KEY EXCHANGE USING CHEBYCHEV POLYNOMIALS

M.D. Atkinson and Vincenzo Acciaro

SCS-TR-165, JANUARY 1990

Key exchange using Chebychev polynomials

M.D. Atkinson Vincenzo Acciaro

School of Computer Science Carleton University Ottawa, CANADA K1S 5B6

1. Introduction

The well-known Diffie-Hellman protocol for key exchange [Dif76] allows two parties to agree on a secret key without the key being sent along an insecure communication channel. This protocol is a special case of the following general scheme which allows two parties A and B to agree on an element of a key space K.

Let $F = \{F_m | m=0,1,2,....\}$ and $G = \{G_n | n=0,1,2,....\}$ be two families of functions defined on K having the property that for all m, n we have the equality $F_m(F_n(x))=F_n(F_m(x))$. Initially A and B agree on an element $\alpha \in K$ which may be made public. Next, A chooses a private integer m and sends $F_m(\alpha)$ to B while B chooses a private integer n and sends $G_n(\alpha)$ to A. Finally A computes $F_m(G_n(\alpha))$ while B computes $G_n(F_m(\alpha))$; by the assumption on F and G these two results are equal and serve as their common key.

In all the examples given in this paper F = G and we shall assume this from now on; it would however be interesting to have examples where $F \neq G$. In the original Diffie-Hellman scheme F and G were each the set of functions $\{x \rightarrow x^m \mod p, m=0,1,2,3...\}$ (where p is prime) and K was the field Z_p of integers modulo p. In [Rue88] F and G consisted of the functional powers of some function p(x). The condition that members of F commute with one another under functional composition is a very restrictive one. However there is another family of polynomials which commute under composition:- the Chebychev polynomials. Indeed it is readily seen that, if $T_n(x) = \cos(m \arccos x)$, we have

 $T_m(T_n(x)) = \cos(m \arccos(\cos(n \arccos x))) = \cos(mn \arccos x) = T_{mn}(x)$ A basic recurrence, following from properties of the cosine function, relating the Chebychev polynomials is

$$T_{n+1}(\alpha) - 2\alpha T_n(\alpha) + T_{n-1}(\alpha) = 0$$

Since the Chebychev polynomials have integer coefficients we may regard them as polynomials defined on \mathbf{Z}_p and the above equations still hold (and from now on we shall

use arithmetic modulo p). In order for the Chebychev polynomials to yield a *practical* method for key exchange it is essential that $T_n(\alpha)$ be computable rapidly, that α be chosen so that there is a large collection of potential keys which may be generated by the algorithm, and that it should not be feasible to deduce n given the value of $T_n(\alpha)$ (which can be intercepted by an enemy during the key exchange protocol).

2. Efficient computation of $T_n(\alpha)$

We shall give three methods for computing $T_n(\alpha)$ all of which require $O(\log n)$ arithmetic operations in Z_p . In the first method we express the recurrence above in matrix notation as

$$\begin{pmatrix} T_n(\alpha) \\ T_{n+1}(\alpha) \end{pmatrix} \quad = \quad \begin{pmatrix} 0 & 1 \\ -1 & 2\alpha \end{pmatrix} \begin{pmatrix} T_{n-1}(\alpha) \\ T_n(\alpha) \end{pmatrix} = \quad U \begin{pmatrix} T_{n-1}(\alpha) \\ T_n(\alpha) \end{pmatrix}$$

Clearly, since $T_0(\alpha)=1$ and $T_1(\alpha)=\alpha$,

$$\begin{pmatrix} T_n(\alpha) \\ T_{n+1}(\alpha) \end{pmatrix} \quad = \quad \quad U^n \begin{pmatrix} 1 \\ \alpha \end{pmatrix}$$

Since U^n can be computed in $O(\log n)$ steps by the binary method $T_n(\alpha)$ can be computed in this number of steps also.

The second method uses the explicit solution of the recurrence:

$$T_n(\alpha) = \frac{1}{2}(\lambda^n + \lambda^{-n})$$

where λ and λ^{-1} are the roots of λ^2 - $2\alpha\lambda$ + 1 = 0. The quantity λ may not lie in Z_p but, in any case, its powers may be computed by the binary method and thus $T_n(\alpha)$ can be computed in $O(\log n)$ steps.

