.2; one is based on image
processing methods. To generate an attack dictionary based on heuristics (in our case these being
click-order patterns), we introduce a general graph-based algorithm in Section 3.3. We describe
specific click-order patterns and their specification in Section 3.4.

3.1 Window Clustering Algorithm

We assume that an attacker’s goal is to guess the largest number of passwords with the fewest
guesses. After creating a set of points for a guessing dictionary (which might be used in passwords
in any ordering of five clicks), those within the same tolerance region could be redundant (effectively
guessing the same point). We use the term clustering to mean normalizing a set of points to a single
value. The intuition behind clustering is that given the system error tolerance, one point would be
accepted as a correct entry for all others within its tolerance region.

We introduce a clustering algorithm (window clustering), based on setting a window of fixed
size (not necessarily the same size as the tolerance region) over the largest number of points it
can cover. We then replace those candidate points inside the window with the geometric center of
the window. Thus, the center of the cluster is not necessarily one of the original input points (in
contrast to a previous clustering algorithm [31]).

More precisely, window clustering is a greedy algorithm with a fixed window size. Starting with
all candidate points, find the next position for the window that covers the maximum number of
remaining points (ties are broken arbitrarily). Then store the center of the window to represent the
points in the window, and erase the corresponding points. Continue this process until no candidate
points remain. The candidate points we use are the points with value 1 in B; of Section 3.2.1, and
the window size is set to 19 x 19.

Figure 3: Window clustering.
Figure 3 shows an example set of candidate points with black squares, where each square
represents a pixel. These 7 candidate points are covered with two 3 x 3 windows and will be
represented by the centers of the two windows illustrated with grey squares.

3.2 Attack Alphabets

Motivated by Conjectures 1 and 2, we introduce a set of alphabets based on Itti’'s computational
model of bottom-up visual attention that we call V' A, introduced in Section 3.2.1. For comparison,
we introduce an alphabet in Section 3.2.2 that covers the entire image.



3.2.1 Visual-Attention Based Alphabet (V A)

We used the Saliency Toolbox [34] implemented in Matlab. The weights of all feature maps used
by the toolbox are set to one, which assigns orientation, intensity and colors the same level of
importance. Normalization type is set as LocalMaz and for all other settings, we use their default.
With the resulting scan-path, we generate an ordered set of alphabets for use in a guessing attack
as described in the paragraphs below. We generate a map of candidate click-points using the
distinguishable points map § as a bitmask to the resulting attracted regions of the image (i.e.,
using a logical “and”). We then refine this binary map of candidate points by using the window
clustering algorithm of Section 3.1.

In this way, we generate a set of binary maps S’, whose n elements represent the cumulative n
steps in the scan-path (element i contains all steps from the first to the it" step). More specifically,
the i*" element in S’ is the binary map B;, which is generated from all scan-path steps up to step i:
S"={Bi, By, ..., By} where B; = A1V AyV...VA; and each element A; is a binary map representing
the j step in the scan-path. In other words, B; = B;_1 V A; and B; = A;. Note that each element
A; contains many pixels, for example in Figure la, A7 would include all highlighted pixels within
the circle labeled 7. Next, we calculate {C1,Cy,...,Cy} where C; = B; A 4, the intersection (logical
“and”) of each element B; with J, and run the window clustering algorithm on each C; to produce
D;, the resulting set of cluster centers (which are pixel locations on the image). The final set of
attack alphabets VA = {Dy, Dy, ..., D,} is ordered by the number of scan-path steps it includes.

The V A set of alphabets uses the scan-path to prioritize the dictionary entries; the first alphabet
uses only the first scan-path element, the second alphabet uses both the first and second scan-path
elements, etc. The order of each alphabet within V' A is motivated by the intuition that users may
choose their click-points based on points that are in the focus-of-attention scan-path — but not
necessarily in the order of the scan-path. For example, users may choose click-points according to
a click-order pattern.

