CONTAINMENT OF ELEMENTARY

GEOMETRIC OBJECTS

Jörg-R. Sack (+) Nicola Santoro (+) Jorge Urrutia (+,*)

SCS-TR-39

February 1984

This paper has been presented at the 15th Southeastern Conference on Combinatorics, Graph Theory and Computing, Baton Rouge, U.S.A., March 1984.

The research was supported by the Natural Sciences and Engineering Research Council of Canada.

- (+) School of Computer Science, Carleton University, Ottawa, Canada
- (*) Centro de Investigacion en Matematicas, Guanajuato, Mexico

1. GEOMETRIC CONTAINMENT AND PARETO DOMINANCE

Consider a family F of closed curves in the plane; e.g. polygons. Given A, B, \in F, it might be important to determine whether A fits into B; that is, whether there exists a rotation and a translation which will move A in the plane so that A and its interior lies within B (A is contained in B). The problem of deciding if A fits into B, for all A, B \in F is herein called the containment problem for F.

For some families of closed curves, it is easy to find a parametric representation of each object in the family in such a way that containment can be solved by testing for vector (or, <u>Pareto</u>) <u>dominance</u> on the representations.

Example: Let F be the family of squares (equilateral triangles, circles), and let S_i , $S_j \in F$. Then S_i fits into S_j if the area of S_i is not greater than the area of S_j . That is, vector dominance on one paremeter r solves the containment problem for these families.

Example: Let F be the family of ellipses; and, given $E_k \in F$, let a_k and b_k denote the length of the major and minor axes of E_k , respectively. Then, for any E_i , $E_j \in F$, E_i fits in E_j if and only if $(a_i,b_i) \leq (a_j,b_j)$. That is, vector dominance on two parameters solves the containment problem for ellipses.

In view of these facts and of the existence of efficient algorithms with complexity $O(n(\log\,n)^{d-1})$, for solving vector dominance in \mathbb{R}^d , the following question naturally arises: For what families of geometrical objects can the containment problem

•

be reduced to a Pareto dominance problem?

Consider the family R of all rectangles. In this case, the above question becomes: is it possible to characterize each rectangle R_k by a vector of two parameters $P_k = \langle P^1(R_k), P^2(R_k) \rangle$ in such a way that rectangle R_k fits into rectangle R_j iff $P_k \leq F_j$?

Obvious candidates for parameters are: length, width, area, diagonal, etc. The educated guess that any two of them suffice to solve the problem is, unfortunately, an incorrect one as illustrated by the following (counter-)examples.

Example: <Width, Length>, where length is defined as the largest of the two sides. Let L_k and W_k represent the length and width of R_k , respectively, and let R_i , $R_j \in R$. If $\langle W_i, L_i \rangle \leq \langle W_j, L_j \rangle$ then R_i fits into R_j . However, the converse is not necessarily true: let W_i = 0, and W_j ‡ 0 and L_i = $(W_j^2 + L_j^2)^{1/2}$; then $L_j < L_i$ but R_i fits into R_j .

Example: <Area, Diagonal>. Let A_k and D_k represent the area and the diagonal of R_k , respectively; and let R_i , $R_j \in R$. If R_i fits into R_j , then $\langle A_i, D_i \rangle \leq \langle A_j, D_j \rangle$. However, regardless of A_j , no rectangle $R_i \ddagger R_j$ with $D_i = D_j$ and $A_i \ddagger 0$ fits into R_j . Thus, by choosing $0 < A_i < A_j$, a contradiction arises.

The main result of this paper is to show that these negative results are not accidental (e.g., due to poor choice of parameters), but intrinsic to the problem. In fact, it is proved that the containment problem for rectangles cannot be solved with two parameters by vector dominance regardless of the choice of parameters.

The proof is obtained by using the well known result that any set

40

of mutually disjoint open sets in the plane has cardinality at most ∞ , and by showing that solvability of this problem by vector dominance implies the existence of such a set having cardinality at least ∞ .

In Section 3, it will be shown how to apply the proof technique to obtain a parametric representation of rectangles such that containment of rectangles into squares can be reduced to Pareto dominance.

2. The Main Result

Associate with each rectangle ${\tt R}_k\in {\tt R}$ (with width ${\tt W}_k$ and length ${\tt L}_k)$ the point $({\tt W}_k$, ${\tt L}_k$) in ${\tt R}^2$. Using this mapping, for each ${\tt R}_k$ there exists a region ${\tt S}_k$ of ${\tt R}^2$ consisting of all points in ${\tt R}^2$ whose associated rectangle fits in ${\tt R}_k$ (see Figure 1). Note that we consider only points in the first quadrant with ordinate (length) \geq abscissa (width).

