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Abstract—This paper introduces and presents the results of a systemic study of the Persuasive Cued Click-Points graphical
password scheme, including usability and security evaluations, and implementation considerations. An important usability goal for
knowledge-based authentication systems is to support users in selecting better passwords, thus increasing security by expanding
the effective password space. We use persuasion to influence user choice in click-based graphical passwords, encouraging users
to select more random, and hence more difficult to guess, click-points.
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1 INTRODUCTION

HE problems of knowledge-based authentication,
Ttypically text-based passwords, are well known.
Users often create memorable passwords that are easy
for attackers to guess, but strong system-assigned
passwords are difficult for users to remember [5].

A password authentication system should encour-
age strong passwords while maintaining memorabil-
ity. We propose that users be persuaded to select secure
passwords, allowing user choice while influencing
them towards stronger passwords. The task of se-
lecting weak passwords (which are easy for attackers
to predict) is more tedious, discouraging users from
making such choices. In effect, this approach makes
choosing a more secure password the path-of-least-
resistance. Rather than increasing the burden on users,
it is easier to follow the system’s suggestions for a
secure password — a feature lacking in most schemes.

We applied this approach to create the first persua-
sive click-based graphical password system, Persua-
sive Cued Click-Points (PCCP), and conducted user
studies evaluating usability and security. We present
a comprehensive summary of PCCP’s usability re-
sults, an in-depth study of user-chosen passwords,
an evaluation of its resistance to security threats, and
implementation considerations. Through eight user
studies, we compared PCCP to text passwords and
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two related graphical password system. Results show
that PCCP is effective at reducing hotspots (areas of
the image where users are more likely to select click-
points) and avoiding patterns formed by click-points
within a password, while still maintaining usability.
Beyond consistent assimilation of earlier work [1]-
[4] and inclusion of unpublished web studies, this
paper reinterprets and updates statistical analysis in-
corporating larger datasets, provides new evaluation
of password distributions, extends security analysis
including relevant recent attacks, and presents impor-
tant implementation details. This systematic examina-
tion provides a comprehensive and integrated eval-
uation of PCCP covering both usability and security
issues, to advance understanding as is prudent before
practical deployment of new security mechanisms.

The paper is structured as follows. Section 2 cov-
ers related authentication schemes and Persuasive
Technology. Section 3 introduces PCCP. Methodology
and relevant details of the user studies are available
in Section 4. Results of the usability evaluation are
in Section 5. Section 6 examines the characteristics
and skewed nature of the password distributions.
Section 7 provides a security analysis against likely
threats. Relevant implementation issues are addressed
in Section 8. Section 9 offers concluding remarks.

2 BACKGROUND

Text passwords are the most popular user authenti-
cation method, but have security and usability prob-
lems. Alternatives such as biometric systems and
tokens have their own drawbacks [6]-[8].
Click-based graphical passwords: Graphical pass-
word systems are a type of knowledge-based authen-
tication that attempt to leverage the human ability to
better recognize and remember images than textual



Fig. 1. A user navigates through images to form a CCP
password. Each click determines the next image.

or verbal information [9]. A comprehensive review
of graphical passwords is available elsewhere [10].
Of interest herein are cued-recall click-based graphical
passwords (also known as locimetric [11]). In such
systems, users identify and target previously selected
locations within one or more images. The images act
as memory cues [12] to aid recall. Example systems
include PassPoints [13] and Cued Click-Points [14].
In PassPoints, passwords consist of a sequence of
five click-points on a given image. Users may se-
lect any pixels in the image as click-points for their
password. To log in, they repeat the sequence of
clicks in the correct order, within a system-defined
tolerance region of the original click-points. Although
PassPoints is relatively usable [1], [13], [15], security
weaknesses make passwords easier for attackers to
predict. Hotspots [16]-[19] are areas of the image that
have higher likelihood of being selected by users as
password click-points. Attackers who gain knowledge
of these hotspots through harvesting sample pass-
words can build attack dictionaries and more suc-
cessfully guess PassPoints passwords [17], [18]. Users
also tend to select their click-points in predictable
patterns [19], [20] (e.g., straight lines), which can also
be exploited by attackers even without knowledge
of the background image; indeed, purely automated
attacks against PassPoints based on image processing
techniques and geometric patterns are a threat [21].
A precurser to PCCP, Cued Click-Points (CCP) [14]
was designed to reduce patterns and to reduce the
usefulness of hotspots for attackers. Rather than five
click-points on one image, CCP uses one click-point
on five different images shown in sequence. The
next image displayed is based on the location of the
previously entered click-point (Figure 1), creating a
path through an image set. Users select their images
only to the extent that their click-point determines the
next image. Creating a new password with different
click-points results in a different image sequence.
The claimed advantages are that password entry
becomes a true cued-recall scenario, wherein each

image triggers the memory of a corresponding click-
point. Remembering the order of the click-points is no
longer a requirement on users, as the system presents
the images one at a time. CCP also provides implicit
feedback claimed to be useful only to legitimate users.
When logging on, seeing an image they do not recog-
nise alerts users that their previous click-point was
incorrect. Explicit indication of authentication failure
is only provided after the final click-point, to protect
against incremental guessing attacks.

User testing and analysis showed no evidence of
patterns in CCP, so pattern-based attacks seem inf-
fective. Hotspots remained [2], [20], but because CCP
uses a large set of images, as opposed to a single
image per user in PassPoints, attackers must perform
proportionally more work to exploit hotspots.

Persuasive Technology: Persuasive Technology was
first articulated by Fogg [22] as using technology to
motivate and influence people to behave in a de-
sired manner. An authentication system which applies
Persuasive Technology should guide and encourage
users to select stronger passwords, but not impose
system-generated passwords. To be effective, the users
must not ignore the persuasive elements and the
resulting passwords must be memorable. As detailed
below, PCCP accomplishes this by making the task
of selecting a weak password more tedious and time-
consuming. The path-of-least resistance for users is to
select a stronger password (not comprised entirely of
known hotspots or following a predictable pattern).
The formation of hotspots across users is minimized
since click-points are more randomly distributed.

3 PERSUASIVE CUED CLICK-POINTS

(PCCP)

Previous work (see above) showed that hotspots and
patterns reduce the security of click-based graphical
passwords, as attackers can use skewed password dis-
tributions to predict and prioritize higher probability
passwords for more successful guessing attacks.

Visual attention research [23] shows that different
people are attracted to the same predictable areas on
an image. This suggests that if users select their own
click-based graphical passwords without guidance,
hotspots will remain an issue. Davis et al. [24] suggest
that user choice in all types of graphical passwords is
unadvisable due to predictability.

We investigated whether password choice could be
influenced by persuading users to select more random
click-points while maintaining usability. The goal was
to encourage more secure behaviour by making less
secure choices (i.e., choosing poor or weak passwords)
more time-consuming and awkward. In effect, behav-
ing securely became the safe path-of-least-resistance.

By adding a persuasive feature to CCP, PCCP en-
courages users to select less predictable passwords,
and to make it more difficult to select passwords
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Fig. 2. PCCP Create Password interface. The viewport
highlights part of the image. (Pool image from [25])

where all five click-points are hotspots. Specifically,
when users create a password, the images are slightly
shaded except for a viewport (see Figure 2). The view-
port is positioned randomly, rather than specifically to
avoid known hotspots, since such information might
allow attackers to improve guesses and could lead to
the formation of new hotspots. The viewport’s size
is intended to offer a variety of distinct points but
still cover only an acceptably small fraction of all
possible points. Users must select a click-point within
this highlighted viewport and cannot click outside of
the viewport, unless they choose to press the shuffle
button to randomly reposition the viewport. While
users may shuffle as often as desired, this significantly
slows the password creation process. The viewport
and shuffle button appear only during password cre-
ation. During later password entry, the images are
displayed normally, without shading or the viewport,
and users may click anywhere on the images.

