NOTE ON SYSTEMS OF POLYNOMIAL EQUATIONS OVER FINITE FIELDS

Vincenzo Acciaro

TR-221, MARCH 1993

Note on systems of polynomial equations over finite fields

Vincenzo Acciaro

(acciaro@scs.carleton.ca)

School of Computer Science, Carleton University Ottawa, Canada, K1S 5B6

and

Dipartimento di Informatica, Bari, Italy

Abstract

Let F be a finite field of q elements and characteristic p (so $q = p^n$ for some $n \ge 1$) and let $\Gamma := \{f_i(x_1, \ldots, x_r) = 0 | i = 1, \ldots, s\}$ be a system of polynomial equations with coefficients in F.

In this paper we relate the structure of the F-algebra $F[x_1,\ldots,x_r]/(f_1(x_1,\ldots,x_r),\ldots,f_s(x_1,\ldots,x_r),x_1^q-x_1,\ldots,x_r^q-x_r)$ to the roots of Γ in F^r .

1 Introduction and definitions

Let F be a finite field of q elements and characteristic p, and let

$$\Gamma := \{f_i(x_1, \ldots, x_r) = 0 | i = 1, \ldots, s\}$$

be a system of s polynomial equations in r variables with coefficients in F. Consider the F-algebra $A := F[x_1, \ldots, x_r]/I$, where

$$I := (f_1(x_1, \ldots, x_r), \ldots, f_s(x_1, \ldots, x_r), x_1^q - x_1, \ldots, x_r^q - x_r)$$

In this paper we show that the number of distinct solutions of Γ in F^r equals the dimension k of the algebra A over F.

Furthermore, given the regular representation of the algebra A, we show that the roots of Γ in F^r can be obtained as the eigenvalues of the images of x_m , $m \in \{1, \ldots, r\}$.

The special case of a single polynomial deserves particular attention — it is enough to think about the implications in areas such as cryptography and coding theory — we devote to this case the last section of our paper.

2 The main theorems

THEOREM 1 The algebra A is finite dimensional and commutative.

PROOF Indeed A is spanned by the elements

$$x_1^{i_1}x_2^{i_2}\dots x_r^{i_r}+I \ (i_1,\dots,i_r=0,\dots,q-1)$$

and therefore its dimension over F is bounded by q^r . The commutativity of A is inherited from the commutativity of $F[x_1, \ldots, x_k]$. \square

THEOREM 2 The algebra A is semisimple.

PROOF Remember that in a commutative finite dimensional algebra the radical consists of all the nilpotent elements [3, pag.162].

In order to prove that A is semisimple, all we need to show is that A does not contain any nonzero nilpotent element or, in other words, rad(A) = (0). For this purpose, let

$$g := \sum a_{i_1, i_2, \dots, i_r} x_1^{i_1} x_2^{i_2} \dots x_r^{i_r} + I$$

be an element of A. We have

$$g^{q} = \sum (a_{i_{1},i_{2},\ldots,i_{r}})^{q} x_{1}^{i_{1}q} x_{2}^{i_{2}q} \ldots x_{r}^{i_{r}q} + I = g$$

since $a^q = a$ for all $a \in F$ and $x_i^q \equiv x_i \pmod{I}$ for $i \in \{1, ..., r\}$. It is now clear that if $g^m = 0$ for some $m \geq 1$ then g = 0, so 0 is the only nilpotent element in A. \square

THEOREM 3 The algebra A is a direct product of fields isomorphic to F

PROOF Any commutative semisimple algebra is a direct product of fields [4, page 54]. Therefore

$$A \cong F_1 \times \ldots \times F_k$$

say, where each F_i is an extension field of F. Assume that a field F_i in the decomposition of A is a proper extension field of F. Because F_i is finite, it must contain a primitive element, that is an element t whose order in the multiplicative group F_i^* of F_i is exactly $|F_i| - 1$. Consider the element $(0, \ldots, 0, t, 0, \ldots, 0)$ in A: its order is strictly greater than q - 1, which contradicts the fact that for any $g \in A$ we have $g^q = g$. \square

THEOREM 4 The dimension k of A over F is equal to the number of distinct roots of Γ in F^r .