We use V' A to create a dictionary motivated by Conjectures 1 and 2, and call it VA—H, where
heuristic H denotes a specific click-order pattern. The attack sub-dictionary Z;, of 5-permutations
of the elements of D; that satisfy a heuristic H, is generated by the dictionary generation algorithm
explained in Section 3.3. The final attack dictionary set Z = {Z;, Zs,...,Z,} is ordered by the
number of steps in the scan-path that are considered, e.g., all passwords from dictionary Zs are
tried as candidate passwords only after those in Z; are exhausted.

3.2.2 Alpha Alphabet («)

To examine the efficacy of attack dictionaries based on click-order pattern heuristics alone (i.e.,
without additional image processing methods as in V' A), we also used the following alphabet «
with click-order patterns to generate dictionaries. « is the set of pixels each of which is a window
center, upon partitioning an image into T-regions by placing a grid of 19 x 19 windows (i.e., the
same size as the T-region) over the image; see Figure 4. Note that the T-region used in creating o
depends only on the system error tolerance, independent of the parameter 7 used later in different
relaxation modes.

3.3 Dictionary Generation Algorithm

Suppose an attacker plans to generate a dictionary consisting of the subset of the r-permutations (of
a specific alphabet A) where the elements of the subset must also satisfy some predefined conditions
(e.g., click-order patterns). One approach is to generate all possible r-permutations of A and then
keep only those which fulfill the predefined conditions (heuristics). In this approach, assuming the



Figure 4: Each ‘+’ represents a character in the alphabet («). '
heuristic check is constant-time, the time complexity of dictionary generation, © 4, is O(ﬁ),

where n = |A|. Note that the dictionary cardinality, ©p, can be significantly smaller than © 4
(©p << ©4), depending on the predefined conditions.

Instead we present a graph-based algorithm for dictionary generation whose computational cost
is equal to the number of dictionary entries (Op = ©4). At a high-level, this efficiency is achieved
by creating a graph that captures only those elements that fulfill the predefined heuristic, where all
paths of length r — 1 are output as passwords. For heuristics corresponding to a small portion of the
password space, this is much more efficient than iterating through the entire password space. We
first partition each condition (heuristic) into a number of sub-conditions (sub-heuristics). Define
each sub-heuristic h in the form of a binary relation Ry, on the set A, i.e., a subset of A x A [27].
Thus, Ry, € A x A. Given (a,b) € Ry, both a and b belong to A and this ordered pair satisfies h.
Represent each relation Rp by a matrix M} with entries

o (1 if (ai,a) €R
My (i, 5) = {0 if (ai,aj-) ¢ RZ

where A = {ay,...,a,}. M} can be represented by a digraph G}, with vertices corresponding to the
indices i of a; and edge < 4,7 > from i to j if and only if M (i,j) = 1.

To generate the sub-dictionary Dj whose entries satisfy the sub-heuristic h and are also r-
permutations of A, we find all paths of length » — 1 in the graph G}, using Algorithm 1. A path
source can be any node of G. A path of length r — 1, which is one of the r-permutations of A, is
represented by p =< i1,%9, ..., iy >.

Algorithm 1

GenerateDictionary (G, 7) % G, is a digraph with vertices 1 to n.

Dh — @

for i =1tondo
paths «— FindPaths(i, G, r — 1) % paths is a set of paths of length » — 1 (i.e., passwords).
Dy, — Dy Upaths

end for

return Dy,

FindPaths(source,G,l) is a recursive function which finds all paths of length ! from node
source in digraph G; see Algorithm 2. It finds paths of length [ — 1 for all neighbors of source and
then prepends source to those paths.! For the base case of a path of length one, each path includes

While a recursive version of FindPaths is presented here for conceptual simplicity, an iterative version is used in
practice for efficiency.



the source and one neighbor. Algorithm 1 generates a sub-dictionary for a sub-heuristic, such as a
right-to-left and bottom-to-top (RL_BT) click-order pattern, which is a sub-heuristic of the DIAG
pattern heuristic (see Section 3.4). The union of the sub-dictionaries is the final attack dictionary.