These two techniques are generally applicable to any sequence defined by a linear recurrence. Our third method uses the special properties of Chebychev polynomials and is very simple to implement. It may be expressed by the recursive rules:

$$\begin{split} T_0(\alpha) &= 1 \\ T_1(\alpha) &= \alpha \\ T_2(\alpha) &= 2\alpha^2 - 1 \\ T_n(\alpha) &= T_{n/2}(T_2(\alpha)) \text{ if n is even and n>2} \\ T_n(\alpha) &= \frac{T_{n-1}(\alpha) + T_{n+1}(\alpha)}{2\alpha} \text{ otherwise} \end{split}$$

For simplicity these formulae ignore the possibility that $\alpha = 0$ but this is easily handled since $T_n(0) = 0$ when n is odd and $T_n(0) = (-1)^{n/2}$ when n is even.

Notice that, in the last recursive rule, each of n-1 and n+1 are even and one of them is a multiple of 4. It follows that $T_n(\alpha)$ may be computed in $O(\log n)$ steps.

3. Inverse computation

In this section we study the inverse problem of computing n given $T_n(\alpha)$. If there should be an efficient algorithm for this then the key exchange protocol would be worthless. But it is easy to see that the problem is of a difficulty comparable with computing a discrete logarithm. From the explicit solution to the recurrence the inverse problem is that of computing n given the value y in the equation

$$y\,=\,\frac{\,\lambda^n\,+\,\lambda^{-n}}{2}$$

But this equation gives a quadratic equation for λ^n and once λ^n is known n itself can be calculated by taking a discrete logarithm. Conversely a method for solving this equation induces a method for solving $\lambda^n = z$ (we solve $\frac{\lambda^n + \lambda^{-n}}{2} = \frac{z + z^{-1}}{2}$).

The above remarks include a specific method for solving the inverse problem. As we shall see shortly there is also a direct solution along the lines of the Pohlig-Hellman algorithm [Poh78] for computing discrete logarithms but, before discussing this, it is necessary to make a few remarks on the values assumed by $T_n(\alpha)$, n=0,1,2,...

Since $\lambda = \alpha + \sqrt{\alpha^2 - 1}$, either $\lambda \in \mathbb{Z}_p$ or λ lies in the quadratic extension of order p^2 depending on whether $\alpha^2 - 1$ is a quadratic residue modulo p.

Lemma 1 For all choices of $0\neq\alpha\in Z_p$, the corresponding λ has order dividing p-1 or p+1. Moreover, if λ is chosen to have order dividing p-1 or p+1 or then $\alpha=\frac{\lambda+\lambda^{-1}}{2}\in Z_p$. Proof. If $\alpha=\frac{\lambda+\lambda^{-1}}{2}\in Z_p$, $\lambda+\lambda^{-1}=(\lambda+\lambda^{-1})^p=\lambda^p+\lambda^{-p}$, which is equivalent to the relation $\lambda^{-p}(\lambda^{p-1}-1)(\lambda^{p+1}-1)=0$.

It is evident from this lemma that the sequence $T_n(\alpha)$, n=0,1,2,... is periodic with period dividing p-1 or p+1 according as α^2 -1 is or is not a square modulo p. If the period is short then the protocol will be incapable of generating a large number of keys and the resulting crypto-system will be vulnerable to attack by systematic key trials. On the other hand, if λ has order p-1 or p+1, then, as the next result shows, about half of the elements of Z_p can arise as potential keys almost all with equal probability.

Lemma 2 (i) If λ has order p-1 then $(T_n(\alpha), n=0,1,2,...)$ has period p-1 and the set $\{T_n(\alpha), n=0,1,2,...p-2\}$ has size (p+1)/2.

(ii) If λ has order p+1 then $(T_n(\alpha), n=0,1,2,...)$ has period p+1 and the set $\{T_n(\alpha), n=0,1,2,...p\}$ has size (p+3)/2.

Proof. In either case, if $z \in Z_p$, the equation $T_n(\alpha) = z$ may be written $\lambda^{2n} - 2z\lambda^n + 1 = 0$. If $z = \pm 1$ this has one solution for λ^n and otherwise it has 0 or 2 solutions for λ^n (in the latter case one solution is the inverse of the other). The value of λ^n determines n modulo the order of λ . In case (i) the sequence has period dividing p-1. Among the first p-1 terms each value of $T_n(\alpha)$ except for the two which correspond to $\lambda^n = 1$ and to $\lambda^n = -1$ occurs exactly twice, and so the set $\{T_n(\alpha), n = 0, 1, 2, ..., p-2\}$ has size 2 + (p-3)/2 = (p+1)/2. Since the set is of size greater than (p-1)/2 the period is exactly p-1. Case (ii) is similar.

