UNIQUELY COLOURABLE m-DICHROMATIC ORIENTED GRAPHS

V. Neumann-Lara*,+
 N. Santoro**
J. Urrutia***,+

SCS-TR-60 August 1984

^{*} Instituto de Mathematicas. Universidad Nacional Autonoma de Mexico, Mexico. Mexico 20 D.O.F. Mexico

^{**} School of Computer Science, Carleton University, Ottawa, Canada

^{***} Computer Science Department, University of Ottawa, Ottawa, Canada

The work of this author was permormed while visiting the School of Computer Science, Carleton University.

The dichromatic number $d_k(D)$ of a digraph D is the minimum number of colours needed to colour V(D) in such a way that no monochromatic directed cycle is obtained. A digraph D is called uniquely colourable if any acyclic $d_k(D)$ -colouring of V(D) induces the same partition of V(D). In this paper we construct an infinite family of uniquely colourable m-dichromatic oriented graphs for all m>2.

1. Introduction and Terminology

An acyclic m-colouring of a digraph D is a colouring of the vertices of D with m colours in such a way that no monochromatic directed cycle is obtained. The **dichromatic number** $d_k(D)$ of D is the minimum number m such that there exists an acyclic m-colouring of D. The dichromatic number was introduced independently by Neumann-Lara [5] and Meyniel [4], and has been studied in several papers; see [1,2,3,4,5,6,7].

A digraph D is called **uniquely colourable** if every acyclic $d_k(D)$ -colouring of D induces the same partition of V(D). In this paper we study uniquely colourable oriented graphs. We obtain an infinite family of uniquely colourable m-dichromatic oriented graphs for every m>2. Some techniques introduced in [7] to study vertex critical m-dichromatic tournaments are used in this paper.

In section 2, we construct two families of uniquely colourable 2-dichromatic oriented graphs. These families are then used in section 3 to generate uniquely colourable r-dichromatic oriented graphs for $r \ge 3$.

Let D be a digraph, V(D) and A(D) will denote the vertex and arc sets of D respectively.

For a vertex $v \in V(D)$, $d^+(v)$, $d^-(v)$, $\Gamma^+(v)$ and $\Gamma^-(v)$ will denote the in and out-degree of v and the in and out-neighborhood of v respectively. The set $\{0,1,2,\ldots,n-1\}$ will be denoted by I_n .

Given a subset $S \subset V(D)$, D[S] will denote the subdigraph of D induced by S. In this paper the word cycle will refer only to directed cycles. All digraphs considered here are oriented graphs.

2. Constructing Uniquely Colourable 2-Dichromatic Oriented Graphs

In this section we will obtain a family of uniquely colourable 2-dichromatic oriented graphs. The following definitions are needed:

For i_1 , i_2 ,..., i_s ϵ I_n - $\{0\}$, let C_n (i_1, i_2, \ldots, i_s) be the digraph with vertex set I_n whose arcs are the ordered pairs $(j, j+i_r)$, $j\epsilon I_n$, 1 < r < s, where $j+i_r$ is taken mod n.

Let $H_r = C_{2r+1}$ (1,2,..., r-1, r+1). Observe that H_r is a regular tournament with 2r+1 vertices. In [7] it was proved (see Theorem 2) that d_k (H_r) = 3.

Let i be a vertex of $H_{\mbox{\scriptsize r}}, \mbox{\scriptsize r}\!\!>\!\!4.$ The following properties can be proved.

- i) $d^+(i) = d^-(i) = r$.
- ii) The subtournaments induced in H_r by $\Gamma^+(i)$ and $\Gamma^-(i)$ respectively contain directed cycles.
- iii) Let T_r be an acyclic subtournament of H_r with r vertices. If the source of T_r is vertex i then

$$V(T_r) = \{i, i+1,..., i+r-1\} = S_i$$
 or $V(T_r) = S_i$ U $\{i+r+1\} - \chi i+1\} = S_i'$

iv) In $H_r[V(H_r) - S_i]$, $r \ge 4$, the in-degree $d^-(v)$ of any vertex is at least 2.

We can now prove the following result.

Theorem 1: $H_r' = H_r - 0$ is uniquely 2-colourable (r>4) with chromatic classes S_1 and S_{r+1} .