Algorithm 2
FindPaths(source, G,1)

S0 % Upon termination, S is a set of paths of length .
for all nodes i € Neighbors(source) % Neighbors(i) = set of neighbors of node i.
if [ > 1 then

paths « FindPaths(i, G, [ — 1)
for all p € paths
p < Prepend(source, p) % Prepend(i, p) prepends node i to path p.
end for
else
paths «— {< source, i >}
end if
S «— S Upaths
end for
return S

3.4 Click-order Patterns, Relaxation and Constraints

We examine three click-order patterns alone (DIAG, LINE, and Localized Omni-Direction), and
with what we call lazy and super-lazy variations (for both DIAG and LINE) that relax the definition
of the patterns. DIAG includes any sequence of 5 click-points that follow both a consistent vertical
and horizontal direction (e.g., straight lines in any direction, most arcs, and step-patterns); LINE
includes any sequence of 5 click-points that follow either a vertical or horizontal line (see Fig. 5).
Localized Omni-Direction includes all sequences of 5 click-points in which each two consecutive
points are constrained by only a predefined distance constraint (but not by direction).

23
l

Figure 5: Directions included by DIAG (left) vs. LINE (right).

We break down the DIAG heuristic into four sub-heuristics LR_.TB, LR_BT, RL_TB and
RL_BT based on the mnemonics: LR (left-to-right), RL (right-to-left), T'B (top-to-bottom), BT
(bottom-to-top). More specifically, the defining relations for the DIAG heuristic are (7 > 0 is a
relaxation parameter, described further below):

Rir BT = {(PZ,P]) ‘ z; < Tj+T AND Yi > Yj—T AND DE(PZ,PJ) < Td}
Rrr_pr={(P,Pj) | x; >xj—7 AND y; > y; — 7 AND Dg(P;, P;) < Ty}
Rir B = {(PZ,P]) | r, <x;+T AND y; < Y+ 71 AND DE(PZ,P]) < Td}
Rrr B = {(PZ,P]) ‘ T; > Tj—T AND Y < Y+ 7 AND DE(PZ,P) < Td}



where P; = (x;,1;) and P; = (x;,y;) are two independent (not necessarily successive) points, and
the alphabet is A = {P1, P, ..., P,}. By convention, the positive y axis extends downward from
the top-left pixel of the image. Dg(P;, P;) = \/(azcZ — )2+ (yi — y;)? is the Euclidean distance
between P; and P;.

Having observed some users choose successive click-points within a bounded distance from the
previous click-point motivated us to define a distance constraint threshold T}; for consecutive points
in LINE and DIAG (T; = oo removes the constraint). When T, # oo, we subscript the dictionary
with Ty.

As noted earlier, the DIAG heuristic has four sub-heuristics and thus separate graphs. For each,
we generate a sub-dictionary using Algorithm 1. The DIAG dictionary is the union of four sets of

passwords: Dprag = Drr 7B Y Drr pr U DRr._ 75 U DRr_pr. Similarly, Driyg = Dpr U Drr U
Dpr U Drp, where the four sub-dictionaries in LINE are generated using the defining relations:
Rip ={(P,P) | (xi <aj+7) AND |y; —y;| < 7 AND Dg(F;, P;) < Ty}

Rpp ={(P, Pj) | (w; 2 x; —7) AND |y; —y;| <7 AND Dg(P;, P;) < Tq}

Rpr ={(P:, F;) | (yi 2 y; —7) AND |z; —xj| <7 AND Dp(P;, P;) < Ty}

Rpp ={(P:, P)) | (yi <y; +7) AND |z; — x;| <7 AND Dg(B;, P;) < Tq}

For LINE and DIAG, the allowance 7 > 0 serves to relax the pattern, motivated as follows.
Although the user might be inclined to select points along a line, the elements of that line may be
influenced by which click-points the user otherwise prefers. In the absence of linear structures in
the underlying image, the collection of four line segments, obtained by connecting successive pairs
of user-selected click-points, may only approximate a line. Therefore, two variations on both DIAG
and LINE allow “lazier” lines (see Figure 6): “lazy” uses 7 = 19 and “super-lazy” uses 7 = 28. Our
default relaxation value is 7 = 9 pixels (equal to the system tolerance t). We denote a dictionary
using a lazy or super-lazy 7 with superscripts + and ++ respectively.