The theoretical password space for a password system
is the total number of unique passwords that could
be generated according to the system specifications.
Ideally, a larger theoretical password space lowers the
likelihood that any particular guess is correct for a
given password. For PCCP, the theoretical password
space is ((w x h)/t?)¢, where the size of the image in
pixels (w x h) is divided by the size of a tolerance
square (t?, in our experiments, 19?), to get the total
number of tolerance squares per image, raised to the
power of the number of click-points (c).

While it is beyond our present scope to establish an
acceptable theoretical password space for authentica-
tion schemes, Florencio and Herley [26] suggest that
theoretical password spaces of 22° suffice to withstand
online attacks. Whereas text passwords have very

TABLE 1
Summary of eight studies. Numbers in parentheses
are for the recall sessions.

Study Number Pswds

Name Duration | of Users | Per User Trials
PCCP Lab 1x 37 <10 307
CCP Lab 1x 57 <12 505
PP Lab 1x 41 <17 581
PCCP 2wk 2 X 2wk 82 (81) 6 | 462 (456)
PP 2wk 2 x 2wk 32 (11) 6 192 (44)
Text 2wk 2 X 2wk 34 (15) 6 204 (60)
PCCP Web 4 x 1wk 24 (24) 3 | 184 (181)
Text Web 4 x 1wk 21 (21) 3 | 138 (204)

skewed distributions [27], resulting in an effective pass-
word space much smaller than the theoretical space,
PCCP is specifically designed to significantly reduce
such skews. Further design and implementation de-
tails of PCCP are discussed in Section 8.

4 DESCRIPTION OF USER STUDIES

We discuss eight different user studies (see Table 1),
including three studies of PCCP, two of PassPoints,
one of CCP, and two of text passwords. We used
the PassPoints, CCP, and text password studies as
benchmarks where appropriate. The studies followed
one of three methodologies intended to assess dif-
ferent aspects of the systems. Controlled lab stud-
ies collected baseline data, two-week recall studies
stressed memorability, and web-based studies where
participants logged in from home increased ecological
validity. For example, in the PCCP Web study, 24 users
had passwords for three accounts. They were asked to
log in at 4 different times over the span of one week,
resulting in 72 logins in total.

Most participants were university students from
various fields. All were regular computer users com-
fortable with text passwords and a mouse. None took
part in more than one study and none had previously
used graphical passwords. Besides password tasks,
participants completed a demographics questionnaire
and a post-task questionnaire.

The lab and two week recall studies (Sections 4.1
and 4.2) used standalone J# applications for Windows.
The 19-inch screen had a resolution of 1024 x 768
pixels. Unless otherwise specified, the images were
451 x 331 pixels, with tolerance region 19 x 19 pixels,
and passwords of 5 click-points, yielding a theoretical
space of 213 passwords. No images were repeated
between or within passwords for a given user.

The web studies (Section 4.3) were conducted with
the MVP [28] web-based authentication framework.
PCCP was again configured to use 451 x 331 pixel
images, 19 x 19 tolerance squares, and 5 click-points.
Since participants could log in from anywhere, screen
size and resolution were not controlled.



4.1 Lab Studies

Lab studies consisting of one-hour sessions with indi-
vidual participants were intended to evaluate usabil-
ity and collect data on many images for initial security
analysis. Participants were introduced to the system
and instructed to pretend these passwords were pro-
tecting their bank information, and thus should select
memorable passwords that were difficult for others to
guess. Participants completed two practice trials (not
included in the analysis) to ensure that they under-
stood how the system worked. A trial consisted of
creating, confirming, and logging on with a password,
separated by a distraction task before login.

17 core images were used in all studies. Since PCCP
and CCP required more images, 330 images (including
the core 17) were compiled from personal collections
and websites providing free-for-use images.

PCCP Lab: This study included 37 participants who
each completed up to 10 real (non-practice) trials,
as time permitted. In total, data from 307 trials was
collected. In addition to the general instructions, par-
ticipants were told that the viewport was a tool to
help them select more secure passwords, but that they
could shuffle as many times as they wished to find a
suitable click-point. The viewport was 75 x 75 pixels.

CCP Lab: This study had 57 participants, who com-
pleted at most 12 trials for a total of 505 CCP trials.

PP Lab: Here, 41 PassPoints Lab participants com-
pleted up to 17 trials, as time permitted. In total, 581
trials were included in this analysis.

4.2 Two Week Recall Studies

The main intention of the two week recall studies was
to test long-term password memorability, look at the
effects of multiple password interference, and collect
information about the types of passwords created
when users knew that they would need to recall
them later. Each study was designed to strain memory
by setting a difficult recall task so that differences
between the schemes would be amplified.

Participants took part in two individual sessions,
scheduled approximately two weeks apart. The ses-
sions were 1 hour and 30 minutes long, respectively.
In their first session, participants initially practiced
creating and re-entering passwords for two fictitious
accounts. The practice data was discarded and par-
ticipants did not need to recall these passwords later.
Next, participants created and re-entered passwords
for six fictitious accounts (library, email, bank, online
dating, instant messenger, and work). The accounts
were identified by coloured banners at the top of the
application window that included a unique icon and
the account name. In the first session, the accounts
were presented to all participants in the same order.
In their second session, participants tried to re-enter
these same six passwords in shuffled order.

TABLE 2
Parameters for six experimental conditions and
number of users (N) in the PCCP 2-week recall study.

Click- | Condition | Password
w h | points Name Space N
(in bits)
Small | 451 | 331 5 S5 43 14
6 S6 53 14
7 S7 61 14
Large | 800 | 600 5 L5 52 14
6 L6 63 12
7 L7 73 14

PCCP used 465 images, including the 17 core im-
ages. Since participants only had 6 accounts and
PassPoints has only one image per password, 6 of the
17 core images were used for the PassPoints study.

PCCP 2wk: This study had 83 participants. Besides
testing PCCP under its canonical configuration, we
examined the effects increasing the theoretical pass-
word space by increasing image size and number of
click-points per password. A between-subjects design
was used, and participants were randomly assigned
to one of six conditions (Table 2): S5 (small image,
5 click-points); S6 (small image, 6 click-points); S7
(small image, 7 click-points); L5 (large image, 5 click-
points); L6 (large image, 6 click-points); and L7 (large
image, 7 click-points). The small images were 451 x331
pixels and the large, 800 x 600 pixels (standardizing to
a 4:3 aspect ratio). Figure 3 shows the interface for the
two image sizes. The small and large image conditions
shared images resized to different dimensions. The
viewport was 75 x 75 pixels.

The data was used in two separate analysis. First,
we compared the S5 condition to the other schemes
as its configuration directly matched that of the other
studies. Secondly, we compared the 6 experimental
conditions to each other to investigate the effects of
increasing the theoretical password space.

PP 2wk: This study had 32 participants who created
192 passwords in total; not everyone completed the
second session. Session 1 was completed by 32 par-
ticipants, 11 of whom completed the two-week recall
session. Session 2 was added to the methodology after
examining the initial results for multiple password
interference. Participants recruited after this method-
ology change completed Session 2.

Text 2wk: 34 participants took part in this study and
created 204 text passwords. 15 participants completed
the two week recall session. As in the above study,
Session 2 was added after initial analysis of password
interference and was only available to participants
recruited after this methodological change.

