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Abstract

We study set systems over the vertex set (or edge set) of some graph

that are induced by special graph properties like clique, connectedness,

path, star, tree, etc. We derive a variety of combinatorial and compu-

tational results on the VC (Vapnik-Chervonenkis) dimension of these

set systems.

For most of these set systems (e.g. for the systems induced by trees,

connected sets, or paths), computing the VC-dimension is anNP-hard

problem. Moreover, determining the VC-dimension for set systems in-

duced by neighborhoods of single vertices is complete for the class

LogNP. In contrast to these intractability results, we show that the

VC-dimension for set systems induced by stars is computable in poly-

nomial time. For set systems induced by paths or cycles, we determine

the extremal graphs G with the minimum number of edges such that

VC

P

(G) � k. Finally, we show a close relation between the VC-

dimension of set systems induced by connected sets of vertices and the

VC dimension of set systems induced by connected sets of edges; the

argument is done via the line graph of the corresponding graph.

�

Carleton University, School of Computer Science, Ottawa, ON, K1S 5B6, Canada.

y

Research supported in part by NSERC (National Science and Engineering Research

Council of Canada) grant.

z

University of Ottawa, Department of Computer Science, Ottawa, ON, K1N 9B4,

Canada.

x

TU Graz, Institute of Theoretical Computer Science Klosterwiesgasse 32/2, A-8010

Graz, Austria. Research supported in part by a grant from the DAAD (German Academic

Exchange Service).

{

TU Graz, Department of Mathematics, Kopernikusgasse 24, A-8010 Graz, Austria.

Research supported by the Spezialforschungsbereich F 003 \Optimierung und Kontrolle",

Projektbereich Diskrete Optimierung.

1



1980 Mathematics Subject Classi�cation: 68Q25

CR Categories: F.2.0

Key Words and Phrases: Graph properties, Set system, Vapnik-

Chervonenkis dimension.

Carleton University, School of Computer Science: SCS-TR-255

Note: This paper will be submitted for publication elsewhere.

1 Introduction

The Vapnik-Chervonenkis-dimension of a set system dates back to a seminal

paper by Vapnik and Chervonenkis [12] in 1971 on the uniform convergence

of relative frequencies of events to their probabilities. It is de�ned as follows.

For F a family of subsets of a �nite set X and D � X , set D is said

to be shattered by F i� any subset of D is of the form D \ F for some

F 2 F . The Vapnik-Chervonenkis (or VC, for short) dimension of F is the

maximum size of a subset of X that is shattered by F . In the meantime, the

VC-dimension has proved useful in many areas as in probability theory, in

learnability theory (PAC-learnable concept classes can be characterized via

the VC-dimension, cf. Blumer, Ehrenfeucht, Haussler, and Warmuth [2])

and in computational geometry (geometric range spaces allow linear sized

data structures with sublinear query time i� their VC dimension is �nite,

cf. Chazelle and Welzl [3]).

Papadimitriou and Yannakakis [8] investigated the computational com-

plexity of computing the VC-dimension. Since VC(F) � log(jFj) holds, the

VC-dimension can be computed in O(jX j

log(F)

) time by simply checking all

subsets of X of cardinality � log(F). This indicates that the problem is

not NP-complete. To provide stronger evidence against NP-completeness,

Papadimitriou and Yannakakis introduced the complexity class LogNP and

proved that the following problem is LogNP-complete: Given a family C of

c sets over a set X (by explicit enumeration of all sets in the family) and an

integer k, is the VC-dimension of C at least k ? The class LogNP is sand-

wiched between P andNP, P � LogNP � NP, and the general belief is that

both inclusions are proper. Hence, with high probability LogNP-complete

problems are neither NP-complete nor solvable in polynomial time.

A special class of set systems arises in connection with graphs. Haussler

and Welzl [5] introduced the VC-dimension of a graph as an example in

their study of simplex-range queries with epsilon nets. Their de�nition is as

follows. For G = (V;E) a simple, loopless, undirected graph with vertex set
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V and edge set E, the closed neighborhood N(v) of a vertex v 2 V is the

set consisting of the vertex v together with all vertices adjacent to it. A set

D � V of vertices is called shattered if it is shattered by the family F

nbd

=

fN(v) : v 2 V g of neighborhoods of G (in the sense of the above de�nition of

shatteredness). Since a graph has as many neighborhoods as it has vertices,

its VC-dimension clearly is at most log jV j. Anthony et al [1] study this

VC-dimension in more detail and show that the threshold probability for

a random graph to have VC-dimension � d is about p = n

�1=d

, for d

su�ciently large, where n is the number of vertices of the graph.

1.1 Results of the paper

The VC-dimension of a graph as de�ned by Haussler and Welzl is de�ned

via subsets of V that are neighborhhoods of single vertices. It is natural

to investigate a more general concept where the VC dimension results from

set systems induced by other properties on sets of vertices as e.g. cliques,

connected sets, paths, stars, trees, cycles, etc. In this paper we will introduce

and study the VC-dimensions for all these properties.