Suppose we wish to find the values of n for which $T_n(\alpha)=y$ in the cases that λ has order p-1 or p+1. The case are similar so we suppose that λ has order p-1. The following method will be effective if p-1 is divisible by small primes only. Let p-1 = $\prod_{i=1}^k p_i^{e_i}$. We

shall determine n mod $p_i^{e_i}$ for each i and then use the chinese remainder theorem. Suppose that $v = n \mod p_i^{j-1}$ is known (initially we can take j=1). Write $n = qp_i^{j} + up_i^{j-1} + v$, with $0 \le u < p$. If we can find u we shall know n mod p_i^{j} and the process can be repeated.

$$\begin{array}{lll} \text{We compute} & z &=& T_{(p-1)/p_i j}(y) = T_{n(p-1)/p_i j}(\alpha) \\ &=& T_{(p-1)q+(p-1)u/p_i+v(p-1)/p_i j} = T_{(p-1)u/p_i+v(p-1)/p_i j}. \end{array}$$

Then we find u by computing the right hand side for each of the p possibilities for u in this equation.

In the Diffie-Hellman key exchange method it is generally recommended that the prime p should be chosen so that p-1 is not the product of small primes only; then the protocol cannot be compromised by the Pohlig-Hellman algorithm. For the scheme above a less restrictive condition on p applies:- one of p-1 and p+1 must not be a product of small primes only.

References

[Dif76]. Whitfield Diffie, Martin E. Hellman, New directions in cryptography, IEEE Trans. on Information Theory, IT-22 (1976), 644-654.

- [Poh78]. Stephen C. Pohlig, Martin E. Hellman, An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. on Information Theory, IT-24 (1978), 106–110.
- [Rue88]. Rainer A. Rueppel, Key agreements based on functional composition. Advances in Cryptology Eurocrypt 1988 (Editor Christoph G. Günther), Lecture Notes in Computer Science 330, pp3-10, Springer-Verlag (Berlin-Heidelberg-New York-London-Paris-Tokyo).

RECENT REPORTS

SCS-TR-147	On Transparently Modifying Users' Query Distributions B.J. Oommen and D.T.H. Ng, November 1988
CS-TR-148	An O(N Log N) Algorithm for Computing a Link Center in a Simple Polygon H.N. Djidjev, A. Lingas and JR. Sack, July 1988 Available in STACS 89, 6th Annual Symposium on Theoretical Aspects of Computer Science, Paderborn, FRG, February 16-18, 1989, Lecture Notes in Computer Science, Springer-Verlag No. 349
SCS-TR-149	Smallscript: A User Programmable Framework Based on Smalltalk and Postscript Kevin Haaland and Dave Thomas, November 1988
SCS-TR-150	A General Design Methodology for Dictionary Machines Frank Dehne and Nicola Santoro, February 1989
SCS-TR-151	On Doubly Linked List ReOrganizing Heuristics D.T.H. Ng and B. John Oommen, February 1989
SCS-TR-152	Implementing Data Structures on a Hypercube Multiprocessor, and Applications in Parallel Computational Geometry Frank Dehne and Andrew Rau-Chaplin, March 1989
SCS-TR-153	The Use of Chi-Squared Statistics in Determining Dependence Trees R.S. Valiveti and B.J. Oommen, March 1989
SCS-TR-154	Ideal List Organization for Stationary Environments B. John Oommen and David T.H. Ng, March 1989
SCS-TR-155	Hot-Spot Contention in Binary Hypercube Networks Sivarama P. Dandamudi and Derek L. Eager, April 89
SCS-TR-156	Some Issues In Hierarchical Interconnection Network Design Sivarama P. Dandamudi and Derek L. Eager, April 1989
SCS-TR-157	Discretized Pursuit Linear Reward-Inaction Automata B.J. Oommen and Joseph K. Lanctot, April 1989
SCS-TR-158	Parallel Fractional Cascading on a Hypercube Multiprocessor Frank Dehne, Afonso Ferreira and Andrew Rau-Chaplin, May 1989
SCS-TR-159	Epsilon-Optimal Stubborn Learning Mechanisms J.P.R. Christensen and B.J. Oommen, June 1989
SCS-TR-160	Disassembling Two-Dimensional Composite Parts Via Translations Doron Nussbaum and Jörg-R. Sack, June 1989
SCS-TR-161	On the Data Analysis of Random Permutations and its Application to Source Recognition R.S. Valiveti and B.J. Oommen, June 1989
SCS-TR-162	An Adaptive Learning Solution to the Keyboard Optimization Problem B.J. Oommen, R.S. Valiveti and J. Zgierski, October 1989
SCS-TR-163	Finding a Central Link Segment of a Simple Polygon in O(N Log N) Time L.G. Alexandrov, H.N. Djidjev, JR. Sack, October 1989
SCS-TR-164	A Survey of Algorithms for Handling Permutation Groups M.D. Atkinson, January 1990
SCS-TR-165	Key Exchange Using Chebychev Polynomials M.D. Atkinson and Vincenzo Acciaro, January 1990