Proof: The sets $S_1 = \{1,2,\ldots,r\}$ and $S_{r+1} = \{r+1,\ldots,2r\}$ induce acyclic subtournaments of H_r' , and since H_r' is not acyclic, then $d_k(H_r')=2$. We shall now prove that H_r' is also uniquely 2-colourable. Let C_0 and C_1 be the chromatic classes of an acyclic 2-colouring of H_r' . Then $H_r' \begin{bmatrix} C_0 \end{bmatrix}$ and $H_r' \begin{bmatrix} C_1 \end{bmatrix}$ are acyclic subtournaments of H_r' . Let i be the source of $H_r' \begin{bmatrix} C_0 \end{bmatrix}$. Clearly $C_0 \subset \{i\} \cup \Gamma^+(i, H_r)$. By i) and ii) it follows that $|C_0| < r$. Similarly, $|C_1| < r$; and since $|C_0| + |C_1| = 2r$, $|C_0| = |C_1| = r$. By iii) it follows that $|C_0| < S_1$.

0

Suppose that $C_0 = S_i^!$. By iv), $\delta^-(H_r[V(H_r) - S_i^!]) > 2$. It follows that $\delta^-(H_r^![C_1]) > 1$. Therefore $H_r[C_1]$ is not acyclic. Hence $C_0 = S_i$. Similarly $C_1 = S_j$ for some j. Therefore $\{C_0, C_1\} = \{S_1, S_{r+1}\}$, and theorem 1 follows. [

Corollary 1: H_r - (r,0), r>4, is a uniquely colourable 2-dichromatic oriented graph. Furthermore $d_k(H_r$ - (j,0))= 3 for j ϵ {r+2, r+3, ..., 2r}.

Proof: $S_1 \cup \{0\}$ and S_{r+1} produce an acyclic 2-colouring of H_r - (r,0). Then $d_k(H_r - (r,0)) = 2$. But since $d_k(H_r) = 3$, (by Theorem 2 in [7]) in any acyclic 2-colouring γ of H_r - (r,0) vertices r and 0 receive the same

colour. However γ induces an acyclic 2-colouring in H $_r$ - 0 whose chromatic classes are, by Theorem 1, S $_1$ and S $_{r+1}.$ Then the chromatic classes of γ are S $_1$ U $\{0\}$ and S $_{r+1}.$

Similarly for j ϵ {r+2, r+3,..., 2r} \subset S_{r+1}, if H_r-(j,0) were 2-dichromatic, then S_{r+1} U {0} would be a chromatic class of any acyclic 2-colouring of H_r - (j,0). However H_r [S_{r+1} U {0}] - (j,0) is not acyclic. []

Remark 1: It should be pointed out that H_3 - (u,v) is uniquely 2-colourable for every (u,v) ϵ $A(H_3)$ but H_3 -0 is not.

3. Constructing Uniquely Colourable r-Dichromatic Oriented Graphs, r>3.

3.1 The function $\bar{\mathbf{n}}$ ($\mathbf{m_0}$, $\mathbf{m_1}$, $\mathbf{m_2}$)

Let m_0 , m_1 , m_2 be three non-negative integers. The function $\widetilde{n}(m_0,m_1,m_2)$ was defined in [7] as the smallest integer k for which there exist three subsets J_0 , J_1 , J_2 of I_k such that $\left|J_i\right|=m_i$, $0\leqslant i\leqslant 2$ and i=0,1,2 $J_i=\emptyset$

1;

The following lemma was proved in [7].

Lemma 1: Suppose that $m_0 \le m_1 \le m_2$. Then

$$\widetilde{\mathsf{n}} \ (\mathsf{m}_0 \,, \mathsf{m}_1 \,, \mathsf{m}_2) \ = \ \frac{\mathsf{m}_2}{\left[\frac{1}{2} \, (\mathsf{m}_0 \, + \, \mathsf{m}_1 \, + \, \mathsf{m}_2)\right]} \ \mathsf{if} \ \mathsf{m}_0 \, + \, \mathsf{m}_1 \, \geqslant \, \mathsf{m}_2$$

We say that (m_0, m_1, m_2) is an \widetilde{n} - upcritical triple if $1 \le m_1$, i = 0, 1, 2, and \widetilde{n} $(m_0 + 1, m_1, m_2) = \widetilde{n}$ $(m_0, m_1 + 1, m_2) = \widetilde{n}$ $(m_0, m_1, m_2 + 1) = \widetilde{n}$ $(m_0, m_1, m_2) + 1$. The next result follows easily from Lemma 1.