ﬁ\'ﬁ—//*\\ﬁ/*
*

Figure 6: Laziness modes: normal (black), lazy (dashed grey), and super-lazy (solid grey).

A Localized Omni-Direction (LOD) dictionary is generated based on the single defining relation
Rrop = {(P;, Pj) | |vs —xj| < 7 AND |y; — y;| < 7}. Here 7 serves as the distance constraint
parameter on the two alphabet points P; and P;. Using Algorithm 1, we generate the corresponding
dictionary denoted LOD?®, where x = .

4 Experimental Results

We examine each click-order pattern (DIAG, LINE, and LOD) with each of the attack alphabets
described in Section 3.2.2 To evaluate each click-order pattern independent of visual attention
models, we use the a alphabet; to evaluate the effect of using a visual attention model, we use
the V A set of alphabets. To allow comparison, we tested these methods by trying to guess user

2This corrects preliminary results reported earlier [28] (some dictionary sizes are up to one bit larger, and some
attack efficacies are slightly improved).
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passwords from a previous PassPoints field study dataset [31, 5]. The study was 7-weeks or longer
(depending on the user), involving 223 user accounts on a web-based implementation of PassPoints
allowing access to course notes, assignment solutions, and tutorials. We focus on the field study
rather than the related lab study for increased ecological validity of the passwords’ long-term
memorability. Participants were from two first year courses for computer science students, and a
first year course for non-computer science students enrolled in a science degree. Participants used
one of two background images, pool or cars (see Figure 7), preselected to be representative of highly
detailed usable images at 451 x 331 pixels.

Figure 7: cars (originally from [14]). See Figure 1 for pool.

Passwords had 5 click-points, no two within ¢ = 9 pixels of another (vertically and horizontally).
Consistent with the previous study, we used only the final passwords exercised by each user (and
recalled at least once). These 223 user accounts mapped to 189 distinct users (34 users were in two
classes; all but one of them were assigned a different image for each account). Overall, 114 user
accounts used pool and 109 used cars as a background image.

4.1 DIAG Results

We first examine the DIAG pattern using the « alphabet, with all laziness modes (see Table 1).
The results for the dictionaries marked ‘4’ and ‘+4’ are the same because the T-regions are non-
overlapping, and the difference between 7 = 19 and 28 is 9, which is not greater than 7 and thus
does not include any more T-regions (the same is true for Table 2) .

Table 1: Results for DIAG click-order heuristic.

Dictionary Entries % guessed
pool cars

aDIAG 23302 1 21.1% | 27.5%

aDIAGT, aDIAGTT | 23526 | 48.2% | 54.1%

Table 1 reports that the a DIAG™ dictionary guesses 48% of passwords for pool and 54% of
passwords for cars with dictionaries of approximately 23 entries; these results do not involve use
of any visual attention modeling. Previous purely automated attacks [31] on the same password
database, with a dictionary of 23° entries, guessed 9.1% (cars) and 0.9% (pool).

We also combine V' A with the DIAG click-order patterns at all laziness modes. The cumulative
distribution function (CDF) of results (until each dictionary is exhausted) are provided in Figure
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8. This creates what might be viewed as a more efficient dictionary: for DIAG™" finding 15.8-
18.3% of passwords using dictionaries of less than 232 entries, i.e., finding nearly % as many as the
aDIAG™T dictionary, with almost 10 times fewer entries.
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Figure 8: CDFs for DIAG with V A.

4.2 LINE Results

Table 2 provide results for the LINE pattern using the o alphabet. aLINE™ finds 23.7% of
passwords for pool, and 52.3% for cars using a dictionary of 22 entries. Using aLINE™ (vs.
aDIAG™), the percentage found drops only minorly from 54% to 52% for cars and from 48% to
24% for pool (still about half as many), despite a dictionary about 75 times smaller. Thus for
both images, « LINE™ is more efficient (in terms of efficacy relative to dictionary size) than any
variation of DIAG. This might, in retrospect, be less surprising for cars, given the line structures
in the orientation of the cars, than for pool.