The text password system enforced an 8-character
minimum, with no other restrictions, giving a the-
oretical space of 2°2. While this exceeds that for
the compared graphical password schemes, we knew
that the effective password space for text systems is
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Fig. 3. User interface for password creation for the
small and large image sizes in PCCP.

often significantly reduced by predictable password
choices [27]. We thus expected weak text password
choices and potential reuse of passwords across ac-
counts, resulting in a significantly reduced memory
load, and chose this larger theoretical password space
to avoid an unfair memorability comparison.

4.3 Web Studies

The web-based studies tested the schemes in a more
ecologically valid setting. We evaluated usability
of the schemes in every day usage and examined
whether this affected user choice of passwords.

We conducted a one week study evaluating PCCP
and text passwords as the authentication mechanisms
on three websites. Participants initially had a one
hour session where they received training on using
the websites and the password system, and created
accounts on the three websites. The accounts were
for a photo blog about a local university campus,
a blog with a different look-and-feel offering advice
to first year university students, and a phpBB forum
to discuss the best locations on campus for various
activities (e.g., the best place to buy coffee). The web-
sites were populated with real content to engage users
realistically. In each case, participants’ main tasks
included logging on to comment on a specific blog

post or forum thread. In the week following the initial
session, participants received email asking them to
complete further tasks. Two tasks were assigned on
each of Day 1, Day 3, and Day 6. These tasks were
similar to those completed in the initial session and
could be completed from any web-enabled computer.

PCCP Web: 24 participants collectively completed 72
at-home recall trials. The system parameters were set
to 451 x 331 pixel images, 5 click-points per password,
a tolerance region of 19 x 19 pixels, and a persuasive
viewport of 100 x 100 pixels. Passwords were encoded
using Centered Discretization [29].

Text Web: This study included 21 participants who
completed 204 at-home recall trials. The system re-
quired text passwords of minimum length 6, includ-
ing at least one digit and one letter, which gives a
minimum theoretical space 23 passwords (more if
longer passwords were chosen), counting both upper-
case and lowercase letters.

5 USABILITY EVALUATION

We evaluated the usability of PCCP through several
performance measures. To place the results in con-
text, we compared PCCP to the other authentication
schemes tested under similar conditions.

Statistical analysis was used to determine whether
differences in the data reflected actual differences be-
tween conditions or might reasonably have occurred
by chance. A value of p < .05 is regarded as indi-
cating statistical significance, implying less than a 5%
probability that results occurred by chance.

We consider the following performance measures
for memorability and usability [10]: login and recall
success rates, times for password creation, login, and
recall, and the effect of shuffling on success rates. Lo-
gins occurred during the initial lab session and tested
shorter-term memorability, while recalls occurred ei-
ther at-home or during a second lab session and tested
long-term memorability. Where appropriate, the same
measures are included for the PassPoints, CCP, and
Text studies. The studies were conducted over a few
years and the analysis evolved as we gained more ex-
perience. In this paper, results have been re-calculated
using the same process, to allow for more accurate
comparison. As such, the numbers may vary from
earlier publications [1]-[4], [14], [20].

5.1 Success rates

Success rates are reported on the first attempt and
within three attempts. Success on the first attempt
occurs when the password is entered correctly on the
first try, with no mistakes or restarts. Success rates
within three attempts indicate that fewer than three
mistakes or restarts occurred. Mistakes occur when
the participant presses the Login button but the pass-
word is incorrect. Restarts occur when the participant
presses the Reset button midway through password



TABLE 3
Login and recall success rates across the eight studies, as percentages. Recall represents either at-home tasks
or a second lab session. Values that are not applicable are identified with dashes.

PCCP Lab | CCP Lab | PP Lab PCCP 2wk | PP 2wk | Text 2wk || PCCP Web | Text Web
All S5
Login: Tst 85 93 95 91 90 94 94 93 97
Login: 3rd 94 98 96 99 100 96 99 99 100
Recall: 1st - - - 19 23 29 32 54 43
Recall: 3rd - - - 31 34 34 32 67 56
TABLE 4

Create, login, and recall times in seconds. Recall represents either at-home tasks or a second lab session.
Missing values are identified as na and values that are not applicable with dashes.

PCCP Lab | CCP Lab | PP Lab PCCP 2wk | PP 2wk | Text 2wk || PCCP Web | Text Web
All S5
Create 26 26 42 91 67 25 26 68 11
Login 15 na na 18 15 12 10 13 6
Recall - - - 27 25 12 10 20 6
Login Click 8 8 8 11 8 6 - 10
Recall Click - - - 24 17 6 - 15

entry and restarts password entry. Restarts are analo-
gous to pressing delete while entering text passwords,
except that PCCP’s implicit feedback helps users de-
tect and correct mistakes during entry.

Table 3 summarizes login and recall success rates,
aggregated on a per user basis to ensure indepen-
dence of the data. In all studies, success rates are
highest for login. We conducted statistical analysis
using Kruskal-Wallis tests to compare success rates for
studies conducted with the same methodology; these
tests are non-parametric tests similar to ANOVAs, but
intended for use with skewed sample distributions.

We first compared success rates for the three lab
studies (PCCP Lab, CCP Lab, PP Lab). Kruskal-Wallis
tests compared success rates for login on the first and
third attempts respectively across the three studies.
No statistically significant differences were found in
either comparison. This suggests that logging in with
PCCP is no harder than with PP or CCP.

Participants had the most difficulty recalling pass-
words after two weeks for all authentication schemes.
A closer look at the different conditions within the
PCCP 2wk study is provided in Section 5.3. Here,
only the S5 condition from the PCCP 2wk study is
compared to the PP 2wk and Text 2wk studies since
they have similar theoretical password spaces. Four
comparisons were made across the three conditions:
login first and third attempts, and recall first and third
attempts. Kruskal-Wallis tests show no statistically
significant differences in any of the comparisons. This
result suggests that, when set to comparable levels of
security, PCCP passwords are no harder to recall after
two weeks than PP or text passwords.

When comparing the login and recall success rates
for the web studies (PCCP Web and Text Web), no
statistical differences were found. This is especially
noteworthy because inspection of the text passwords

revealed that most participants re-used passwords
across accounts, whereas PCCP passwords were dif-
ferent by design. This suggests that PCCP passwords
offer additional security since reuse across systems is
not possible, yet this did not affect success rates.

5.2 Password entry times

Times are reported in seconds for successful password
entry on the first attempt. For login and recall, we also
report the “entry time”: the actual time taken from the
first click-point to the fifth click-point. The analogous
measure was not recorded for text passwords.

Table 4 presents password entry times for each
study. PCCP times are similar to other schemes in
the initial lab studies. However, the general trend
across the two-week recall (PCCP 2wk’s S5 condition)
and web studies is that PCCP passwords take longer
to enter than the other schemes when comparing
schemes with similar password spaces (i.e., PCCP
2wk S5 and PCCP Web). During password creation,
this can partially be explained by participants who
used the shuffle mechanism repeatedly. During recall,
this may be because PCCP participants had to recall
different passwords (since it is impossible to reuse
PCCP passwords by design), whereas over half of Text
participants reused passwords or had closely related
passwords, suggesting a reduced memory load.

5.3 Varying system parameters: PCCP 2wk study

We report [4] on the effects of the independent vari-
ables (number of click-points and image size) on
success rates and password entry times. Since each
user had six separate PCCP passwords, data was ag-
gregated by user to ensure independence in the data.
For times, we took the mean of successful password
entry times for each user.