Lemma 2: Let $m_0 < m_1 < m_2$. Then the triple (m_0, m_1, m_2) is \widetilde{n} -upcritical if and only if $m_0 + m_1 > m_2$ and $m_0 + m_1 + m_2$ is even.

Let D_0 , D_1 and D_2 be three mutually disjoint digraphs. We denote by $t(D_0,D_1,D_2)$ the digraph whose vertex set is $U_0 V(D_i)$ with arc set $U_0 V(D_i)$ with arc set $U_0 V(D_i)$ us $V(D_i)$, vertex set $U_0 V(D_i)$, vertex set is $U_0 V(D_i)$, vertex set is $U_0 V(D_i)$, where in the staken mod 3. Notice that U_0 , U_1 and U_2 are induced subdigraphs of U_0 , U_1 , U_2 .

In [7] it was proved that $d_k(t(D_0,D_1,D_2))=\widetilde{n}(m_0,m_1,m_2)$ where $d_k(D_i)=m_i$, $m_i>1$, i=0,1,2.

Lemma 3: If (m_0, m_1, m_2) is an \widetilde{n} - upcritical triple, then any acyclic $\widetilde{n}(m_0, m_1, m_2)$ - colouring of $t(D_0, D_1, D_2)$ induces an acyclic m_i -colouring of D_i , i = 0,1,2.

Proof: Let $m = \widetilde{n}$ (m_0, m_1, m_2) and let γ be an acyclic m-colouring $D=t(D_0, D_1, D_2)$. For each D_i let J_i be the set of colours used by γ in $V(D_i)$. Clearly $\frac{1}{i=0}$ $J_i = \phi$ and $|J_i| > m_i$, i = 0,1,2. If $|J_i| > m_i$ for at least one $i \in \{0,1,2\}$, then $|U_0, U_1| > \widetilde{n}$ (m_0, m_1, m_2) since (m_0, m_1, m_2) is \widetilde{n} -upcritical. This is a contradiction. [

Lemma 4: Let (m_0, m_1, m_2) be \widetilde{n} -upcritical triple and γ and γ' two $\widetilde{n}(m_0, m_1, m_2)$ -colourings of $t(D_0, D_1, D_2)$ using the same set of colours; J_i and J_i' the sets of colours occurring in D_i in γ and γ' respectively i=0,1,2. If $J_i = J_i'$ for two values of ithen $J_i = J_i'$, i=0,1,2.

Proof: We can suppose w.l.o.g. that $J_0 = J_0'$ and $J_1 = J_1'$. Since $\int_{i=0}^{0} J_i = \int_{i=0}^{1} J_i' = \phi$, we conclude that $J_0 \cap J_1 \cap (J_2 \cup J_2') = \phi$. It follows that

 $|J_2UJ_2'|=m_2=|J_2|=|J_2'|$ since (m_0,m_1,m_2) is \widetilde{n} -upcritical. Therefore $J_2=J_2'$. []

3.2 Construction of $D^{(l)}$.

Given a digraph D, let $D^{(l)}$ be the digraph defined by $V(D^{(l)}) = V(D)X$ I and $((u,i), (v,j)) \in A(D^{(l)})$ if and only if $(u,v) \in A(D)$ and $|i-j| \le 1$.

Remark 2: Notice that if $f:V(D) \to I_{\mathfrak{L}}$ is any function such that $|f(u)-f(v)| \leqslant 1$ for every $u,v \in V(D)$, the subdigraph of $D^{(\mathfrak{L})}$ induced by $\{(u,f(u)) | u \in V(D)\}$ is isomorphic to D. In particular $D^{(\mathfrak{L})}$ $[V(D) \times \{i\}]$ is isomorphic to D.