Table 2: Results for LINE click-order heuristic.

Dictionary Entries % guessed
pool cars

aLINE 22088 3.5% | 22.0%

oLINEY, aLINETT 22902 1 93 7% | 52.3%

We also combine V' A with the LINE patterns. The cumulative distribution function (until each
dictionary is exhausted) is provided in Figure 9. As with the DIAG pattern, the VA alphabet
creates a more efficient dictionary relative to its size. The LINE™T variation guesses 7.0-16.5%
of passwords using a dictionary of less than 2262 entries, finding i to % as many passwords as
aLINE™T with a dictionary 7 times smaller.

For all click-order patterns, dictionaries composed from the V A alphabet work better on cars
than pool. This is at least partially because corner and center detection does not work as well on

pool as on cars.
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Figure 9: VA-LINE CDFs.

4.3 Localized Omni-Direction Results (LOD)

We tested the LOD pattern using alphabets V A and «, with distance constraints Ty = 20, 40, 60,
80, and 100 pixels.

First we generated dictionaries using o and tested on the above-mentioned dataset. Table 3
and Figure 10 show that the LOD pattern is comparable to a DIAG™ for pool. aLOD'Y has 233
entries and finds 47.4% of passwords on pool, whereas « DIAG™ (Section 4.1) found a comparable
number of passwords on pool with essentially the same sized dictionary. For this dataset, « LINE™
(Section 4.2) remains the best attack strategy for cars.

aLOD Attacks

50 .
Pool ——

Cars
40 +

20

% of Passwords Guessed

0 20 40 60 80 100
Distance Constraint T,

Figure 10: aLOD attacks: passwords guessed as a function of distance constraint Ty.

Next we generated LOD!' dictionaries using VA and tested them on the same dataset. The
results (see Figure 11) showed that V A-LOD' found % as many as «LOD' | with a dictionary 8
times smaller. The VA-LOD'® dictionary contains 232 entries and found 14.0-15.6% of passwords.
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Table 3: Dictionary Sizes for aLOD Attacks.

| Dictionary | «LOD? | aLOD™ | aLOD% | aLOD® | aLOD'™ |

‘ Entries ‘ 919.61 ‘ 226.28 ‘ 230.19 ‘ 932.94 ‘ 935.02 ‘
CDFs for VA-LOD, oo Attacks
40 :
Pool ——
E 35 | Cars
g 30¢
3
5 25T
el
& 20
=
2 15t .
© 7
& 10t
o
S 5r¢
0 - = L L
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Number of Guesses Made (log,)
Figure 11: CDFs of VA-LOD% for both pool and cars.

4.4 Effect of Distance Constraint

Here we explore the impact of adding distance constraints to the DIAG and LINE pattern attacks.
The LOD pattern, defined only by distance constraint, was described separately in Section 4.3.

First we examine DIAG and LINE using the « alphabet and distance constraints Ty = 25, 50,

75, 100, 125, and 150. The efficacy as a function of Ty, and for all laziness modes, is provided in
Figure 12. The dictionary sizes for each distance constraint and pattern is provided in Table 4.
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Figure 12: Attack efficacy as a function of distance constraint z = T; (for various dictionaries).

In Figure 12, of course, the less restrictive the distance constraint is, the more passwords

the resulting dictionary finds; however, at each distance constraint studied, the dictionary size is
reduced substantially while maintaining a (proportionally) large percent of the guessing accuracy.
For instance, consider T; = 150 with the aDIAG™ dictionary, i.e., «DIAG{;{: for cars, 50%
of passwords are guessed (compared to 54% when no distance constraint is used) and for pool,
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Table 4: Results for click-order heuristics when combined with distance constraints.
Distance constraint Ty