PROOF For each root $\alpha_j := (\alpha_{j_1}, \dots, \alpha_{j_r})$ of Γ there is a surjective F-algebra homomorphism $\nu_{\alpha_j} : A \to F$ in which $x_i + I \mapsto \alpha_{j_i}$, and conversely, each surjective homomorphism $A \to F$ has this form.

Now we show that there are exactly k surjective F-algebra homomorphisms $A \to F$. Since A is a direct product of k fields isomorphic to F we can assume $A = Fe_1 \oplus \ldots \oplus Fe_k$ where the elements e_1, \ldots, e_k form a complete set of primitive orthogonal idempotents in A. It is easy to see that there are at least k surjective F-algebra homomorphisms $A \to F$, where the i^{th} one maps the element e_i to 1 and e_j to 0 for $j \neq i$. Conversely, let $\nu : A \to F$ be a surjective F-algebra homomorphism. Now, any ring homomorphism must map an idempotent to an idempotent, and therefore there are only two possibilities for $\nu(e_i)$, namely 0 or 1. Let us assume that for $i \neq j$ we have $\nu(e_i) = \nu(e_j) = 1$: then $e_i e_j = 0$ and $\nu(e_i e_j) = 1$, contradicting the fact that in any ring homomorphism 0 must be mapped to 0. \square

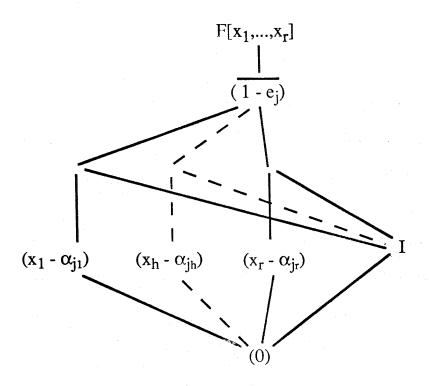


Figure 1: Relation among the ideals

We have seen in the last proof that there is a one to one correspondence between the idempotents e_j and the roots of the system Γ . Let $\overline{(1-e_j)}$ be the preimage under the natural map $F[x_1,\ldots,x_r]\to F[x_1,\ldots,x_r]/I$ of the ideal generated by $1-e_j$ in A, and let $(\alpha_{j_1},\ldots,\alpha_{j_r})$ be the root associated to e_j .

Figure 1 helps one to visualize the relation holding among the ideals I, $\overline{(1-e_j)}$ and the ideals generated by $x_1-\alpha_{j_1}$, ..., $x_r-\alpha_{j_r}$. Note that $\overline{(1-e_i)}$ is maximal in $F[x_1,\ldots,x_r]$ (see also [5, pag. 12]).

3 Roots of Γ as eigenvalues of linear transformations

Let us assume that we are given a regular matrix representation R of A, with respect to an F-basis (b_1, \ldots, b_k) . Since

$$A = Fe_1 \oplus \ldots \oplus Fe_k$$

there is an F-basis of A, namely (e_1, \ldots, e_k) , such that each element of A is represented as a diagonal matrix.

Let M be the matrix of transition between the two basis. Let E be the natural epimorphism $F[x_1, \ldots, x_k] \to F[x_1, \ldots, x_k]/I$. The argument used to prove theorem 2.4 shows that if $a \in A$ then

$$R(a) = M \cdot diag(\nu_1(a), \ldots, \nu_k(a)) \cdot M^{-1}$$

Therefore the element x_j is mapped by $R \circ E$ to

$$M \cdot diag(\alpha_{1_j}, \ldots, \alpha_{k_j}) \cdot M^{-1}$$

and clearly each α_{m_i} is an eigenvalue of $R \circ E(x_i)$.