Connectedness. We will study in detail the VC-dimension for set

systems induced by connected sets and show that for a given graph, the

maximum size of a shattered set for the connectedness property di�ers by

at most one from the number of leaves in a maximum leaf spanning tree.

Hence, we can approximate this VC-dimension by applying the approxima-

tion algorithms for maximum leaf spanning trees derived by Lu and Ravi

[9]. Moreover, we prove that computing the VC-dimension for set systems

induced by connected sets is NP-complete.

The reader should note that the LogNP-completeness complexity result

derived by Papadimitriou and Yannakakis [8] is not in contradiction to our

NP-completeness result: [8] considered a problem where the input is given

by explicit enumeration of all sets, whereas in our case the input is implicitely

described via the graph and hence a potentially exponential number of sets

(all connected subsets of the graph) is encoded by a structure of polynomial

size (edge and vertex set of the graph).

Paths. Computing the VC-dimension of set systems induced by paths

will also be proved to be NP-hard. Moreover, we give a complete combi-

natorial characterization of the graphs for which this VC-dimension equals

three, and we provide upper and lower bounds on the number of edges in

terms of the number of vertices and the VC-dimension.
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Neighborhoods and stars. In contrast to the twoNP-hardness results

above, we show that computing the VC-dimension for set systems induced

by neighborhoods is LogNP-complete and that the computation of the VC-

dimension for set systems induced by stars can be done even in polynomial

time.

Connected sets of edges. Finally, we will study shattering principles

for families of edge-sets and the corresponding edge-VC (or EVC for short)

dimension of graphs. We will show that the EVC-dimension for set systems

over edges induced by connected edge sets in some graph G is related in a

speci�c way to the VC-dimension for set systems over vertices induced by

connected vertex sets in the corresponding line graph of G. Moreover the

problem of computing the EVC dimension for connected sets is shown to

be NP-complete.

1.2 Organization of the paper

The paper is organized into sections as follows. Section 2 introduces several

general concepts and gives all basic de�nitions. Section 3 deals with the

VC-dimension resulting from neighborhoods and stars, and Section 4 with

the VC dimension resulting from connected sets and trees. Section 5 treats

the VC-dimension for paths and Section 6 the VC-dimension for cycles.

Section 7 states the results on the VC-dimension for edges, and Section 8

�nishes the paper with the conclusion.

2 VC-dimensions for Vertices

In this section we give precise de�nitions for the notion of the VC-dimension

of a graph G with respect to certain graph properties. Let G = (V;E) be a

graph with vertex set V and edge set E. Let P be a family of subgraphs of

G. subsets of V . Typical choices for P include families of subgraphs which

are cliques, connected, neighborhoods, paths, trees, etc.

De�nition 2.1 Let P be a family of subgraphs of G. We say that a subset

A � V is P-shattered if and only if for all B � A there exists a subgraph in

P on a set of vertices C � V such that B = C\A. Then the VC-dimension

with respect to P of G is de�ned by

VC

P

(G) = maxfjAj : A is P � shatteredg (1)
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Thus, depending on the family P, we get the following notions of VC-

dimensions: VC

con

, VC

path

, VC

star

, VC

tree

, VC

cycle

, VC

nbd

, for the prop-

erties connected, path, star, tree, cycle, neighborhood, respectively.

Note that the VC-dimensions as de�ned in Anthony et al. [1] is the same

as our VC

nbd

. The following examples might be helpful for a better under-

standing of these de�nitions.

Example 2.1 For the complete graph K

n

on n vertices, VC

con

(K

n

) = n

holds since any subset of the vertices is connected. For a path P

n

on n � 2

vertices, we get VC

con

(P

n

) = 2: A set of 3 vertices cannot be shattered since

it is impossible to connect the outer two vertices without using the inner

vertex. By the same argument we see that VC

tree

(P

n

) = VC

path

(P

n

) = 2.

For a cycle C

n

on n � 3 vertices, it can be checked that VC

con

(C

n

) = 3.

Lemma 2.1 If P � P

0

then VC

P

(G) � VC

P

0

(G).

The problem of computing the VC

P

-dimension of a graph for a given

graph property P can be formulated as the following decision problem.

Problem VC

P

:

Instance: A graph G = (V;E), a positive integer k � jV j.

Question: Is there an A � V with jAj � k such that for all B � A

there is a subgraph G

0

= (V

0

; E

0

) of G having property P such that

B = V

0

\A ?

Computing the VC-dimension for some graph property P is sometimes

equivalent to well-known problems studied in complexity theory. For ex-

ample, if P is the family of cliques , or the family of independent sets , it is

easy to verify that VC

clique

(G) (respectively, VC

independent

(G)) equals the

size of the largest clique (respectively, largest independent set) in the graph

G. It is well-known that both of these problems are NP-complete (see e.g.

Garey and Johnson [4]). A related optimization problem, due to Yannakakis

[11] (cf. also Garey and Johnson [4], problems [GT21] and [GT22]) is the

following:

Instance: A graph G = (V;E), a positive integer k � jV j.

Question: Is there a V

0

� V with jV

0

j � k such that the subgraph

G

0

= (V

0

; E

0

) of G induced by V

0

ful�lls the property P ?