Remark 3: Any acyclic r-colouring of D with chromatic classes C_1 , C_2 ,..., C_r induces an acyclic r-colouring of $D^{(l)}$ with chromatic classes C_1 X I_l , $1 \le i \le r$. Thus $d_k(D) = d_k(D^{(l)})$.

Lemma 5: Let D_i be a uniquely colourable m_i -dichromatic digraph and $D = t(D_1, D_2, D_3)$. If (m_0, m_1, m_2) is an \widetilde{n} -upcritical triple then in any acyclic m-colouring of $D^{(\ell)}$ with $m = d_k$ $(D^{(\ell)})$ the sets $\{v\} \times I_\ell$, $v \in V(D)$ are monochromatic.

Proof: Let $m=\widetilde{n}(m_0,m_1,m_2)$, γ an acyclic m-colouring of $D^{(l)}$ and $v\in V(D)$. Suppose w.l.o.g. that $v\in V(D_0)$. It is sufficient to prove that vertices (v,i) and (v,i+1), $0\le i\le l-1$, receive the same colour. Let H_0 be the subdigraph $D^{(l)}[V(D)x\{i\}]$ of D which by Remark 2 is isomorphic to D. Using γ and H_0 we can induce an acyclic m-colouring γ_7 of D in which vertex $u\in V(D)$ receives the same colour as vertex (u,i) in γ . Similarly using γ

and the subdigraph H_1 of $D^{(e)}$ induced by $((V(D) - \{v\}) \times \{i\}) \cup \{(v,i+1)\}$, $0 \le i \le 1-1$, we can induce a second acyclic m-colouring γ_2 of D. Since $V(H_0) - (v,i) = V(H_1) - (v,i+1)$, γ_1 and γ_2 are equal in all vertices of D except possibly in vertex v.

However by Lemma 4 , γ_1 and γ_2 induce two acyclic m $_0$ -colourings of D $_0$ using the same set of colours, and since D $_0$ is uniquely colourable, v must receive the same colour in γ_1 and γ_2 . Therefore vertices (v,i) and (v,i+1) receive the same colour in γ . []

By using similar arguments the following result can be proved.

Theorem 2: If D is a uniquely r-colourable oriented graph then $D^{(l)}$ is also a uniquely r-colourable oriented graph.

3.3 Construction of $D^{(l)}(\Lambda)$.

In what follows we shall suppose that D_i is a uniquely colourable m_i -dichromatic oriented graph, 0 < i < 2, and $D = t(D_0, D_1, D_2)$. We also assume that (m_0, m_1, m_2) is always an \widetilde{n} -upcritical triple and $m = \widetilde{n}(m_0, m_1, m_2)$. Since D_i is uniquely m_i -colourable, any acyclic m_i -colouring of D_i induces the same partition Π_i of $V(D_i)$, i = 0, 1, 2. Let $\Pi = \Pi_0 \cup \Pi_1 \cup \Pi_2$ and Λ any partition of V(D) induced by an acyclic m-colouring of D.

For each $\alpha \in \Pi$ choose two different vertices X_{α} , $Y_{\alpha} \in \alpha$ (This is possible because in a uniquely colourable r-dichromatic oriented graph, r>2, each chromatic class contains at least two elements).

If α , β ϵ Π are not contained in the same class of Λ , let $Q(\alpha,\beta)$ be the directed square defined by:

$$\begin{split} &V(Q(\alpha,\beta)) = \left\{X_{\alpha}^{i}, Y_{\alpha}^{i}, X_{\alpha}^{i}, Y_{\beta}^{i}\right\} \\ &A(Q(\alpha,\beta)) = \left\{\left(X_{\alpha}^{i}, X_{\beta}^{i}\right), \left(X_{\beta}^{i}, Y_{\alpha}^{i}\right), \left(Y_{\alpha}^{i}, Y_{\beta}^{i}\right), \left(Y_{\beta}^{i}, X_{\alpha}^{i}\right)\right\} \end{split}$$

where Z' = (Z,0), $Z'' = (Z,\ell-1)$ for $Z \in V(D)$. Let us define finally $D^{(\ell)}(\Lambda) = D^{(\ell)} \cup (\bigcup_{\alpha,\beta} Q (\alpha,B))$

> Theorem 3: For $\ell \ge 2$ D^(ℓ)(Λ) is a uniquely colourable m-dichromatic oriented graph.