A rectangle ${\bf R_i}$ fits <u>tightly</u> into ${\bf R_k}$ if any increase in ${\bf W_i}$ or ${\bf L_i}$ would make it not fit into ${\bf R_k}$. More formally, ${\bf R_i}$ fits tightly into ${\bf R_k}$ if and only if

- a) $R_i \neq R_k$
- b) R_i fits into R_k
- c) for any rectangle R_j such that $\text{W}_i \leq \text{W}_j$ and $\text{L}_i \leq \text{L}_j,$ if R_j fits into R_k then $R_i = R_j.$

Remark 1: If R_j fits tightly into R_k , then in any "immersion" of R_j into R_k , the intersection of the boundaries of both rectangles consists of the four vertices of R_j .

Remark 2: If R_i fits into R_j and R_j fits tightly into R_k , $(R_i \neq R_j \neq R_k)$ then R_i does not fit tightly into R_k ; i.e. R_i

4

fits "loosely" into R_k .

This is equivalent to saying that (W_i, L_i) lies in the interior of S_k . (See Figure 2.)

Remark 3: For any rectangle R_i there is an infinite number of rectangles R_i that fit tightly into R_i .

Theorem 1: The containment problem for rectangles cannot be solved by vector dominance in the plane.

Proof: Assume that the containment problem for rectangles can be solved by vector dominance on two parameters. Let P^1 and P^2 be such parameters, and $P(R_k) = (P^1(R_k), P^2(R_k))$ be the point in associated to R_k by using these parameters. Then for any R_i , $R_j \in R$, R_i fits in R_j if and only if $P(R_i) \leq P(R_j)$; i.e. $P^1(R_i) \leq P^1(R_j)$ and $P^2(R_i) \leq P^2(R_j)$.

Claim 1: If R_i and R_j fit tightly into R_k , then by Remark 2, neither $P(R_i) < P(R_j)$ nor $P(R_i) > P(R_j)$.

Proof of Claim 1: Let R_i and R_j fit tightly into R_k and assume $P(R_i) < P(R_j)$. It follows that R_i fits into R_j . But, by Remark 2, would follow that R_i does not fit tightly into R_k yielding a contradiction. []

Claim 2: Given R_k , there exists an \overline{R}_k that fits tightly in R_k and $P^1(\overline{R}_k) < P^1(R_k)$ and $P^2(\overline{R}_k) < P^2(R_k)$.

Proof of Claim 2: By Remark 3 for any R_k with non-zero area there exist at least three distinct rectangles R_1 , R_2 and R_3 which fit tightly into R_k . By Claim 1 these three rectangles must be mapped to three non comparable elements $P(R_1)$, $P(R_2)$ and $P(R_3)$. Let $(X_i,Y_i)=(P^1(R_i),P^2(R_i))$, i=1,2,3. If the claim is not true, then

each vector (X_1, Y_1) ties $(P^1(R_k), P^2(R_k))$ in at least one coordinate. Therefore, for at least two of the three vectors, say (X_1, Y_1) and (X_2, Y_2) , must tie in one coordinate; thus either $P(R_1) > P(R_2)$ or $P(R_2) > P(R_1)$. This would contradict Claim 1 since both R_1 and R_2 fit tightly into R_k . []

Associate to R_k the open set $O(R_k) = \{(x,y) \in \mathbb{R}^2 : P^1(\overline{R}_k) < x < P^1(R_k), P^2(\overline{R}_k) < y < P^2(R_k)\}$. (See Figure 3.)

Claim 3: For any ${\bf R}_k$, there exists no rectangle ${\bf R}_j$ such that ${\bf P}({\bf R}_j)\!\in {\bf O}({\bf R}_k).$

Proof of Claim 3: Notice that if such a rectangle R_j exists, then $P(\overline{R}_k) < P(R_j) < P(R_k)$, i.e. \overline{R}_k fits into R_j which in turn fits into R_k . This would contradict the fact that \overline{R}_k fits tightly into $R_{k^*}[$

From these claims it follows that to any rectangle ${\rm R}_k$ we can associate an open set ${\rm O}({\rm R}_k)$ such that no rectangle ${\rm R}_j$ is mapped by ${\rm P}_1$ and ${\rm P}^2$ into ${\rm O}({\rm R}_k).$ In particular it follows that

Claim 4 If R_i fits into R_j then $O(R_i) \cap O(R_j) = \emptyset$.