This problem was proven to be NP-hard for many graph properties, like

clique, independent set, planarity, bipartiteness, etc.
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3 Neighborhoods and Stars

In this section, we investigate the VC-dimension for neighborhoods and for

stars . The notion of VC-dimension for neighborhoods was introduced by

Haussler and Welzl [5].

Theorem 3.1 There is an O(minfn

2

2

d

; n

logn

g) algorithm for computing a

maximum size set of vertices shattered by neighborhoods in a graph G =

(V;E), where jV j = n and d is the maximum degree of G. Hence, this

algorithm is polynomial for maximum degree d = O(logn).

Proof (Outline) A maximum size shattered set must be a subset of a

neighborhood. There are as many neighborhoods as vertices, i.e. n, and

each neighborhood has at most 2

d

subsets. We can test if a given set of size

� d is shattered by neighborhoods in time O(n2

d

). This gives the O(n

2

2

d

)

upper bound. The n

logn

upper bound is obvious.

Now we turn to the complexity of computing VC

nbd

in general graphs

(without bounded maximum degree). We show that this problem is LogNP-

complete (for de�nitions see page 2 of this paper and [8]).

Theorem 3.2 It is LogNP-complete to decide for a given graph G = (V;E)

and an integer k, whether VC

nbd

(G) � k holds.

Proof This problem is a subproblem of computing the general VC-

dimension: Just set X = V and let F contain all sets N(v), v 2 V (the

number of sets is polynomial in the input length). Hence, the problem is in

LogNP and it remains to prove LogNP-hardness.

Consider an instance of the problem by Papadimitriou and Yannakakis,

i.e. an enumeration of the sets in a family F of sets over X and an integer

k. The question is to decide whether the VC-dimension of F is at least

k. Without loss of generality we may assume that jFj = jX j (otherwise

introduce new elements that do not occur in any set or introduce new sets

that are empty). De�ne n = jX j and ` = blognc and assume without loss

of generality that k � `. From this set system, we construct a bipartite

graph G with bipartition B [ W as follows. For every element x 2 X ,

we introduce a vertex b(x). For every set C 2 F , we introduce a vertex

w(C). There is an edge between a vertex b(x) and a vertex w(C) if and

only x 2 C. Moreover, we introduce a set B

�

of ` vertices b

1

; : : : ; b

`

. For

every subset B

0

of B

�

, a vertex w(B

0

) is introduced and connected to all
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vertices in B

0

. For every subset B

0

and every set C 2 F , a vertex w(B

0

; C)

is introduced and connected to all vertices corresponding to B

0

[C. Observe

that jW j = n + ` < 2n. We claim that VC

nbd

(G) � `+ k if and only if the

VC-dimension of the set system F is at least k.

(If). Let X

�

be a subset ofX shattered by F with jX

�

j � k. It is straight

forward to check that then X

�

[ B

�

is shattered by the neighborhoods.

(Only if). A set N

�

of cardinality k + ` that is shattered by the neigh-

borhoods, is either a subset of B or a subset of W . In case N

�

is a subset of

B, it contains at least k vertices outside of B

�

. Check that the elements in

X that correspond to these k vertices are shattered by F . In case N

�

is a

subset of B, jW j � 2

k+`

must hold just to shatterN

�

. This yields jW j � 2n,

a contradiction.

Next, we deal with the VC-dimension of set systems induced by stars.

We start with a precise de�nition of the term `star'.

De�nition 3.1 Given a graph G = (V;E). For any vertex u 2 V , a star

of u is a subset of fv j (u; v) 2 Eg [ fug. An open-star of u is a subset of

fv j (u; v) 2 Eg.

Theorem 3.3 If G is a graph with maximum degree d then

1. d � VC

star

(G) � d+ 1,

2. d = VC

open�star

(G).

Proof Let u 2 V denote a vertex of degree d. Then the neighborhood of

u, excluding u itself, is star-shattered. Depending on the graph, u might

be added to the shattered set. This shows part 1 of the theorem. Part 2 is

trivial.

Theorem 3.4 There is an O(nd

2

) algorithm for computing a maximum size

set of vertices shattered by stars, for an arbitrary graph with n vertices and

maximum degree d.

Proof Let G be an arbitrary graph with maximum degree d. For each

vertex x, let N

0

(x) (respectively, N(x)) be the open (respectively, closed)

neighborhood of x, i.e. the set of vertices adjacent to x (N

0

(x)[ fxg). Con-

sider the set M of vertices of G of maximum degree. For each x 2 M , the

maximum size shattered set is either N

0

(x) or N(x). It is clear that every
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subset B of N(x) such that x 2 B is shattered. It is therefore su�cient to

�nd a \polynomial" condition guaranteeing that N

0

(x) as well is shattered.