TABLE 5

Success rates as percentages for PCCP 2wk study.
| [ S5[S6[S7[ L5 [ L6 L7 |

Login: 1st 91 [ 83 | 92 ] 91 ] 94| 92

Login: 3rd || 100 | 99 | 99 | 100 | 98 | 100

Recall: 1st 25 | 28 | 18 18 | 18 5
Recall: 3rd 37 | 40 | 32 33 | 27 14

TABLE 6
Mean times in seconds for PCCP 2wk study.

| [S5] S6[S7 ] 5] 1617 ]
Create 67 | 109 | 81 | 106 | 103 | 95
Login 15 16 | 20 16 18 | 20
Recall 25 30 | 34 19 18 | 50

Login Click 8 11 | 13 9 11 | 13
Recall Click || 17 26 | 24 25 19 | 40

Success rates: Table 5 summarizes the success rates
for the six conditions. Success rates were very high
for login, indicating that participants could success-
fully remember their passwords after a short time
regardless of number of click-points or image size.
Success rates after two weeks were much lower in
all conditions, reflecting the artificial difficulty of the
memory task — recalling 6 passwords created in a
short time and not accessed for two weeks. The L7
condition had the lowest success rates, suggesting
that passwords using large images and 7 click-points
combined was most difficult to remember.

Times: Mean times for each condition are reported
in Table 6 and are generally elevated compared to
times in the studies with smaller theoretical password
spaces. No clear pattern emerges in the times taken
to create passwords. A general increase in times can
be seen in both the login and recall phases as more
click-points or larger images are used. As should be
expected, participants took much longer to re-enter
their passwords after two weeks (recall), reflecting the
difficulty of the task.

5.4 Shuffles

During password creation, PCCP users may press the
shuffle button to randomly reposition the viewport.
Fewer shulffles leads to more randomization of click-
points across users. The shuffle button was used
moderately. Table 7 shows the number of shuffles
per image. For example, since PCCP Lab passwords
involved 5 images, the mean number of shuffles per
password would be 3 x 5 = 15. For the PCCP 2wk

TABLE 7
Number of shuffles per image for password creation.
PCCP Lab | PCCP 2wk | PCCP Web
All S5
Mean 3 7 3 10
Median 1 3 1 6

study, the mean and medians for all of this study’s
6 conditions together (see the All column in Table 7)
are higher than for S5 alone, indicating that for more
difficult conditions, there was more shuffling.

We examined the effect of shuffling on success rates
and summarize the results in Table 8. Wilcoxon tests
were used for statistical analysis; these are similar to
independent sample t-tests, but make no assumptions
about the distributions of the compared samples. The
tests were conducted on login and recall success rates
on the third attempt.

PCCP Lab study users who shuffled a lot had higher
login success rates than those who shulffled little, and
the result was statistically significant (W = 91,p =
0.005). For the PCCP 2wk and PCCP Web studies, the
same trend was apparent for login and recall, but the
differences were not statistically significant.

Most participants used a common shuffling strat-
egy throughout their session. They either consistently
shuffled a lot at each trial or barely shuffled dur-
ing the entire session. We interviewed participants
to learn about their shuffling strategy. Those who
barely shuffled selected their click-point by focusing
on the section of the image displayed in the viewport,
while those who shuffled a lot scanned the entire
image, selected their click-point, and then proceeded
to shuffle until the viewport reached that area. When
questioned, participants who barely shuffled said they
felt that the viewport made it easier to select a secure
click-point. Those who shuffled a lot felt that the
viewport hindered their ability to select the most
obvious click-point on an image and that they had to
shuffle repeatedly in order to reach this desired point.

5.5 Summary of Usability Results

We first summarize the studies with comparable theo-
retical password spaces (i.e., including PCCP 2wk S5).
Overall, PCCP has similar success rates to the other
authentication schemes evaluated (CCP, PassPoints,
and text). PCCP password entry takes a similar time
to the other schemes in the initial lab sessions, but
the results indicate longer recall times for PCCP when
recalling passwords beyond the initial session. Users
who shuffled more had significantly higher success
rates in the PCCP Lab study, but the difference in
success rates between high and low shufflers was not
statistically significant for the two-week or web stud-
ies. Furthermore, users reported favourable opinions
of PCCP in post-task questionnaires [2].

Secondly, we compared conditions in the PCCP 2wk
study. A general trend indicates that larger images
or more click-points negatively impacts the password
entry time. No clear pattern emerges between the 6
conditions for success rates, providing no evidence
that either manipulation affects success rates in a con-
sistent manner. However, the most difficult condition
(L7) did have the lowest recall success rates.



TABLE 8
Effect of shuffles on success rates (within 3 attempts). Success rates are percentages. “Users” represents the
number of users who fell into each shuffling category. n.s. indicates that the statistical test was not significant.
Values that are not applicable are identified with dashes.

PCCP Lab PCCP 2wk PCCP Web
Users Login Users Login Recall Users | Login | Recall
All S5 | All S5 | All S5
Low (< 1 per image) 23 90 13 7 98 100 15 18 5 100 60
High (> 1 per image) 14 100 69 7 | 100 100 34 50 19 98 68
[ Wilcoxon Test [ - [ W=091,p=0.005 - [ ns. ns. [ ns. ns. [ -] ns. ] ns. |

6 ANALYSIS OF PASSWORD DISTRIBUTIONS
6.1 Click-point clustering

To analyze the randomness and clustering of 2D
spatial data across users, we turned to point pattern
analysis [30] commonly used in biology and earth
sciences. The analysis used spatstat [31], a spatial
statistics package for the R programming language.

The J-statistic [32] from spatial analysis was used
to measure clustering of click-points within datasets
(the formation of hotspots). The J-function combines
nearest-neighbour calculations and empty-space mea-
sures for a given radius r to measure the clustering of
points. A result of J closer to 0 indicates that all of
the data points cluster at the exact same coordinates,
J = 1 indicates that the dataset is randomly dispersed,
and J > 1 shows that the points are increasingly
regularly distributed. For passwords, results closer
to J(r) = 1 are desirable since this would be least
predictable by attackers. We examined clustering at
J(9) for the set of core images common across studies
with at least 30 click-points per image for each study.
A radius of 9 pixels approximates the 19x 19 tolerance
squares used by the system during password re-entry.

To compare sets of J-statistics to each other, we em-
ployed the following technique. Regarding the data
as categorical, six categories stemming from the possi-
ble orderings are identified: (PCCP-CCP-PP), (PCCP-
PP-CCP), (PP-CCP-PCCP), (PP-PCCP-CCP), (CCP-PP-
PCCP), (CCP-PCCP-PP). Figure 4 shows the ordering
for each of the 17 images. For example, the bee image
falls in the PCCP-CCP-PP category because J(9) for
PCCP exceeds J(9) for CCP, which exceeds J(9) for
PassPoints. A Fisher’s exact test between the observed
results and the expected results (equal probability for
each category) was applied to measure the signifi-
cance of the association between the three categories.
This test is similar to a chi-square test, but used when
values in the associated contigency table are small.

Lab studies: We first compared the three lab studies.
Figure 4 shows that PCCP Lab approaches complete
spatial randomness for all 17 images (near J = 1)
and is thus much more random than the CCP Lab
and PP Lab datasets. Fisher’s exact test shows that
the difference is statistically significant (p = 0.0005).
A line graph was used for clarity, but these are
discontinuous points.