Consider now the set of rectangles $L = \{R_i : 2 \ W_i = L_i\}$ whose cardinality is obviously ∞_i . Let $O(L) = \{O(R_i) : R_i \in L\}$; the cardinality of O(L) is ∞_i , and by Claim 4 its elements are mutually disjoint. But any set of mutually disjoint open sets in the plane has at most ∞_i elements. This contradication concludes the proof of the Theorem. []

3. A Containment Problem That is Reducible

In view of the negative result of the previous section, it is

natural to ask under what restrictions the rectangle containment problem can be reduced to Pareto dominance.

Consider the subfamily $\mathbf{Q} \subseteq \mathbf{R}$ of all squares. It is trivial to determine containment of squares into rectangles using only one parameter. Here, it is shown that containment of elements in \mathbf{R} into elements in \mathbf{Q} can be reduced to vector dominance with two parameters. Associate again with each $\mathbf{R}_{\mathbf{k}} \in \mathbf{R}$ the point $(\mathbf{W}_{\mathbf{k}}, \mathbf{L}_{\mathbf{k}})$ in \mathbb{R}^2 .

For any $R_i \in R$ define two parameters:

$$P^{1}(R_{i}) = \begin{cases} (L_{i} + W_{i})W_{i}/L_{i} & \text{if } W_{i}/L_{i} \leq \sqrt{2} - 1 \\ \sqrt{2} W_{i} & \text{otherwise} \end{cases}$$

$$P^{2}(R_{i}) = \begin{cases} W_{i} + L_{i} & \text{if } W_{i}/L_{i} \leq \sqrt{2} - 1 \\ \sqrt{2} L_{i} & \text{otherwise} \end{cases}$$
and let $P(R_{i}) = (P^{1}(R_{i}), P^{2}(R_{i}))$

Lemma: For all $R_i \in R$ and $Q_k \in Q$, R_i fits into Q_k if and only if $P(R_i) \leq P(Q_k)$.

Proof: Consider the region S_k of \mathbb{R}^2 consisting of all points $(x,y)\in\mathbb{R}^2$, $x\leq y$, whose associated rectangle fits into $\mathbb{Q}_k\in\mathbb{Q}$. It is not difficult to see that $(x,y)\in S_k$ if and only if $(x+y)\leq 2L_k$ or $y\leq L_k$. (See Figure 4.) By the definitions of \mathbb{P}^1 and \mathbb{P}^2 the result follows. [].

Hence, the following theorem holds:

Theorem 2: Containment of rectangles into squares is reducible to vector dominance in the plane.

4. Open Problems and Concluding Remarks

It has been shown that the relations of geometric containment and vector dominance in the plane are not equivalent for the family of rectangles.

.

Using the proof technique of Theorem 1, it can be shown that the same negative result holds also for the family ${\bf I}$ of isosceles triangles.

We conclude with the following two conjectures:

(Weak) <u>Conjecture</u>: Containment of rectangles is not reducible to vector dominance in \mathbb{R}^{κ} , for any k, using continuous or piece-wise continuous parameters.

(Strong) Conjecture: The containment problem for families of polygons with k degrees of freedom cannot be solved by Pareto dominance in \mathbb{R}^m .

Addendum:

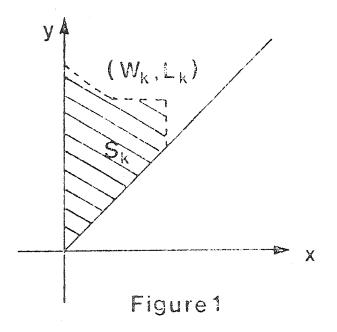
Some recent results, based on a different proof technique, have shown the weak conjecture to be true [4]. It is still not known whether the strong conjecture holds.

Acknowledgement:

We would like to thank Jeff Sidney for many helpful discussions.

References

- (1) Cantor G.: "Sur les series trigonometriques", <u>Acta Mathematica</u> 2 (1871), 329-335.
- (2) Edelsbrunner H. and Overmars M.H.: "On the equivalence of some rectangle problems", Tech. Rep. F77, Institut fur Informationsverarbeitung, University of Graz, 1981.
- (3) Lefschetz S.: "Introduction to Topology", Princeton University Press, Princeton, N.J., 1949.
- (4) Santoro N., Sidney D., Sidney J.B., Urrutia J: "Geometric Containment is not Reducible to Pareto Dominance", unpublished report, 1984.