Let x 2 M be �xed. De�ne X

0

:= N

0

(x) := fx

1

; x

2

; : : : ; x

d

g to be the

set of neighbors of x. The idea of the algorithm is as follows. Check if

there is a vertex u 6= x such that N

0

(x) = N

0

(u). If yes, the whole set

N(x) is shattered and VC

star

(G) = d + 1. If no, then compute the set

S

0

:= fv 2 X

0

: X

0

� N(v)g. If S

0

is empty then N(x) is not shattered. If

S

0

6= ; then any set B � N

0

(x) such that B \S

0

6= ; is shattered. Hence, it

is enough to test whether or not all subsets of the set X

1

= N

0

(x) n S

0

are

shattered. Now replace X

0

by X

1

above and repeat.

Formally we de�ne two sequences of sets: A strictly decreasing sequence

of sets X

0

:= N

0

(x) � X

1

� � � � � X

k

and sets S

0

� S

1

� � � � � S

k

� N

0

(x)

such that S

i

:= fv 2 X

i

: X

i

� N(v)g, for i � k, and X

i+1

:= S

i

nX

i

, for

i < k. It is clear that k � d. The algorithm is as follows.

Input: Vertex x of maximum degree d.

while X

i

+ 1 6= ; do:

1. Check if there is a vertex u 6= x such that X

i

� N

0

(u). If yes, the

whole set N(x) is shattered and VC

star

(G) = d+ 1. If no, then go to

step 2.

2. Compute the set S

i

:= fv 2 X

i

: X

i

� N(v)g. If S

i

= ; then N(x) is

not shattered. If S

i

6= ; then any set B � N

0

(x) such that B \ S

i

6= ;

is shattered. Hence, it is enough to test whether or not all subsets of

the set X

i+1

= S

i

nX

i

are shattered.

3. i := i+ 1 and repeat step 1.

Clearly, on any given input x the maximum number of iterations is d.

Each step may take time O(n). The above algorithm must be executed on

all vertices of maximum degree d. It is easy to check that its complexity is

O(n

2

d).

We can improve this complexity to O(nd

2

) by using a more sophisticated

data structure for testing \neighborhood equality", namely whether or not

N

0

(x) = N

0

(u), for x 6= u. The idea is to look at the adjacency matrix of

the graph. Now neighborhood equality corresponds to equality of two rows

of the adjacency matrix and can be tested in time linear in the number of

edges of the graph, which is O(nd). Since the above algorithm requires O(d)

iterations the proof of the theorem is complete.
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For the case of planar graphs it is easy to see that the number of iterations

of the previous algorithm is O(1). Hence we can also claim as a corollary

the following result.

Theorem 3.5 There is an O(n) algorithm for computing a maximum size

set of vertices shattered by stars, for an arbitrary planar graph with n ver-

tices.

4 Connected Sets and Trees

We derive three types of results in this section. First, we show that VC

tree

and VC

con

are identical. Secondly, we investigate the close relationship

between VC

con

and the so-called maximum leaf spanning tree. Thirdly, we

prove that computing VC

con

for a graph is NP-complete. Unless otherwise

speci�ed, in this section we will deal with VC dimensions for connected sets.

Thus when speaking of a shattered set we always mean that it is shattered

by connected sets.

Lemma 4.1 For any graph G = (V;E), VC

tree

(G) = VC

con

(G) holds.

Proof In view of Lemma 2.1 it is su�cient to show that VC

tree

(G) �

VC

con

(G). Consider a set A � V which is shattered by connected subsets

of G. Then for every B � A there exists a connected set C with B = C \A.

Replace the edges that connect C by a subset of these edges forming a

spanning tree for C. The claim follows.

Lemma 4.2 For any tree T with l leaves, VC

con

(T ) = l.

Proof Let L denote the set of leaves of T . For any B � L we can �nd a

subtree of T whose leaves are exactly the elements of B. Thus L is shattered

and VC

con

(T ) � l. For proving VC

con

(T ) � l, we consider an arbitrary set

A which is shattered by connected sets of G. For each vertex u of T let

u

1

; : : : ; u

k

denote the children of u and T

1

; : : : ; T

k

the corresponding subtrees

of T rooted at u

1

; u

2

; : : : ; u

k

(see Figure 1). If u 2 A then there can be at

most one index i, 1 � i � k, with T

i

\ A = ; (two vertices x 2 T

i

\ A and

y 2 T

j

\A with i 6= j cannot be connected without using u).

There is a nice characterization of the VC

path

dimension by relating

it to maximum leaf spanning trees (abbreviated, MLST). A maximum leaf

spanning tree is a spanning tree with a maximum number of leaves among

all spanning trees.
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u

u

1

u

2

u

k

T

1

T

2

T

k

Figure 1: Illustration of the proof of lemma 4.2

De�nition 4.1 For any arbitrary graph G let

l(G) := maxfk j there exists a spanning tree T with k leavesg:

Theorem 4.3 For any graph G

l(G) � VC

con

(G) � l(G) + 1: (2)

Proof The inequality in the lefthand side follows from Lemma 4.2. To

prove the inequality in the righthand side, consider a shattered set A of

maximum cardinality. We show that there exists a spanning tree T with at

least jAj � 1 leaves. Choose any vertex r 2 A as the root of T . Since A is

shattered, there exists a path in G between any two vertices in A avoiding

all the other vertices in A. Connect all v 2 A, v 6= r by these paths to

r. This yields a connected subgraph G

0

of G where all vertices in A n frg

are of degree one. Destroy all cycles in G

0

by removing appropriate edges

while keeping the subgraph connected. This eventually results in a tree T

with jAj � 1 leaves. So far T is not necessarily a spanning tree. While

there exist vertices not connected to the subgraph, perform the following

procedure: Find an edge between some vertex that belongs to the subgraph

and another vertex that does not belong to the subgraph and add it to the

subgraph. This procedure cannot decrease the number of leaves in the tree

10



(the just connected vertex always is a leaf). Finally, we will end up with a

spanning tree with jAj � 1 leaves.