4 The algebra A as a tensor product of algebras

Let J_i be the ideal generated by the polynomial $x_i^q - x_i$ in $F[x_i]$ (i = 1, ..., k). Consider the regular matrix representation R_i of the algebra $A_i := F[x_i]/J_i$ with respect to the basis $(x_i^0 + J_i, x_i^1 + J_i, ..., x_i^{q-1} + J_i)$. It is easily seen that the element $x_i + J_i$ is sent by R_i to the matrix

$$\begin{pmatrix} 0 & & & & \\ 1 & & & 1 \\ & \cdot & & & \\ & & \cdot & & \\ & & 1 & 0 \end{pmatrix}$$

Let $J := J_1 + J_2 + \ldots + J_r$. The algebra $F[x_1, \ldots, x_r]/J$ is isomorphic to $A_1 \otimes A_2 \otimes \ldots \otimes A_r$, and under this isomorphism the element $x_1^{i_1} x_2^{i_2} \ldots x_r^{i_r} + J$ is sent to the Kronecker product

$$R_1(x_1^{i_1}) \otimes R_2(x_2^{i_2}) \otimes \ldots \otimes R_r(x_r^{i_r}) = R_1(x_1)^{i_1} \otimes R_2(x_2)^{i_2} \otimes \ldots \otimes R_r(x_r)^{i_r}$$

of the r matrices.

An easy computation shows that the eigenvalues of each matrix $R_i(x_i)$ are precisely the elements of F, each with multiplicity one - this implies that each $R_i(x_i)$ can be put in diagonal form. Therefore using a suitable fixed basis, each element $x_1^{i_1}x_2^{i_2}\dots x_r^{i_r}+J$ is represented as a diagonal matrix, and in particular to each element $f_m(x_1,\ldots,x_r)+J$ there corresponds a diagonal

matrix whose zeroes on the main diagonal are in one to one correspondence with the zeroes of $f_m(x_1, \ldots, x_r)$ in F^r . It follows that:

the number of solutions of the system Γ is equal to the dimension of the intersection of the nullspaces corresponding to the linear transformations $f_m(x_1, \ldots, x_r) + J$ $(m = 1, \ldots, s)$.

5 The case of a single polynomial

Let us assume that s=1, that is the system consists of a single equation $f(x_1, \ldots, x_r) = 0$. The algebra isomorphism given by

$$x_1^{i_1} \ldots x_r^{i_r} + J \mapsto R_1(x_1)^{i_1} \otimes \ldots \otimes R_r(x_r)^{i_r}$$

allows one to consider $f(x_1, \ldots, x_r) + J$ as a linear transformation acting on the space of all the elements $g(x_1, \ldots, x_r) + J$ by left multiplication.

Note 1. Since our field F has q elements, and the minimal polynomial of $f(x_1, \ldots, x_r) + J$ splits completely in F, the minimal polynomial (in a variable z) of $f(x_1, \ldots, x_r)^{q-1} + J$ splits into at most two factors in F, the factors being z and z-1. Therefore the problem of determining whether $f(x_1, \ldots, x_r)$ has zeroes in F^r can be restated as:

is the minimal polynomial of $f(x_1, \ldots, x_r)^{q-1} + J \neq z - 1$?

- Note 2. It is easy to see that the linear transformation corresponding to $f(x_1, \ldots, x_r) + J$ is singular if and only if there is a nonzero polynomial $g(x_1, \ldots, x_r)$ in $F[x_1, \ldots, x_r]$ such that $f(x_1, \ldots, x_r)g(x_1, \ldots, x_r) \in J$ (imagine $g(x_1, \ldots, x_r) + J$ to be an eigenvector in the vector space $F[x_1, \ldots, x_r]/J$): but this simply amounts to say that $f(x_1, \ldots, x_r)$ is a divisor of zero in the algebra $F[x_1, \ldots, x_r]/J$.
- **Note 3.** Another way to look at this case is the following: consider in $F[x_1, \ldots, x_r]/J$ the monogenic ideal L generated by $f(x_1, \ldots, x_r) + J$. Given a basis \mathcal{B} for L, it is possible to extend \mathcal{B} to a basis of $F[x_1, \ldots, x_r]/J$,

such that, with respect to the new basis, each element of $F[x_1, \ldots, x_r]/J$ is represented as

 $\left(\begin{array}{cc} E & * \\ 0 & D \end{array}\right)$

with the submatrix D giving a representation of A isomorphic to the regular representation. Over this basis $f(x_1, \ldots, x_r) + J$ is represented as a matrix

$$T = \left(\begin{array}{cc} S & * \\ 0 & 0 \end{array}\right)$$

where the matrix S has full rank, and the nullity of the matrix T gives the number of solutions of the equation $f(x_1, \ldots, x_r) = 0$ in F^r .