Dictionary | 25| 50| 75| 100| 125] 150

OéLINEx 210.44 214.25 216.42 218.78 219.74 219.97
aLINE"H' 216.58 223.55 225.12 226.90 227.50 227.94
T

aDIAGx 214.44 221.34 225.00 228.20 229.86 231.00

OZDIAG:UI—-F 215.58 224.65 227.83 230.66 232.06 233.07

41% (compared to 48% when no distance constraint is used, i.e., T; = oo0). Thus a more than 4
times smaller a DIAGT;{ dictionary still guesses 92-85% of the passwords that aDIAG** does.
This trend holds for each distance constraint we used, for each dictionary (LINE and DIAG with
different laziness modes). This suggests that distance constraint (from smallest to largest) is an
effective method for prioritizing an attack dictionary. This attack is surprisingly effective even
with small distance constraints (e.g., Ty = 50); in particular aDIAG3;" guesses 3% and 10% of
passwords on cars and pool respectively, with a dictionary of fewer than 22° entries.

We next consider distance constraints with the VA-DIAG™™ dictionary. The CDFs in Figure 13
show that these same distance constraints are also effective for dictionaries generated with the VA
alphabet: VA-DIAG{5f guesses nearly as many passwords as VA-DIAGX (i.e., with no distance
constraint), despite dictionaries 4 to 8 times smaller for both images. Also, V A-based dictionaries
are more effective than those generated with a: VA-DIAG{;L is 8 times smaller than a DIAGT5E
and yet still guesses more than % as many passwords.
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Figure 13: VA-DIAG*™* CDFs.

4.5 Further Optimizations: Window Clustering Size

Our previous experiments herein used a default window size of 19x19 pixels in the window clustering
algorithm. We hypothesized that smaller window sizes would introduce less error in VA (since
clustering introduces some inherent information loss), increasing its effectiveness. Of course, smaller
window sizes imply a larger alphabet. We re-ran the experiments for VA-DIAG*T and V A-
LINE™T using a window size of 15 x 15 to see how it impacts both guessing effectiveness and
dictionary size (number of guesses). The results are plotted in comparison to the default window
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size in Figure 14. For pool, the smaller window size increases the overall number of passwords found:
for VA-DIAG™TT, 32% vs. 16% with the larger window size. The dictionary size increases by a
factor of 4. This suggests that the dictionary is less efficient relative to its size, but reducing the
window size provides a viable attack continuation strategy. The results shown in Figure 14 suggest
that VA (and thus Itti’s model of visual attention) was more accurate for pool than cars, and in
general we expect variation across images.
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Figure 14: CDFs for VA—DIAGYT and VA—LINE™" using different window clustering sizes.

We expect that this is related to image processing measures working better for cars. Prior
to applying the window clustering algorithm, our V A attacks use corner and centroid detection
which both introduce some image-dependent error (E.), which is greater for images not containing
rectangular shapes (e.g., pool). The window clustering algorithm, through reducing the number of
points, loses information and thus creates some error (E,,) dependent on the window clustering size.
The overall error of our image processing methods (E;) depends on both E,, and E.. Since cars
has more rectangular shapes (cars, license plates, etc.), we expect E.(cars) < E.(pool). Because
E,(cars) = Ey,(pool), Ei(cars) < Ei(pool). E; should be less than the T-region size (here, ¢t = 19)
to successfully guess a click-point. Reducing the clustering size decreases FE,,, thus decreasing Fj.
For images where E,. was large, reducing F,, may compensate enough to bring the overall error F;
below the overall error tolerance of the system (in our case ¢ = 19), which increases the success
rate.

5 Related Work

Many graphical passwords schemes have been proposed to date, and several surveys are available
[29, 21, 26]. Here we concentrate on click-based graphical password schemes, wherein a user clicks
on a set of points on one or more presented background images, and work related to guessing attacks
on graphical passwords.

In V-go [25], users click on a sequence of predefined objects in the picture. In Blonder’s proposal
[1], users click on a set of predefined tap regions. Jansen et al. [17] propose a variation, which
requires users to click an ordered sequence of visible squares imposed on a background image; the
squares are intended to help users repeat click-points in subsequent logins.