Let us de�ne VC

k

path

(G), as the maximum size of a set A of vertices of

G such that for all subsets of A of size � k there exists a path P such that

B = P \ A. It is clear that for all k, VC

k+1

path

(G) � VC

k

path

(G). Moreover,

the proof of Theorem 4.3 implies the following result.

Corollary 4.4 For any graph G, VC

2

path

(G) = VC

con

(G).

This result does not generalize to k � 3: E.g. if T is a tree then VC

3

path

(T ) =

2 whereas VC

con

(T ) equals the number of leaves.

It remains to determine when VC

con

(G) and l(G) di�er by exactly one.

The following theorem gives one possible characterization.

Theorem 4.5 Let G be a graph and T any maximum leaf spanning tree on

G whose set of leaves is L. Then VC

con

(G) = jLj + 1 if and only if the

following condition is satis�ed: \There exists a rooted subtree (i.e., all its

leaves are also leaves in the original tree) T

0

of T (which may be T itself)

with root r

0

whose set of leaves is L

0

and for all l 2 L and for all l

0

2 L

0

there exists a path from l to l

0

in G avoiding r

0

."

Proof We know from Lemma 4.2 that L is shattered. The condition above

guarantees that r

0

can be included to the shattered set, because it is not

necessary for shattering L. This proves the \if" part.

For the \only if" part we have to show that if VC

con

(G) = jLj + 1

then the condition is true for T . Therefore consider any shattered set A of

maximum cardinality. We may assume that all elements in A but one, are

leaves in T . To achieve this we argue as follows: The elements of A are

vertices of the spanning tree T . Replace, one at a time, each element a 2 A

which is not a leaf, by a leaf which has a path to a avoiding all remaining

elements of A. It is easy to see that each time we do this the resulting set

remains shattered. Finally, we end up with a shattered set A in which all

but one element are leaves in T .

But now it is obvious that the condition in the statement of the theorem

has to be true: The single non-leaf element r

0

gives rise to a rooted subtree

with root r

0

. All its leaves must have paths to all l 2 L avoiding r

0

(since

otherwise A would not be shattered).

Theorem 4.6 It is NP-complete to decide for an input consisting of some

graph G = (V;E) and a number k � 1, whether VC

con

(G) � k holds.
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A

B

C

D

Figure 2: Construction of the graph

Proof First we show that the VC-problem is in NP: Just guess a subset

A � V with jAj � k. Corollary 4.4 allows us to check in polynomial time

whether A is shattered: Test for all O(n

2

) possible pairs a; b 2 A if they are

connected by a path avoiding A.

NP-hardness is proved by a transformation from the MINIMUM SET

COVER problem [4], which is de�ned as follows: Given a �nite set S =

fa

1

; : : : ; a

n

g, a collection of m subsets S

1

; : : : ; S

m

� S and an integer t � m,

one wants to know whether there exists an index set I � f1; : : : ; mg such

that jI j � t and

S

i2I

S

i

= S.

Consider the following graph G = (V;E) for a given instance of the

MINIMUM SET COVER problem: The set of vertices is given by four

pairwise disjoint sets A, B, C and D with V = A [ B [ C [ D (see �gure

2 for an illustration). A has n � (m+ 1) vertices, arranged in n columns of

12



m + 1 vertices each. B = fv

1

; : : : ; v

m

g, where v

i

corresponds to the set S

i

.

C consists of only one vertex and D of m + 2 vertices. The vertices are

connected as follows: The vertex from C is directly connected to all vertices

in B and D. There are edges between v

i

2 B and all vertices of the jth

column of A i� a

j

2 S

i

. Note that jV j = mn+ 2m+ n+ 3.

We claim that VC

con

(G) � jV j � (t + 1) if and only if the instance of

MINIMUM SET COVER has a solution. (If). Assume that there exists a

solution I � f1; : : : ; mg of the MINIMUM SET COVER instance. Then

the set V

0

= D [ A [ fv

i

2 B j i 62 Ig is shattered in G: Every vertex in

V

0

is connected to C by a path that avoids V

0

. This trivially holds for the

vertices in B and in D. For every vertex in A, there is an adjacent vertex

in v

i

2 B nV

0

(since the corresponding element in S is contained in some S

i

with i 2 I) and thus it is connected to C via this vertex v

i

. Every subset

of V

0

can be covered by the corresponding set of paths. This set of paths is

connected (via the vertex in C) and avoids V n V

0

.