6 Open problems

Buchberger's Grobner basis algorithm [2] gives a computational method to test ideal membership, which would allow one to construct the regular representation of A, and consequently find the roots of Γ in F^r . Unfortunately, this algorithm is characterized by a very bad worst case execution time [1].

In the case of a single polynomial equation, the generators of the ideal I assume a very neat form. Is it possible in this case to compute the dimension of the algebra A (number of roots in F^r) or its regular representation (which would allow one to compute the value of the roots) without using the Grobner basis machinery?

Acknowledgements

The author wishes to thank Prof. J.D. Dixon for suggesting the problem and for his invaluable advice and comments.

References

[1] D. Bayer and M. Stillman On the Complexity of Computing Syzygies. in Computational Aspects of Commutative Algebra, L. Robbiano (ed.), Academic Press, 1989.

- [2] B. Buchberger. Grobner Basis: An Algorithmic Method in Polynomial Ideal Theory. in Recent Trends in Multidimensional System Theory, N.K. Bose (ed.), D. Reidel Publ. Comp., 1985.
- [3] C.W. Curtis and I. Reiner Representation theory of finite groups and associative algebras. John Wiley & sons, Inc., 1962.
- [4] I.N. Herstein *Noncommutative rings*. Carus mathematical monograph number fifteen, The Mathematical Association of America, 1968.
- [5] W. Fulton Algebraic curves. W.A. Benjamin, Inc. 1969.

School of Computer Science, Carleton University Recent Technical Reports

TR-179	Parallel Algorithms for Determining K-width-Connectivity in Binary Images Frank Dehne and Susanne E. Hambrusch, September 1990
TR-180	A Workbench for Computational Geometry (WOCG) P. Epstein, A. Knight, J. May, T. Nguyen, and JR. Sack, September 1990
TR-181	Adaptive Linear List Reorganization under a Generalized Query System R.S. Valiveti, B.J. Oommen and J.R. Zgierski, October 1990
TR-182	Breaking Substitution Cyphers using Stochastic Automata B.J. Oommen and J.R. Zgierski, October 1990
TR-183	A New Algorithm for Testing the Regularity of a Permutation Group V. Acciaro and M.D. Atkinson, November 1990
TR-184	Generating Binary Trees at Random M.D. Atkinson and JR. Sack, December 1990
TR-185	Uniform Generation of Combinatorial Objects in Parallel M.D. Atkinson and JR. Sack, January 1991
TR-186	Reduced Constants for Simple Cycle Graph Separation Hristo N. Djidjev and Shankar M. Venkatesan, February 1991
TR-187	Multisearch Techniques for Implementing Data Structures on a Mesh-Connected Computer Mikhail J. Atallah, Frank Dehne, Russ Miller, Andrew Rau-Chaplin, and Jyh-Jong Tsay, February 199
TR-188	Generating and Sorting Jordan Sequences Alan Knight and Jörg-Rüdiger Sack, March 1991
TR-189	Probabilistic Estimation of Damage from Fire Spread Charles C. Colbourn, Louis D. Nel, T.B. Boffey and D.F. Yates, April 1991
TR-190	Coordinators: A Mechanism for Monitoring and Controlling Interactions Between Groups of Objects Wilf R. LaLonde, Paul White, and Kevin McGuire, April 1991
TR-191	Towards Decomposable, Reusable Smalltalk Windows Kevin McGuire, Paul White, and Wilf R. LaLonde, April 1991
TR-192	PARASOL: A Simulator for Distributed and/or Parallel Systems John E. Neilson, May 1991
TR-193	Realizing a Spatial Topological Data Model in a Relational Database Management System Ekow J. Otoo and M.M. Allam, August 1991
TR-194	String Editing with Substitution, Insertion, Deletion, Squashing and Expansion Operations B John Commen, September 1991
TR-195	The Expressiveness of Silence: Optimal Algorithms for Synchronous Communication of Information Una-May O'Reilly and Nicola Santoro, October 1991
TR-196	Lights, Walls and Bricks J. Czyzowicz, E. Rivera-Campo, N. Santoro, J. Urrutia and J. Zaks, October 1991
TR-197	A Brief Survey of Art Gallery Problems in Integer Lattice Systems Evangelos Kranakis and Michel Pocchiola, November 1991
TR-198	On Reconfigurability of Systolic Arrays Amiya Nayak, Nicola Santoro, and Richard Tan, November 1991