All studies: Next, data from the longer term studies
was included. Figure 5 shows that the distribution
of click-points within PCCP is more random than
PassPoints, but with differences smaller than in the
lab studies. The results show that PCCP is more
random than PassPoints and CCP (p = 0.028).

Varying number of click-points: We examined the
effects of the number of click-points on clustering
on the PCCP 2wk data. In Figure 6, points on each
line represent the J(9) statistic for passwords created
using either 5, 6, or 7 click-points. Data from the small
(451 x 331) and large (800 x 600) images were grouped
based on the number of click-points per password.
For example, the 5 click-point line represents all pass-
words containing 5 click-points regardless of whether
they were created on small or large images. The point
coordinates on the large images were re-scaled so
that all data was presented at 451 x 331 dimensions,
aligning features on the small and large versions of
the same images. The lines on the graph do not
show any consistent relationship between each other.
Fisher’s exact test shows no significant differences
(p = 0.358), indicating no evidence that increasing the
number of click-points per password leads to more
clustering across users.

Varying image size: We used the PCCP 2wk data to
examine clustering due to image size. Figure 7 shows
the J(9) statistics for passwords created on either
the small or large images. All passwords created on
large images (regardless of how many click-points) are
grouped together, as are passwords created on small
images. The data from the large images are again
scaled to ensure comparability of the J-statistic. For
most images, the graph indicates that larger images
have less clustering (J(9) closer to 1) than smaller
images. Fisher’s exact test shows a significant dif-
ference (p = 0.002), indicating that larger images
have significantly less clustering. This result suggests
that PCCP’s shuffle mechanism and viewport (if kept
at the same pixel dimensions) are more effective in
reducing clustering when used with larger images. We
believe that this is due to the proportionally smaller
area covered by the viewport in relation to the total
size of the image making it less likely that known
hotspots are available for selection.
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click-point conditions (5, 6, and 7 click-points).
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Fig. 7. J(9) for PCCP 2wk, looking at the effect of
image size. Data from the larger images are scaled to
allow for comparison between image sizes.

6.2 Hotspot coverage

We summarize the hotspots per image using cumu-
lative frequency distributions for the 17 core images.
The distributions contain all user-chosen click-points
for the given scheme for passwords that were, at
minimum, successfully re-entered at least once during
login. In other words, all click-points in the dataset are
represented (including “hotspots” consisting of only
one user-chosen click-point).

Figure 8 shows cumulative frequency distributions
for each image. Grey lines represent the click-point
distributions for the 17 images, for click-points col-
lected across all studies for that particular scheme.
One would expect half of the click-points to be con-
tained in the most popular 50% of hotspots if click-
points were completely randomly distributed. In the
figures, this random distribution would appear as a
straight diagonal line. In comparison, the PassPoints
graph shows that in the worst case, half of all click-
points are contained within the most popular 1.3%
of hotspots within the distribution, while in the best
case, half are contained within the most popular
17.3%. For PCCP, half of click-points fall within the
within the top 14.6% hotspots on the worst case
image. On the best image, half are contained within
the top 41.4% for PCCP, approaching the ideal of 50%.

To test for significance in the differences between
PP, CCP and PCCP, we looked at the dictionary data
for the 17 images individually. Kruskal-Wallis 3-way
tests show strong significant differences between the
distributions (p < 0.00001) for each image. We further
compared only CCP and PCCP, to look at the effect
of the viewport and shuffling mechanism specifically.
Kruskal-Wallis 2-way tests show strong significance
for each image. This indicates that PCCP click-points
have a flatter distribution and thus an attack dictio-
nary based on hotspots should be less effective for
PCCP than for the other schemes (see also Section 7.1).

This analysis focused on individual click-points, not
entire passwords. However with the recommended
implementation, attackers get no partial feedback on
correctness partway through an offline guess, preclud-
ing divide-and-conquer (piecewise) attacks on PCCP.

6.3 Geometric Patterns

We looked at several password characteristics to find
whether known patterns exist that could help attack-
ers fine-tune an attack strategy. These patterns involve
the geometric position of click-points relative to each
other and do not consider the background image. In
earlier work [20], we performed this analysis on a
subset of the current data, focusing primarily on data
from lab studies. We now perform similar analysis
on all 5-click-point password data on 451 x 331 pixel
images collected to date for each scheme. Specific
details are included in the Appendix, but the analysis
reveals similar results to the original paper [20].
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Fig. 8. Cumulative frequency distribution of hotspot coverage for PassPoints, CCP, and PCCP.

The click-point distributions of PCCP along the z-
and y-axes fell within the range for random distribu-
tions with 95% probability, while those of PassPoints
showed a clear progression from top-left to bottom-
right based on the ordinal position of the click-points
within the password. We believe that the difference is
users’ selection strategy is based on whether the click-
points are selected on one image, as in PassPoints,
or distributed across several images. With one image,
as in PassPoints, users tend to start at one corner
of the image and progress across the image with
each subsequent click-point. However, with CCP and
PCCP, users see a new image for each click-point and
tend to select each click-point independently, with no
regard to its ordinal position within the password.

Click-points within PassPoints were much closer
together (i.e., shorter segments between successive
click-points), while CCP’s segments were the longest
and within range of the random distributions. PCCP’s
segments were slightly shorter than CCP’s. Given that
no other geometric patterns are apparent for PCCP,
we suspect that these shorter segments are an artifact
of the viewport positioning algorithm, which slightly
favoured more central areas of the image. For further
discussion of viewport positioning, see Section 8.3.

With respect to angles and slopes formed between
adjacent line segments within passwords, analysis
shows that PCCP passwords tend to have large an-
gles and favour no particular direction. In contrast,
PassPoints passwords often form straight horizontal
or vertical lines. Similarly, the frequency distributions
for the overall geometric shapes formed by following
the path formed from the first to last click-point for
PCCP are within the range of the random datasets.
PassPoints passwords were much more likely to form
identifiable geometric shapes.

In summary, in tests of numerous spatial relation-
ships, we found no significant differences between
PCCP and what is expected to occur by chance.

6.4 Colour Patterns within PCCP Passwords

As well as geometric patterns relating the click points,
we also considered strategies of choosing click points
based on the content of the image. For example, users
might choose click points in areas of the same colour.
To test this possibility, we examined the passwords
in our studies for colour consistency. Including all
our PCCP studies, and all passwords created and
confirmed, gives a set of 859 passwords.

For each password, we examined the 11 x 11 pixel
centre of the tolerance area for each click point, which
our data suggests is approximately the area that users
can reliably click within. The colour in this area was
convereted from the display standard RBG format to
the perception-based L*a*b* format specified in the
1976 standard of the International Commission on
Mlumination (CIE76). We then calculated the mean of
the perceptual distance between the colour surround-
ing each password click, using the CIE76 definition
of AE?,, which ranges from 0 to 100, with a value
of 2.3 regarded as a “just noticeable difference”. The
distribution of these mean colour differences ranged
normally from 8.08 to 60.21 with a mean of 29, but
even the minimum of 8.08 included easily distinguish-
able colours. This suggests that it is very unlikely
that users chose passwords consisting of very similar
colours. We also isolated the hues of each password,
the dominant colours regardless of brightness, and
calculated their differences, but found little evidence
of overall consistencies between the hues involved
within passwords. In summary, it seems users did not
choose constituent click-points within passwords on
the basis of colour. We also inspected the passwords
by eye for other evident relationships, but found none.

7 SECURITY

We next discuss PCCP’s resistance to standard secu-
rity threats: guessing attacks and capture attacks.