(Only if). Consider a shattered set V

0

with V

0

� jV j � t � 1. How does

V

0

look like? The single vertex in C cannot be in V

0

since otherwise none

of the m+ 2 > t + 1 vertices in D could be included in V

0

. Hence, we may

assume w.l.o.g. that D � V

0

. Since all elements in any �xed column in A

have identical neighborhoods, we may assume that either all or no elements

from any column are in V

0

. Since every column contains m + 1 vertices, it

follows that all elements in all columns have to be in V

0

(otherwise at least

m + 2 � t + 2 vertices would be outside of V

0

). Now A � V

0

, D � V

0

and

C 6� V

0

, and consequently at least m � t vertices 2 B have to be in V

0

.

Since V

0

is shattered, for every vertex in A there must exist an adjacent

v

i

2 B n V

0

. With this it is straightforward to see that I = fijv

i

2 B n V

0

g

constitutes a solution for the given instance of the MINIMUM SET COVER

problem.

Finally, we observe that in case the number k is not part of the input the

problem is solvable in polynomial time. Simply check all O(n

k

) subsets on

k vertices whether they are shattered. Checking shatteredness can be done

e�ciently with the help of Corollary 4.4.

5 Paths

We derive three types of results in this section. First, we give a precise

characterization of all graphs ful�lling VC

path

(G) = 3. Then we derive

13



Figure 3: Graphs G with VC

path

(G) = 3.

upper and lower bounds for the number jEj of edges in terms of the number

jV j of vertices and the VC-dimension VC

path

(G). Finally, we deal with the

computational complexity of computing VC

path

. This problem is NP-hard

in general, but it can be solved in polynomial time if the dimension is not

part of the input.

5.1 Graphs with VC

path

Dimension Three

In this subsection we characterize those connected graphs G = (V;E) with

VC

path

(G) = 3 (observe that VC

path

(G) = 2 i� G is a tree).

Theorem 5.1 The graphs G having VC

path

(G) = 3 are the graphs depicted

in Figure 3, where from each of the vertices may emanate trees and the

cycles depicted in the right hand side are adjacent on a single edge.

The proof of the theorem will follow after several lemmas. First of all observe

the following result.

Lemma 5.2 For a graph on n vertices,

1. VC

path

(G) = 2 if and only if G is a tree.

2. VC

path

(G) = n if and only if G = K

n

.

Proof Immediate.

Let G be a connected n-vertex graph with VC

path

(G) = 3. In view of

Lemma 5.2 G must have a cycle. All the cycles we consider in the sequel

are simple.

14



a

b

a

0

b

0

p

Figure 4: Two edge-disjoint cycles and a shattered set of size 4.

Lemma 5.3 Any two cycles have at least two vertices in common.

Proof If the cycles are not edge-disjoint cycles the theorem is obvious.

Without loss of generality assume that the two cycles, say C;C

0

, are edge-

disjoint. Assume on the contrary that jC \ C

0

j � 1. As in Figure 4 the

cycles are connected by a path p which might be of length 0. Pick vertices

a; b in C nC

0

and a

0

; b

0

in C

0

nC. It is easily checked that the set fa; b; a

0

; b

0

g

is shattered by paths. This proves the lemma.

Lemma 5.4 Any two edge-disjoint cycles C;C

0

must have exactly two ver-

tices in common and either (jCj; jC

0

j) = (3; 4) or (jCj; jC

0

j) = (4; 4).

Proof Let C;C

0

be the cycles. In view of Lemma 5.3 jC \C

0

j � 2. First of

all consider the case where jC \ C

0

j � 3. In this case it is easy to �nd two

edge-disjoint cycles C

1

; C

0

1

such that jC

1

\ C

0

1

j � 1, contradicting Lemma

5.3. This proves that jC \C

0

j = 2. Suppose that none of the cycles has size

4. We consider two cases. First suppose that C

0

is of size 3. In this case and

since C;C

0

have two vertices in common and are edge-disjoint it must be the

case that C has size at least 5. It is easy to see from Figure 5 that in this

case the set fa; b; u; vg is path-shattered, thus contradicting the assumption

that the graph has VC

path

-dimension equal to 3. Hence, without loss of

generality we may assume that C

0

has size at least 5. Let us consider the

case where C has size 3. The case when C has size � 5 is similar. Consider

Figure 6. The vertex v must exist because the two cycles share no edge.

But then it is clear that the set fa; b; u; vg is path-shattered, thus again

contradicting the assumption that the graph has VC

path

-dimension equal to

3. This completes the proof of the lemma.
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a

b

v u

C C'

Figure 5: A shattered set of size 4.

C C'

u v

a

b

Figure 6: Graph with a shattered set of size 4.
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u

v

u

v

Figure 7: Graphs with a shattered set of size 4.

Lemma 5.5 The edge-disjoint cycles have two vertices in common, thus

forming the con�guration depicted in the left side of Figure 3, where the

dashed edge is optional.