PassPoints [35, 37, 36] allows users to click a sequence of five points anywhere on an image
while allowing a degree of error tolerance; studies suggest promising usability [36, 35, 37, 5. A
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related commercial system designed for the Pocket PC, called VisKey, allows the user to choose
the number of click-points and to set the error tolerance.

The security of click-based graphical passwords has been examined [10, 31, 28, 32]; for security
analyses of other types of graphical schemes see also Davis et al. [9] and van Oorschot et al. [33].
One way that an attacker could predict hot-spots is by using image processing tools to locate areas
of interest. Dirik et al. [10] use an image processing tool for guessing PassPoints passwords to guess
single-session user passwords for two images, one being a particularly simple image. For the other
image, their method guessed 8% of passwords using an attack dictionary with 232 entries where the
full space was 20 entries. In other work, Thorpe et al. [31] examine an automated method (based
on a variation of Itti et al.’s [16] model of visual attention), guessing 9.1% and 0.9% of passwords
on two images, using an attack dictionary with 23° entries compared to a full pasword space of
243 passwords. The method of Thorpe et al. [31] focused only on a variation of stage 1 (recall
Section 2.1), ordering an attack dictionary based on the raw values of the resulting saliency map,
whereas the present paper uses the entire model including stage 2. In a preliminary version of the
present work, Salehi-Abari et al. [28] guess 8-15% of passwords for two representative images using
dictionaries of less than 2240 entries, and about 16% of passwords on each of these images using
dictionaries of less than 2314 entries, where the full space is 243.

Basic click-order patterns were first introduced and evaluated in combination with human-
seeded attacks [31, 30]; the only pattern in common with the present work is regular DIAG (i.e.,
without any “laziness” relaxation). Chiasson et al. [3] analyze a set of patterns for three click-based
graphical password schemes: PassPoints [35, 37, 36], and two variants named Cued Click-Points
(CCP) [6] and Persuasive Cued Click-Points (PCCP) [2]. In CCP and PCCP, a user clicks on a
single point on each of five images, where each image (except the first image) is dependent on the
previous click-point. They show that the design of the interface impacts whether users select click-
points in some predictable patterns, and implied that such patterns in user choice might reduce
the effective password space. The present paper mathematically models click-order patterns and
uses them to mount purely automated attacks, demonstrating and experimentally quantifying the
degree to which certain patterns can be used to efficiently search the password space.

Thorpe et al. [31, 32] introduce human-seeded attacks and demonstrate their efficacy against
Passpoints-style graphical passwords. Human-computed data sets (harvesting click-points from a
small set of users) were used in two human-seeded attacks against passwords from a field study on
two different images: one based on a first-order Markov model [32], another based on an independent
probability model [31]. Using their human-computed data sets (harvested from a single-session lab
study), a dictionary based on independent probabilities contained 23!-1 — 2334
20-36% of field study passwords, and a dictionary based on the first-order Markov model found
4-10% of field study passwords within 100 guesses. These attacks require the attacker to collect
sufficient click-points for each image, and are image dependent, thus requiring per-image costs for
systems with multiple images.

entries and found

6 Discussion and Concluding Remarks

We provide what is to our knowledge the best automated attack against PassPoints-style graphical
passwords to date. Combining click-order patterns with our laziest relaxation rule yielded highly
effective dictionaries. We were able to further reduce the dictionary size while retaining some ac-
curacy using Itti et al.’s [16] computational model of bottom-up visual attention. We also explored
distance constraints to determine how effective they were at guessing passwords both alone (cap-
tured by LOD), and combined with other click order patterns (DIAG and LINE). We found that
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although distance constraints alone do not provide a more effective dictionary than other click-order
patterns, they appear to provide a reasonable heuristic for prioritizing a dictionary (from shorter
to longer distance constraints).