7.1 Guessing Attacks

The most basic guessing attack against PCCP is a
brute-force attack, with expected success after explor-
ing half of the password space (i.e., with a theoretical
password space of 2%3, success after 242 guesses).
However, skewed password distributions could allow
attackers to improve on this attack model. Section 6
examined the password distributions based on several
characteristics. We now consider how these could be
leveraged in guessing attacks.

Pattern-based attack: One of the proposed at-
tacks [21] on Passpoints is an automated pattern-
based dictionary attack that prioritizes passwords
consisting of click-points ordered in a consistent hor-
izontal and vertical direction (including straight lines
in any direction, arcs, and step patterns), but ig-
nores any image-specific features such as hotspots.
The attack guesses approximately half of passwords
collected in a field study on the Cars and Pool images
(two of the 17 core images) with a dictionary contain-
ing 23° entries, relative to a theoretical space of 2%3.

Given that PCCP passwords are essentially indis-
tinguisable from random for click-point distributions
along the x- and y-axes, angles, slopes, and shapes
(see Appendix A), such patttern-based attacks would
be ineffective against PCCP passwords.

Hotspot attack with all server-side information:
PassPoints passwords from a small number of users
can be used [33] to determine likely hotspots on an
image, which can then be used to form an attack
dictionary. Up to 36% of passwords on the Pool image
were correctly guessed with a dictionary of 23! entries.

The attacker’s task is more difficult for PCCP be-
cause not only is the popularity of hotspots reduced,
but the sequence of images must be determined and
each relevant image collected, making a customized
attack per user. An online attack could be thwarted by
limiting the number of incorrect guesses per account.

To explore an offline version of this attack, assume
in the worst case that attackers gain access to all
server-side information: the username, user-specific
seed, image identifiers, images (see Section 8.2),
hashed user password and corresponding grid iden-
tifiers (see Section 8.1). The attacker determines the
first image I; from the available information. Hotspot
analysis identifies the center of the largest hotspot
on I;. The next image I is predicted based on I;’s
hotspot and the user-specific seed which determines
the image mapping. In this way, a password guess
contains the largest hotspot on each predicted image.
The same process could be used to determine pass-
words using 5-subsets of popular hotspots. The re-
sulting dictionary would grow combinatorially based
on the number of hotspots followed at each stage.

Because each user password in PCCP involves dif-
ferent images, it is difficult to collect enough statistical
information in an experimental setting for meaningful

hotspot analysis. Our best analysis in this direction
involved using data on the 17 core images. For each of
the 95 user passwords involving solely these images,
used as target passwords to find, we built a list of the
10 largest hotspots for each of the 17 images, using all
PCCP Lab and PCCP 2wk - S5 data. These hotspot lists
were combined to form a guessing dictionary con-
taining 237 entries for the 17 images. None of the 95
passwords appeared in the dictionary, indicating that
no password in our collected data consisted entirely
of top-10 hotspots. We expect that this attack would
be similarly unfruitful for other images of similar
complexity. We also note that this attack is infeasible
unless an attacker has previous knowledge of which
images belong to a user’s password.

We next consider a second hotspot attack strategy
under the same assumption of all server-side informa-
tion being known, and in this case consider the level
of effort required for a 3% chance of guessing a target
password. With the basic configuration of 19 x 19 pixel
tolerance squares, and 451 x 331 pixel images, there
are approximately 400 tolerance squares per image.
If no hotspots exist and there are no patterns (i.e.,
if random and independent click-points are chosen),
each tolerance square has an equal 1/400 chance of
being part of the user’s password. However, from
Figure 8 we know that for the PassPoints datasets
explored, on average the largest 8.7% of hotspots
cover 50% of user-chosen click-points. This means
that for approximately a 3% ((50/100)°) chance of
guessing a password, a dictionary constructed of all
ordered sequences of 5 click-points, each click-point
being among the corresponding set of these hotspots
from the appropriate (assumed known) image, would
contain 226 entries. In comparison, PCCP requires the
top 24% of hotspots to achieve the same coverage,
giving a dictionary of 23% entries for a 3% chance of
guessing a password comprised solely of hotspots.

Hotspot attack with only hashed password: Sup-
pose attackers gain access only to the hashed pass-
words, for example, if the passwords and other in-
formation are stored in separate databases. Offline
dictionary attacks become even less tractable. The best
attack would seem to involve building a guessing
dictionary whose entries are constructed from the
largest hotspots on random combinations of images.

7.2 Capture Attacks

Password capture attacks occur when attackers di-
rectly obtain passwords (or parts thereof) by inter-
cepting user-entered data, or by tricking users into
revealing their passwords. For systems like PCCP,
CCP, and PassPoints (and many other knowledge-
based authentication schemes), capturing one login
instance allows fraudulent access by a simple replay
attack. We focus herein on password capture attacks
directly related to characteristics of PCCP, CCP, and



PassPoints, not on attacks resulting from network
sniffing or wire-tapping of unencrypted passwords.

Shoulder-surfing: A shoulder-surfing attacker may
gain knowledge about individual users’ credentials
by directly observing the user’s login or through
external recording devices such as cameras. While
shoulder-surfing attacks have been successful against
text passwords [34], they may be exacerbated by the
visual nature of graphical passwords.

All three cued-recall schemes discussed (PCCP,
CCP, PassPoints) are susceptible to shoulder-surfing
although no published empirical study to-date has
examined the extent of the threat. Observing the
approximate location of click-points may reduce the
number of guesses necessary to determine the user’s
password. User interface manipulations, such as re-
ducing the size of the mouse cursor or dimming the
image may offer some protection, but have not been
tested. A considerably more complicated alternative is
to make user input invisible to cameras, for example
by using eye-tracking as an input mechanism [35].

In PCCP (and CCP) systems allowing sufficient
numbers of online guesses, attackers who have pre-
viously learned which images belong to a user’s
password but not the exact click-points (e.g., through
shoulder-surfing) could try an online brute-force at-
tack of clicking on points until the correct next im-
age appears and use this in a divide-and-conquer
password recovery. As a defense, online systems
should limit the number of incorrect guesses (includ-
ing restarts) per account.

Malware: Malware attacks can originate from ma-
licious software installed or downloaded without the
user’s informed consent. Malware is a major concern
for text and graphical passwords, since keylogger,
mouse-logger, and screen scraper malware could send
captured data remotely or otherwise make it available
to an attacker. Mouse-loggers and screen scrapers are
currently less prevalent than keyloggers. A partial
defense against malware is variable response schemes,
but few viable proposals are known [10].

Social Engineering: Social engineering attacks, in-
cluding phishing, involve deceiving users into reveal-
ing credentials by any means, for example through
fake emails, or manipulated search-engine result links.
For cued-recall graphical passwords, a frame of ref-
erence must be established between parties to con-
vey the password in sufficient detail. One prelimi-
nary study [36] shows that password sharing through
verbal description may be possible for PassPoints.
For PCCP, more effort may be required to describe
each image and the exact location of each click-point.
Graphical passwords may also potentially be shared
by taking photos, capturing screen shots, or drawing,
albeit requiring more effort than for text passwords.

For phishing attacks on cued-recall graphical pass-
word schemes, the fraudulent website must present
specific images to the user. To do so, an attacker may

conduct earlier server probes to collect the images,
or may use a man-in-the-middle (MITM) attack to
retrieve and relay information from the legitimate site.