Proof Take any two edge-disjoint cycles C;C

0

. Their sizes are either (3; 4)

or (4; 4). It is easy to see that this gives rise to one of the con�gurations

depicted in Figure 7. We must show that the all other cycles must pass

through the vertices u; v. However it is not hard to check that the addition

of any path between two vertices (that uses a vertex other than either u or

v) to the graph will create a graph with VC

path

greater or equal to 4. This

proves the lemma.

Proof of Theorem 5.1. Consider cycles that have edges in common. If

each cycle has at least two vertices not belonging to the other then as in

the proof depicted in Figure 5 we can �nd a set of size 4 which is shattered

by paths. If the cycles have more than one edge in common then as in the

proof depicted in Figure 6 we can �nd a set of size 4 which is shattered by

paths. It follows that the only possible con�gurations are the ones depicted

in Figure 3. This completes the proof of Theorem 5.1.

5.2 VC

path

and the number of edges

For each k � n let e

k

be the minimal number of edges of a connected graph

G with VC

path

(G) � k. It is clear that e

2

= n� 1 and e

n

= n(n� 1)=2. We

can prove the following result.

Theorem 5.6 
(n

2

=k

2

) � e

n�k

� O(n

2

=k).
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� � �

Figure 8: A graph G with VC

path

(G) � k.

Proof First we prove the upper bound. Consider the graph of Figure 8.

It consists of k complete graphs. They are connected at the k � 1 vertices

indicated. The �rst k � 1 graphs each consist of bn=kc vertices; the kth

graph has n � (k � 1)bn=kc vertices. The total number of vertices is

(k � 1)

bn=kc(bn=kc � 1)

2

+

(n� (k � 1)bn=kc)(n� (k � 1)bn=kc) + 1

2

:

Since this last term is O(n

2

=k) the proof of the upper bound is complete.

To prove the lower bound we argue as follows. Let G be a graph such

that VC

path

(G) = n � k and let A be a set of vertices of size n � k which

is shattered by paths. Choose integers d

1

; d

2

; : : : ; d

k

� n; their precise value

will be determined in the sequel. If there exist k + 1 vertices of degree

< d

1

then pick a vertex v

1

2 A of degree < d

1

. Otherwise the graph has


((n � d

1

)d

1

) edges. If there exist n � d

1

� k vertices of degree < d

2

then

pick a vertex v

2

2 A of degree < d

2

non-adjacent to v

1

. Otherwise the graph

has 
(n� d

1

� k)d

2

) edges.

Proceed by induction to construct a sequence v

1

; v

2

; : : : ; v

k

of pairwise

non-adjacent vertices in A. Assuming v

1

; : : : ; v

i

have been constructed we

construct v

i+1

as follows. If there exist n� d

1

� d

2

� � � �� d

i

� k vertices of

degree < d

i+1

then pick a vertex v

i+1

2 A which is not adjacent to any of the

vertices v

1

; : : : ; v

i

. Otherwise the graph has 
(n�d

1

� � ��d

i

�k)d

i+1

) edges.

Since the graph is shattered it follows that any two vertices not adjacent to

any of v

1

; v

2

; : : : ; v

k

must be adjacent. This gives a total of




  

n� d

1

� � � � � d

k

� k

2

!!

edges.

If we let d

i

= n=(k � 1) then we obtain the desired lower bound.
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5.3 Complexity of Computing VC

path

We do not know whether computing VC

path

is in the class NP (since there

is an exponential number of conditions that have to be checked in order to

verify that some set is shattered). Hence, we only prove NP-hardness of the

problem.

Theorem 5.7 It is NP-hard to decide for an input consisting of some graph

G = (V;E) and a number k � 1, whether VC

path

(G) � k holds.

Proof The proof is done by a transformation from the HAMILTONIAN

PATH problem in bipartite graphs: Given an undirected, bipartite graph

H = (B [ W;F ) with F � B � W and with jBj = a + 1, jW j = a, the

question is to decide whether there exists a Hamiltonian path for H (i.e. a

path that visits every vertex exactly once). This problem is known to be

NP-complete [4].

We construct from H another undirected graph G as follows. For every

vertex b 2 B, we introduce a new vertex b

�

. This new set of vertices is

denoted by B

�

, jB

�

j = a + 1. We connect every vertex b 2 B by an edge

with its corresponding vertex b

�

. Moreover, we connect all vertices in B

�

[W

to each other. The resulting graph is graph G. We claim that VC

path

(G) �

2a+ 2 if and only if H possesses a Hamiltonian path.

(If). Assume that H has a Hamiltonian path. Then the set B [ B

�

is shattered: Consider arbitrary subsets X � B and X

�

� B

�

. We must

show that there is a path in W [ X [ X

�

that contains all of X [ X

�

. If

X = B, we use the Hamiltonian path and append a path through X

�

to

the Hamiltonian path. If X 6= B, we select for every vertex in X its two

incident edges in the Hamiltonian path (respectively, we select its unique

incident edge, if it is an endvertex of the path). Since X 6= B, some of the

selected edges do not meet other selected edges inW but have dangling ends.