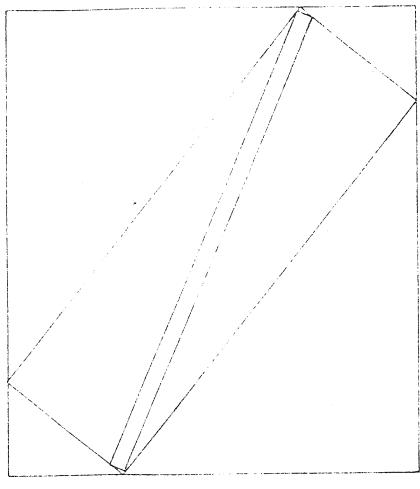
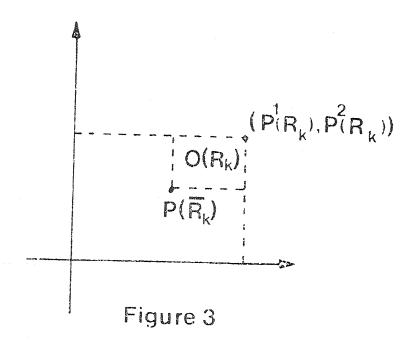


Figure 2



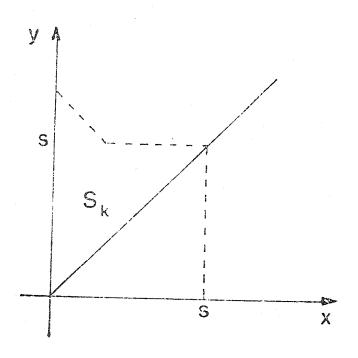


Figure 4

CARLETON UNIVERSITY

School of Computer Science

BIBLIOGRAPHY OF SCS TECHNICAL REPORTS

SCS-TR-1	THE DESIGN OF CP-6 PASCAL Jim des Rivieres and Wilf R. LaLonde, June 1982.
SCS-TR-2	SINGLE PRODUCTION ELIMINATION IN LR(1) PARSERS: A SYNTHESIS Wilf R. LaLonde, June 1982.
SCS-TR-3	A FLEXIBLE COMPILER STRUCTURE THAT ALLOWS DYNAMIC PHASE ORDERING Wilf R. LaLonde and Jim des Rivieres, June 1982.
SCS-TR-4	A PRACTICAL LONGEST COMMON SUBSEQUENCE ALGORITHM FOR TEXT COLLATION Jim des Rivieres, June 1982.
SCS-TR-5	A SCHOOL BUS ROUTING AND SCHEDULING PROBLEM Wolfgang Lindenberg, Frantisek Fiala, July 1982.
SCS-TR-6	ROUTING WITHOUT ROUTING TABLES Nicola Santoro, Ramez Khatib, July 1982.
SCS-TR-7	CONCURRENCY CONTROL IN LARGE COMPUTER NETWORKS Nicola Santoro, Hasan Ural, July 1982.
SCS-TR-8 Out of Print	ORDER STATISTICS ON DISTRIBUTED SETS Nicola Santoro, Jeffrey B. Sidney, July 1982.
SCS-TR-9	OLIGARCHICAL CONTROL OF DISTRIBUTED PROCESSING SYSTEMS Moshe Krieger, Nicola Santoro, August 1982.
SCS-TR-10	COMMUNICATION BOUNDS FOR SELECTION IN DISTRIBUTED SETS Nicola Santoro, Jeffrey B. Sidney, September 1982.
SCS-TR-11	SIMPLE TECHNIQUE FOR CONVERTING FROM A PASCAL SHOP TO A C SHOP Wilf R. LaLonde, John R. Pugh, November 1982.
SCS-TR-12	EFFICIENT ABSTRACT IMPLEMENTATIONS FOR RELATIONAL DATA STRUCTURES Nicola Santoro, December 1982.
SCS-TR-13	ON THE MESSAGE COMPLEXITY OF DISTRIBUTED PROBLEMS Nicola Santoro, December 1982.