PCCP and CCP have a security advantage over
PassPoints: an attacker launching a phishing attack
would need to retrieve many images from the server
instead of only one. With a MITM attack, only one
image per click-point would need to be retrieved,
since the correct image would be identified by the
legitimate website when the user’s click-point is en-
tered. However, attackers who collect the images be-
forehand would need to gather all of them in order
to display the correct next image when the user
enters a click-point (see Section 8.2 for discussion of
the image selection algorithm). Attackers who make
assumptions about likely hotspots and only collect the
corresponding images risk missing images if the user
clicks elsewhere. Although social engineering and
phishing remain threats with PCCP, attacks require
significantly more effort and have a lower probability
of success than for text passwords or PassPoints.

In light of these potential guessing and capture
attacks, PCCP is best deployed in systems where
offline attacks are not possible, and where any attack
must involve an online system that can limit the
number of guesses per account per time period; this
limit should include password restarts. Even with
account-locking after ¢ failed login attempts, defences
must throttle such online guessing attacks sufficiently
to guard against system-wide attacks across W ac-
counts since an attacker gets ¢ x I guesses per time
window [37]. All client-server communication should
be made securely (e.g., through SSL) to maintain the
secrecy of user click-points and images.

8 RELEVANT IMPLEMENTATION ISSUES

The following discusses two prototype implemen-
tations of PCCP and highlights issues relevant for
a best-practice implementation. The first prototype,
intended for experiments only, included design de-
cisions which facilitated data gathering but would
not be advisable in actual deployment. The lab and
two week recall studies (Sections 4.1 and 4.2) used a
standalone J# application custom-designed to guide
participants through the experimental process. This
provided a controlled environment to gather initial
data about the usability and security of the schemes.
Image selection was done in such a way that all users
saw a particular core set of images and all password
information (e.g., click-point coordinates and images)
was stored in the clear, allowing evaluation of char-
acteristics like the effect of password choice.

The second prototype moved towards an ecologi-
cally valid system taking into account implementation
details necessary for a real web-based authentication
system. The PCCP Web study (Section 4.3) was con-
ducted with a web-based authentication framework



(MVP [28]) especially designed to be deployed and
accessed by users in their regular environments. The
system is intended to allow authentication to become
a secondary task, by supporting primary tasks on real
websites that require users to log in as part of the
process. The PCCP Web study used modified versions
of Wordpress blogs and phpBB forums. The modifica-
tions were made to locally-installed packages, altering
the authentication process. A button was included
rather than a textbox for password entry; pressing
the button opened the authentication window and
loaded the PCCP authentication module, which takes
the userid from the website, collects the user’s PCCP
password, and returns an encoded password string
(see Section 8.1). The original websites remained re-
sponsible for authentication, using the encoded string
as they would use an entered text password.

The following sections describe several practical
design and implementation choices made in building
the second prototype, and the reasoning behind them.

8.1 Discretization

Discretization of click-points allows for approximately
correct click-points to be accepted by the system
without storing exact click-point coordinates in the
clear. Our second prototype implemented Centered
Discretization [29], wherein an invisible discretization
grid is overlaid onto the image, dividing the image
into square tolerance areas, to determine whether a lo-
gin click-point falls within the same tolerance area as
the initial click-point. For each click-point, the grid’s
position is set during password creation by placing it
such that there is a uniform tolerance area centered
around the original click-point, by calculating the
appropriate (z,y) grid offset (Gz, Gy) (in pixels) from
a (0,0) origin at the top-left corner of the image. On
subsequent user login, the system uses the originally
recorded offsets to position the grid and determine
the acceptability of the each login click-point.

For each password Py, the system hashes the
username W, as a unique salt intended to force
user-specific attack dictionaries, and the following
details for each click-point (i = 1...5): its grid offset
(Gx;, Gy;), a tolerance area identifier Tz;, Ty; (indi-
cating the exact square containing the click-point),
and its image identifier I;. The system also stores
the following additional information Ay in the clear:
Gz,Gy for each click-point and a random seed Sy
used to determine the pool of images for a given user
(see Section 8.2). These components are described as:

Ci = (I;, Tx;, Ty, Gz, Gy;)
Py =h([Cy...C;], W)
Aw = ([Gz1,Gyr ... Gy, Gyi], Sw)

The discretization grids and offsets are transparent
and unknown to users. An attacker who gained access
to this information would not know the user’s pass-
word, but might try to use it to guess higher prob-
ability click-points, e.g., by overlaying corresponding

grids onto images looking for popular target points
centered within grid squares. Whether this provides
any attack advantage over trying to exploit hotspots
without grid information remains an open question.

8.2 Deterministic Image Sequencing

In PCCP, each image displayed is a deterministic
function I;+1 = f(Sw, C;), based on the user-specific
random seed Sy the previous user-entered click-point
Ci; I = f(Sw,0). Sw is set during password creation
and used to randomly select images from the full
system-wide pool of images, numbered from 0 to N.
It is stored in the clear as part of Ay, described above.
During login, the sequence of images is re-generated
using f. This approach allows a different sequence
of images per each user while still guaranteeing a
consistent mapping of click-points to images for each
user. If a password is changed, a new Syy is generated.

Using this implementation, there is a possibility that
images are reused for a given user. For example, a user
clicking on an incorrect location during login might,
by chance, see an image belonging somewhere else
within their password. While this poses a potential
usability concern, the likelihood of this happening is
correspondingly low with enough images. There is no
evidence this occurred in any of our studies.

The image selection algorithm could be modified
to disallow all image reuse for a given user, albeit
possibly providing enough verifiable information to
determine the entire password to an attacker who
learns only the last image: if each possible traversal
of images is unique, knowing the last image means
that with effort, an attacker could find the unique
password that ends with that particular image.

For usability, the minimum total number of images
should be the number of tolerance squares in one
grid (i.e., 432 in the basic PCCP configuration). This
avoids the situation where multiple locations lead to
the same next image, breaking the implicit feedback
property of PCCP and likely confusing users. All
images could be reused at each stage in the password
and for every user. This strategy has the highest prob-
ability of collision where a user clicks on an incorrect
click-point and unfortunately sees an image belonging
elsewhere in their password. This probability can be
reduced or nearly eliminated if the overlap of images
is reduced between password stages, increasing the
number of images in a user’s set. The trade-off is
between usability problems of potential collisions dur-
ing incorrect logins and reducing the ease of password
reconstruction should an attacker learn some of the
images in a user’s password.

An alternative to increasing the number of images
is to use larger images but crop them differently for
each user. Hotspot analysis would be more difficult
for attackers because the coordinates of hotspots could
not be directly applied across accounts. If furthermore,



each user receives a different pool of images (perhaps
as an overlapping subset of the overall set of images in
the system, as determined by Sy and f), an attacker
would need to collect this data on a per-user basis
when launching an attack.

8.3 Viewport Details

The viewport visible during password creation must
be large enough to allow some degree of user choice,
but small enough to have its intended effect of dis-
tributing click-points across the image. Physiologi-
cally, the human eye can observe only a small part
of an image at a time. Selecting a click-point requires
high acuity vision using the fovea, the area of the
retina with a high density of photoreceptor cells [38].
The size of the fovea limits foveal vision to an angle of
approximately 1° within the direct line to the target of
interest. At a normal viewing distance for a computer
screen, say 60cm, this results in sharp vision over an
area of approximately 4cm?. We chose the size of the
viewport to fall within this area of sharp vision. For
the lab studies, where we had control over the size
of the screen and the screen resolution, we chose a
viewport of 75 x 75 pixels. However, for the web-
based system we used a slightly larger 100 x 100
pixel viewport since participants may be using a wide
variety of system configurations. While the web-based
prototype was designed primarily for standard size
screens, it could be modified to accommodate smart
phones or smaller screens. The system could deter-
mine the type of device (e.g., through HTML header
data) and alter the size of the viewport dynamically.