Proof: Clearly d_k (D^(ℓ) (Λ)) > m. By Remark 3, Λ induces an acyclic m-colouring of D $^{(l)}(\Lambda)$ with chromatic classes $\lambda \times I_{l}$, $\lambda \in \Lambda$. It follows that $d_k(D^{(l)}(\Lambda)) = m$. Let γ be an acyclic m-colouring of $D^{(l)}(\Lambda)$.

By Lemma 5 the sets $\{v\}$ x $\boldsymbol{I}_{\underline{\ell}}$ are monochromatic in γ_{\bullet} Let γ' be the m-colouring of D in which vertex v ϵ V(D) receives the same colour as vertex (v,i) in $\gamma.$ Denote by Λ' the partition induced by γ' in V(D) and suppose that Λ' \neq Λ . Since $\left|\Lambda'\right|$ = $\left|\Lambda\right|$ = m, Λ' is not a refinement of Λ and therefore we can choose $\lambda\,{}^{\prime}\epsilon\,\,\Lambda^{\prime}$ which is not contained in any class of Λ_{\bullet} Let λ_1 , λ_2 ϵ Λ , such that $\lambda_1 \Omega$ λ' and $\lambda_2 \Omega$ λ' are not empty. Take $v_{\dot{1}}$ ϵ $\lambda_{\dot{1}}$ N λ ', i=1,2 and let \bar{v}_{1} and \bar{v}_{2} be the classes of II containing v_{1} and v_2 respectively. Notice that $\bar{v}_i \subseteq \lambda_i \ \ \ \ \lambda', \ i=1,2,$ by lemma 3. Notice also that λ_1 # λ_2 . Therefore the square Q(\overline{v}_1 , \overline{v}_2) is defined and is a subdigraph of $D^{(l)}(\Lambda)[\lambda'\times I_l]$ which is monochromatic in γ . This gives a contradiction.

Theorem 4: For every r>2 there exists an infinite family of uniquely colourable r-dichromatic oriented graphs.

Proof: By induction over r. The case r=2 follows from theorem 1. Let us assume that the result has been proved for $2 \le r \le r_0$. Take three mutually disjoint uniquely colourable oriented graphs D_i , i=0,1,2, with dichromatic numbers $m_0=2$, $m_2=m_3=r_0$. Notice that $(2,r_0,r_0)$ is a \widetilde{n} -upcritical triple and that $\widetilde{n}(2,r_0,r_0)=r_0+1$. By theorem 3, $D^{\left(\ell\right)}(\Lambda)$ is a uniquely colourable r_0+1 -dichromatic oriented graph for $\ell>2$.

Some general properties of uniquely colourable r-dichromatic oriented graphs are being studied [8].

Acknowledgment

This work has been supported in part by the Natural Sciences and Engineering Research Council of Canada under Grant A2415.

References

- [1] P. Edrös, Problems and results in number theory and graph theory, <u>Proc.</u>

 <u>Ninth Manitoba Conference on Numerical Math. and Computing</u> (1979)

 3-21.
- [2] P. Edrös and V. Neumann-Lara, On the dichromatic number of graph, in preparation.
- [3] Y.O. Hamidoune, On the decomposition of a minimally strongly h-connected digraph into h+1 acircuitic subgraphs, Discrete Math. 31(1980) 89-90.
- [4] H. Maynel, Extension du nombre chromatique et du nombre de stabilité, Preprint.
- [5] V. Neumann-Lara, The Dichromatic Number of a Digraph. <u>Journal of</u>
 <u>Combinatorial Theory</u>, <u>Series B 33 (1982)</u>, 265-270.
- [6] V. Neumann-Lara, The generalized dichromatic number of a digraph, Publications Preliminares, No. 32, Instituto de Matematicas. Universidad Nacional Autonoma de Mexico (1981).
- [7] V. Neumann-Lara and J. Urrutia. Vertex Critical r-Dichromatic Tournaments. Discrete Mathematics 40 (1984) 83-87.
- [8] V. Neumann-Lara and J. Urrutia. On Uniquely Colourable r-Dichromatic Digraphs. In preparation.