SCS-TR-14	A COMMON BASIS FOR SIMILARITY MEASURES INVOLVING TWO STRINGS R. L. Kashyap and B. J. Oommen, January 1983.
SCS-TR-15	SIMILARITY MEASURES FOR SETS OF STRINGS R. L. Kashyap and B. J. Oommen, January 1983.
SCS-TR-16	THE NOISY SUBSTRING MATCHING PROBLEM R. L. Kashyap and B. J. Oommen, January 1983.
SCS-TR-17	DISTRIBUTED ELECTION IN A CIRCLE WITHOUT A GLOBAL SENSE OF ORIENTATION E. Korach, D. Rotem, N. Santoro, January 1983.
SCS-TR-18	A GEOMETRICAL APPROACH TO POLYGONAL DISSIMILARITY AND THE CLASSIFICATION OF CLOSED BOUNDARIES R. L. Kashyap and B. J. Oommen, January 1983.
SCS-TR-19	SCALE PRESERVING SMOOTHING OF POLYGONS R. L. Kashyap and B. J. Oommen, January 1983.
SCS-TR-20	NOT-QUITE-LINEAR RANDOM ACCESS MEMORIES Jim des Rivieres, Wilf LaLonde and Mike Dixon, August 1982, Revised March 1, 1983.
SCS-TR-21	SHOUT ECHO SELECTION IN DISTRIBUTED FILES D. Rotem, N. Santoro, J. B. Sidney, March 1983.
SCS-TR-22	DISTRIBUTED RANKING E. Korach, D. Rotem, N. Santoro, March 1983.
SCS-TR-23	A REDUCTION TECHNIQUE FOR SELECTION IN DISTRIBUTED FILES: I N. Santoro, J. P. Sidney, April 1983.
SCS-TR-24	LEARNING AUTOMATA POSSESSING ERGODICITY OF THE MEAN: THE TWO ACTION CASE M. A. L. Thathachar and B. J. Oommen, May 1983.
SCS-TR-25	ACTORS - THE STAGE IS SET John R. Pugh, June 1983.
SCS-TR-26	ON THE ESSENTIAL EQUIVALENCE OF TWO FAMILIES OF LEARNING AUTOMATA M. A. L. Thathachar and B. J. Oommen, May 1983.
SCS-TR-27	GENERALIZED KRYLOV AUTOMATA AND THEIR APPLICABILITY TO LEARNING IN NONSTATIONARY ENVIROMENTS B. J. Commen, June 1983.
SCS-TR-28	ACTOR SYSTEMS: SELECTED FEATURES Wilf R. Lalonde July 1983

Wilf R. LaLonde, July 1983.

Bibliography of SCS Technical Reports (continued) page 3

SCS-TR-29	ANOTHER ADDENDUM TO KRONECKER'S THEORY OF PENCILS M. D. Atkinson, August 1983.
SCS-TR-30	SOME TECHNIQUES FOR GROUP CHARACTER REDUCTION M. D. Atkinson and R. A. Hassan, August 1983.
SCS-TR-31	AN OPTIMAL ALGORITHM FOR GEOMETRICAL CONGRUENCE M. D. Atkinson, August 1983.
SCS-TR-32	MULTI-ACTION LEARNING AUTOMATA POSSESSING ERGODICITY OF THE MEAN B. J. Oommen and M. A. L. Thathachar, August 1983.
SCS-TR-33	FIBONACCI GRAPHS, CYCLIC PERMUTATIONS AND EXTREMAL POINTS N. Santoro and J. Urrutia, December 1983
SCS-TR-34	D. Rotem, N. Santoro, and J. B. Sidney, December 1983
SCS-TR-35	A REDUCTION TECHNIQUE FOR SELECTION IN DISTRIBUTED FILES: II N. Santoro, M. Scheutzow, and J. B. Sidney, December 1983
SCS-TR-36	THE ASYMPTOTIC OPTIMALITY OF DISCRETIZED LINEAR REWARD-INACTION LEARNING AUTOMATA B. J. Oommen and Eldon Hansen, January 1984
SCS-TR-37	GEOMETRIC CONTAINMENT IS NOT REDUCIBLE TO PARETO DOMINANCE N. Santoro, J. B. Sidney, S. J. Sidney, and J. Urrutia, January 1984
SCS-TR-38	AN IMPROVED AGLORITHM FOR BOOLEAN MATRIX MULTIPLICATION N. Santoro and J. Urrutia, January 1984
SCS-TR-39	CONTAINMENT OF ELEMENTARY GEOMETRIC OBJECTS J. Sack, N. Santoro and J. Urrutia, February 1984
SCS-TR-40	SADE: A PROGRAMMING ENVIRONMENT FOR DESIGNING AND TESTING SYSTOLIC ALGORITHMS J. P. Corriveau and N. Santoro, February 1984
SCS-TR-41	INTERSECTION GRAPHS, {B }-ORIENTABLE GRAPHS AND PROPER CIRCULAR ARC GRAPHS Jorge Urrutia, February 1984
SCS-TR-42	MINIMUM DECOMPOSITIONS OF POLYGONAL OBJECTS J. Mark Keil and Jorg-R. Sack, March 1984
SCS-TR-43	AN ALGORITHM FOR MERGING HEAPS