Our results are a significant improvement on previous work for purely automated guessing
PassPoints-style graphical passwords. The dictionary that guessed the greatest percentage of pass-
words is DI AG with the laziest relaxation rule (a DIAG*T), finding over 48% of user passwords in
our dataset for each of two images. Previous approaches found only 1-9% [31] for the same images
and user study password database, and 8% [10] for a single (comparable) image. Another notable
result is that the LINE dictionary, with the laziest relaxation rule («LINETT) is less than 2% of
the size of a DIAG™" and still guesses 24-52% of passwords.

Although the lazy click-order dictionary sizes are not as small as previous dictionaries used
for human-seeded attacks [32], when we combine them with a model of visual attention (recall
Section 2.1), our results are comparable to the human-seeded (independent probability) results for
cars. Further reduction in the dictionary size can be achieved by using a distance constraint; for
example, constraining the distance to 125 pixels in DIAG dictionaries (with the visual attention
model) reduces the number of dictionary entries by 75-87%, but the efficacy only drops by 1-2%.

In all of our dictionaries using click-order patterns, a larger percentage of passwords were guessed
using the a alphabet (not based on a visual attention model). However, using the V' A alphabet
(based on a visual attention model) provided a more efficient dictionary in that the reduction of the
number of entries in the dictionary was more than the reduction in guessing accuracy; for example
VA—DIAG™ guessed 33% as many passwords as aDIAG™™ using a dictionary with 10% of the
entries. The relative “efficiency” of the V A dictionaries, however, cannot be extended in their
present form to guess a larger percentage of passwords, because the full dictionaries are exhausted.

These results suggest that automated attacks provide an effective alternative to a human-seeded
attack against PassPoints-style graphical passwords. Furthermore, they allow continuation of an
attack using click-order patterns (without any prioritization through visual attention models or
other means), guessing more passwords overall than human-seeded methods. Finally, purely au-
tomated attacks are arguably much easier for an attacker to launch (removing the requirement of
humans to index the images), especially if large image datasets are used. We emphasize that a
number of our attack dictionaries (those composed from the « alphabet), do not rely on visual
attention techniques or any image-specific pre-computation, implying that the actual dictionaries
are the same for all images, though the attack results (i.e., their effectiveness) are image-dependent
and of course depend also on the actual passwords chosen by any users in question. We do not
expect that these attacks can be effectively applied to multi-image click-based schemes (e.g., PCCP
2).

Our findings might be used to help background image selection, although precise details of
an exact method remain unclear. As one possibility, corners and centroids of images might be
extracted, and used to build a click-order heuristic graph (as in our dictionary generation algorithm);
the images that generate a larger resulting dictionary might indicate a more attack-resistant image.
Another possibility might be to measure the amount of structure an image has, assuming that such
image structure would encourage click-order patterns.

Our overall results indicate that Itti’s model of visual attention with the parameters and im-
plementation we used, when all permutations of points in the scan-path are considered, models
a meaningful percentage (from an attacker viewpoint) of user passwords. If we assume that Itti’s
model using the default settings is an accurate representation of bottom-up visual attention, our re-
sults are consistent with bottom-up visual attention being one part of a broader criteria for selecting
click-points. Alternately, these click-points might be chosen according to some other phenomenon
that happens to have a non-trivial intersection with this model of bottom-up visual attention.
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These results raise interesting questions regarding how visual attention relates to user choice in
graphical passwords. For example, might some users choose the first point according to bottom-up
visual attention, and then the rest in a top-down manner such that they are somehow similar to the
first? Alternately, might the entire process be top-down, based on whether the user can find five
objects that are similar in some way? Such a top-down theory would be substantially more difficult
to model an attack on, but if possible to implement, its results might offer interesting insight.

Finally, our attacks could be used to help inform more secure design choices in implementing
PassPoints-style graphical passwords. Proactive checking rules for PassPoints-style graphical pass-
words might be created based on the click-order pattern attacks herein; for example, disallowing
LINE or DIAG patterns (for all laziness modes), and disallowing passwords where too few click-
points are further than 150 pixels away from the previous click-point. Of course, any such proactive
checking rules would need to be tested to ensure that the usability impact is acceptable and that
security is not impacted in other unexpected ways.
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