The viewport positioning algorithm randomly
placed the viewport on the image, ensuring that the
entire viewport was always visible and that users
had the entire viewport area from which to select a
click-point. This design decision had the effect of de-
emphasizing the edges of the image, slightly favour-
ing the central area. A potential improvement would
be to allow the viewport to wrap around the edges of
the image, resulting in situations were the viewport
is split on opposite edges of the image.

8.4 Variable number of click-points

A possible strategy for increasing security is to enforce
a minimum number of click-points, but allow users
to choose the length of their password, similar to
minimum text password lengths. The system would
continue to show next images with each click, and
users would determine at which point to stop clicking
and press the login button. Although most users
would likely choose the minimum number of click-
points, those concerned with security and confident
about memorability could select a longer password.

9 CONCLUDING REMARKS

A common security goal in authentication systems
is to maximize the effective password space. This
impacts usability when user choice is involved. We
have shown that it is possible to allow user choice
while still increasing the effective password space.
Furthermore, tools such as PCCP’s viewport (used
during password creation) cannot be exploited during
an attack. Users could be further deterred (at some
cost in usability) from selecting obvious click-points
by limiting the number of shuffles allowed during
password creation or by progressively slowing system
response in repositioning the viewport with every
shuffle past a certain threshold. The approaches dis-
cussed in this paper present a middle-ground between
insecure but memorable user-chosen passwords and
secure system-generated random passwords that are
difficult to remember.

Providing instructions on creating secure pass-
words, using password managers, or providing tools
such as strength-meters for passwords have had only
limited success [39]. The problem with such tools is
that they require additional effort on the part of users
creating passwords and often provide little useful
feedback to guide users’ actions. In PCCP, creating
a less guessable password (by selecting a click-point
within the first few system-suggested viewport posi-
tions) is the easiest course of action. Users still make
a choice but are constrained in their selection.

Another often cited goal of usable security is help-
ing users form accurate mental models of security.
Through our questionnaires and conversations with
participants in authentication usability studies, it is
apparent that in general, users have little under-
standing of what makes a good password and how
to best protect themselves online. Furthermore, even
those who are more knowledgeable usually admit
to behaving insecurely (such as re-using passwords
or providing personal information online even when
unsure about the security of a website) because it
is more convenient and because they do not fully
understand the possible consequences of their actions.

Guiding users in making more secure choices, such
as using the viewport during password creation, can
help foster more accurate mental models of security
rather than vague instructions such as “pick a pass-
word that is hard for others to guess”. This persuasive
strategy has also been used with some success to
increase the randomness of text passwords [40].

Better user interface design can persuade users to
select stronger passwords. A key feature in PCCP
is that creating a harder to guess password is the
path-of-least-resistance, likely making it more effective
than schemes where secure behaviour adds an extra
burden on users. The approach has proven effective
at reducing the formation of hotspots and patterns,
thus increasing the effective password space.



APPENDIX
ANALYSIS OF GEOMETRIC PATTERNS

Our analysis of geometric patterns herein follows the
same procedure as an earlier publication [20], but the
current analysis includes a much larger dataset. More
details of the analysis are given in the earlier paper.

A Monte Carlo approach to analysis was used.
Besides comparing the PCCP, CCP, and PassPoints to
each other, random simulated datasets were generated
to evaluate whether the results deviate from what
could have occurred by chance. We generated 100 sim-
ulated datasets of similar size to the dataset of the cor-
responsding study. We then determined the maximum
and minimum median values among these simulated
datasets for each measure analyzed. These minima
and maxima indicate the range of random values for
the given measure. There is a 99% probability that any
collected result falling outside of this range did not
occur by chance. Therefore if median values for the
real datasets fall outside of this minimum-maximum
range, it is likely because the data is skewed in a
manner that did not occur by chance.

In all of the subsequent figures, the minima and
maxima are represented as lines for clarity, but the
data is not continuous. The minima is shown as either
a blue line with triangle markers or a dashed blue
line. The maxima is shown either as a red line with
circle markers or a dotted red line. Several figures in
this section show boxplots to illustrate distributions.
Boxplots show the median and the inner quartiles (as
a box) of the distribution. The figures representing
angles and slopes are circular frequency distribution
diagrams (similar to circular bar graphs), with 0°
appearing at the 3 o’clock position and progress-
ing to 359° in a counter-clockwise direction. Their
shape appears flattened due to the rectangular images
(451 x 331 pixels) from which the data is collected.

Click-point distribution: We examined whether a
click-point’s ordinal position within a password af-
fected its geographic location on the image. Figures 9
and 10 illustrate the click-point distributions for Pass-
Points, CCP, and PCCP along the x- and y-axes,
respectively. For PCCP, click-point distributions fall
within the range of the random datasets along both
the x- and y-axes, indicating no recognizable pattern
for this measure. In comparison, a clear progression
based on ordinal position of click-points is seen for
PassPoints. Click-points tend to start in the upper left
portion of the image and progress towards the lower
right based on ordinal position within the password.
CPP’s distributions are similar to PCCP.

Segment lengths: We compared the segments
formed by the Euclidian distance between two adja-
cent click-points within a password. From Figure 11,
it is apparent that click-points within PassPoints tend
to be much closer together, with a median segment
length of 90 pixels. CCP’s segment lengths are con-
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Fig. 9. Click-point distribution along the x-axis for
PassPoints, CCP, and PCCP.
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Fig. 10. Click-point distribution along the y-axis for
PassPoints, CCP, and PCCP.

siderably longer (median = 193 pixels) and fall within
the range expected for random distributions. PCCP’s
segments, however, fall below this random range.

Angles and slopes: We examined the angles formed
between adjacent line segments within passwords. As
shown in Figures12-14, both CCP and PCCP favour
large angles indicative of moving back and forth
across the image, while PassPoints favours very small
angles (near 0°) representative of selecting points in a
straight line, heading in one direction.

We next analyzed the segment slopes relative
to the x-axis and the results are summarized in
Figures15-17. PCCP and CCP’s slopes are quite
evenly distributed, indicating that no one direction
was favoured. In comparison, PassPoints shows a
strong preference for horizontal lines (0° slope), fol-
lowed by vertical lines (90 and 270° slopes).

Shapes: We identified 5 categories of geometric

Pixels
50 100 150 200 250 300
L L L

O

T T T
PP ccp PCCP

0
L

Fig. 11. Distance between two adjacent click-points
PassPoints, CCP, and PCCP.



Fig. 12. Angles for PassPoints.

Fig. 15. Slopes for PassPoints.
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Fig. 16. Slopes for CCP.
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Fig. 14. Angles for PCCP.

Fig. 17. Slopes for PCCP.

PCCP

1 1 1

Percentage
10 20 30 40 50
L

1

0
L

C Other Line V W z C Other

Fig. 18. Geometric shapes formed by click-points for PassPoints, CCP, and PCCP.

shapes formed by following the path from the first
click-point to the last click-point, as entered by the
user. The shapes were: straight line, W, Z, V, C, and
other (see [20] for examples and exact classification cri-
teria). Shapes were identified regardless of orientation
(an upside-down or sideways V was still considered
a V). As shown in Figure 18, over 40% of PCCP
passwords fall within the other category (i.e., none
of the other shapes were identified). In fact, both
CCP and PCCP’s frequency distributions fall within
the range of the random datasets. The distribution of
PassPoints passwords, on the other hand, falls well
outside of the random range, indicating the presence
of easily identifiable shape patterns.
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