SCS-TR-44	A DIGITAL HASHING SCHEME FOR DYNAMIC MULTIATTRIBUTE FILES E. J. Otoo, March 1984
SCS-TR-45	SYMMETRIC INDEX MAINTENANCE USING MULTIDIMENSIONAL LINEAR HASHING E. J. Otoo, March 1984
SCS-TR-46	A MAPPING FUNCTION FOR THE DIRECTORY OF A MULTIDIMENSIONAL EXTENDIBLE HASHING E. J. Otoo, March 1984
SCS-TR-47	TRANSLATING POLYGONS IN THE PLANE Jorg-R. Sack, March 1984
SCS-TR-48	CONSTRAINED STRING EDITING J. Oommen, May 1984
SCS-TR-49	O(N) ELECTION ALGORITHMS IN COMPLETE NETWORKS WITH GLOBAL SENSE OF ORIENTATION Jorg Sack, Nicola Santoro, Jorge Urrutia, May 1984
SCS-TR-50	THE DESIGN OF A PROGRAM EDITOR BASED ON CONSTRAINTS Christopher A. Carter and Wilf R. LaLonde, May 1984
SCS-TR-51	DISCRETIZED LINEAR INACTION-PENALTY LEARNING AUTOMATA B. J. Oommen and Eldon Hansen, May 1984
SCS-TR-52	SENSE OF DIRECTION, TOPOLOGICAL AWARENESS AND COMMUNICATION COMPLEXITY Nicola Santoro, May 1984
SCS-TR-53	OPTIMAL LIST ORGANIZING STRATEGY WHICH USES STOCHASTIC MOVE- TO-FRONT OPERATIONS B. J. Oommen, June 1984
SCS-TR-54	RECTINLINEAR COMPUTATIONAL GEOMETRY J. Sack, June 1984
SCS-TR-55	AN EFFICIENT, IMPLICIT DOUBLE-ENDED PRIORITY QUEUE M. D. Atkinson, Jorg Sack, Nicola Santoro, T. Strothotte, July 1984
SCS-TR-56	DYNAMIC MULTIPAGING: A MULTIDIMENSIONAL STRUCTURE FOR FAST ASSOCIATIVE SEARCHING E. Otoo, T. H. Merrett
SCS-TR-57	SPECIALIZATION, GENERALIZATION AND INHERITANCE Wilf R. LaLonde, John R. Pugh, August 1984

Bibliography	of	SCS	Technical	Reports	(continued)	page	5
--------------	----	-----	-----------	---------	-------------	------	---

SCS-TR-58	COMPUTER ACCESS METHODS FOR EXTENDIBLE ARRAYS OF VARYING DIMENSIONS E. Otoo, August 1984.
SCS-TR-59	AREA-EFFICIENT EMBEDDINGS OF TREES J. P. Corriveau, Nicola Santoro, August 1984.
SCS-TR-60	UNIQUELY COLOURABLE m-DICHROMATIC ORIENTED GRAPHS V. Neumann-Lara, N. Santoro, J. Urrutia, August 1984.
SCS-TR-61	ANALYSIS OF A DISTRIBUTED ALGORITHMS FOR EXTREMA FINDING IN A RING D. Rotem, E. Korach and N. Santoro, August 1984.
SCS-TR-62	ON ZIGZAG PERMUTATIONS AND COMPARISONS OF ADJACENT ELEMENTS M. D. Atkinson, October 1984
SCS-TR-63	SETS OF INTEGERS WITH DISTINCT DIFFERENCES M. D. Atkinson, A. Hassenklover, October 1984.
SCS-TR-64	TEACHING FIFTH GENERATION COMPUTING: THE IMPORTANCE OF SMALL TALK Wilf R. LaLonde, Dave A. Thomas, John R. Pugh, October 1984.
SCS-TR-65	AN EXTREMELY FAST MINIMUM SPANNING CIRCLE ALGORITHM B. J. Ochmen, October, 1984.
SCS-TR-66	ON THE FUTILITY OF ARBITRARILY INCREASING MEMORY CAPABILITIES OF STOCHASTIC LEARNING AUTOMATA B. J. Oormen, October, 1984.