TR-199	Constrained Tree Editing B. John Oommen and William Lee, December 1991
TR-200	Industry and Academic Links in Local Economic Development: A Tale of Two Cities Helen Lawton Smith and Michael Atkinson, January 1992
TR-201	Computational Geometry on Analog Neural Circuits Frank Dehne, Boris Flach, Jörg-Rüdiger Sack, Natana Valiveti, January 1992
TR-202	Efficient Construction of Catastrophic Patterns for VLSI Reconfigurable Arrays Amiya Nayak, Linda Pagli, Nicola Santoro, February 1992
TR-203	Numeric Similarity and Dissimilarity Measures Between Two Trees B. John Oommen and William Lee, February 1992
TR-204	Recognition of Catastrophic Faults in Reconfigurable Arrays with Arbitrary Link Redundancy Amiya Nayak, Linda Pagli, Nicola Santoro, March 1992
TR-205	The Permutational Power of a Priority Queue M.D. Atkinson and Murali Thiyagarajah, April 1992
TR-206	Enumeration Problems Relating to Dirichlet's Theorem Evangelos Kranakis and Michel Pocchiola, April 1992
TR-207	Distributed Computing on Anonymous Hypercubes with Faulty Components Evangelos Kranakis and Nicola Santoro, April 1992
TR-208	Fast Learning Automaton-Based Image Examination and Retrieval B. John Oommen and Chris Fothergill, June 1992
TR-209	On Generating Random Intervals and Hyperrectangles Luc Devroye, Peter Epstein and Jörg-Rüdiger Sack, July 1992
TR-210	Sorting Permutations with Networks of Stacks M.D. Atkinson, August 1992
TR-211	Generating Triangulations at Random Peter Epstein and Jörg-Rüdiger Sack, August 1992
TR-212	Algorithms for Asymptotically Optimal Contained Rectangles and Triangles Evangelos Kranakis and Emran Rafique, September 1992
TR-213	Parallel Algorithms for Rectilinear Link Distance Problems Andrzej Lingas, Anil Maheshwari and Jörg-Rüdiger Sack, September 1992
TR-214	Camera Placement in Integer Lattices Evangelos Kranakis and Michel Pocchiola, October 1992
TR-215	Labeled Versus Unlabeled Distributed Cayley Networks Evangelos Kranakis and Danny Krizanc, November 1992
TR-216	Scalable Parallel Geometric Algorithms for Coarse Grained Multicomputers Frank Dehne, Andreas Fabri and Andrew Rau-Chaplin, November 1992
TR-217	Indexing on Spherical Surfaces Using Semi-Quadcodes Ekow J. Otoo and Hongwen Zhu, December 1992
TR-218	A Time-Randomness Tradeoff for Selection in Parallel Danny Krizanc, February 1993
ΓR-219	Three Algorithms for Selection on the Reconfigurable Mesh Dipak Pravin Doctor and Danny Krizanc, February 1993
ΓR-220	On Multi-label Linear Interval Routing Schemes Evangelos Kranakis, Danny Krizanc, and S.S. Ravi, March 1993
ΓR-221	Note on Systems of Polynomial Equations over Finite Fields Vincenzo Acciaro, March 1993