Select a Hamiltonian path for X

�

with edges from X

�

� X

�

and paste it

between two of these dangling ends (be careful not to form a cycle). Finally,

select an appropriate subset of the edges in W �W to get a complete path.

(Only if). Now assume that there is a shattered set V

0

with jV

0

j = 2a+2.

De�ne B

0

= B \ V

0

, jB

0

j = x. Then W [B

�

contains 2a+ 2� x vertices in

V

0

and x � 1 vertices that are not in V

0

. First suppose that x = 1 holds.

Then V

0

= W [B

�

[fb

1

g for some b

1

2 B. But now for any b

2

2 B, b

2

6= b

1

,

the set fb

1

; b

�

2

g is a subset of V

0

but not covered by any path that avoids V

0

;

a contradiction. Hence, x � 2 must hold.
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Since V

0

is shattered, there exists a path P through B

0

that avoids the

rest of V

0

. Since B

0

� B is an independent set, there are at least x � 1

vertices on this path P that do not belong to V

0

and all of them must be in

W [ B

�

. Since j(W [B

�

) n V

�

j = x� 1, the path contains all vertices that

are not in V

0

. Since x � 2, all these x� 1 vertices must have two neighbors

in B

0

and consequently, they are not in B

�

(every vertex in B

�

has a unique

neighbor in B). Hence, B

�

� V

0

must hold.

Now suppose that there exists a b 2 B, b 62 V

0

. Consider the set B

0

[

fb

�

g � V

0

. This set is independent and of cardinality x+ 1. Then any path

through this set must contain at least x vertices in W [B

�

and therefore it

cannot avoid V

�

. This is a contradiction and yields B � V

0

.

Finally, consider the set B � V

0

. Since V

0

is shattered, there exists a

path through B that avoids B

�

. All jBj � 1 = jW j intermediate vertices of

this path must be in W . Clearly, this yields a Hamiltonian path for H .

Theorem 5.8 For any �xed number k (that is not part of the input), the

problem of deciding whether VC

path

(G) � k for some input graph G = (V;E)

is solvable in polynomial time.

Proof The idea is to check all O(n

k

) subsets of V whether they are shat-

tered. For a �xed subset V

0

, jV

0

j = k, we must check all 2

k

subsets W � V

0

whether there is a cycle through W that avoids V

0

. This problem is just a

special case of the FIXED-VERTEX SUBGRAPH HOMEOMORPHISM(H)

problem (i.e. given a graph G

1

= (V

1

; E

1

) and a map f from the vertices of

the �xed pattern graph H to the vertices of G

1

, does G

1

contain a homeo-

morphic image of H in which each vertex of H is identi�ed with its image

under f?). The FIXED-VERTEX SUBGRAPH HOMEOMORPHISM(H)

problem is solvable in polynomial time (cf. Johnson [7]).

Since for a constant number k all involved numbers are polynomial in n,

this yields a polynomial time algorithm for computing VC

path

(G).

6 Cycles

We say that every single vertex v 2 V constitutes a cycle of length one, and

that every edge [u; v] 2 E constitutes a cycle of length two spanning the

vertices u and v.

Lemma 6.1 For a graph on n vertices,

1. VC

cycle

(G) = 1 if and only if E is empty.
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Figure 9: A graph G for which Cycles(G) is acyclic.

2. VC

cycle

(G) = n if and only if G = K

n

.

3. VC

cycle

(G) � n.

For any graph G let Cycles(G) be the graph of cycles of G: its vertices

are the simple cycles of G and two cycles are adjacent if and only if they

have at least one vertex of G in common.

Theorem 6.2 If Cycles(G) has no triangles then VC

cycle

(G) � 2.

Proof Assume that on the contrary VC

cycle

(G) � 3 holds and take a set

A of three vertices which is shattered by cycles. For any two element subset

of A there is a cycle passing through these two elements and avoiding the

third. The resulting three cycles form a triangle, a contradiction.

There are graphs for which the quantities VC

cycle

(G) and VC

path

(G)

are arbitrarily far apart. For example, the graph G depicted in Figure 9

has VC

cycle

(G) = 2 (by Lemma 6.2) but VC

path

(G) � k+ 2, where k is the

number of triangles.

For each k � n let �e

k

be the minimal number of edges of a connected

graph G with VC

cycle

(G) � k. It is clear that �e

1

= n � 1; �e

2

= n and

�e

n

= n(n � 1)=2. Moreover, �e

k

� e

k

, for all k. As in the proof of Theorem

5.6 we can prove the following result.

Theorem 6.3 
(n

2

=k

2

) � �e

n�k

� O(n

2

=k).

Proof (Outline) For the upper bound we use the idea of Figure 8 but

this time we connect the complete subgraphs into a cycle. The lower bound

proof is the same as before.
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7 VC Dimensions for Edges

So far we considered the VC-dimensions in a graph only for vertices. Next,

we give an analogous de�nition for edges.

De�nition 7.1 Let G = (V;E) be a graph and let P be a family of sets

of edges of the graph. We say that a subset A � E is P-edge-shattered

(or shattered by sets of edges) if and only if for all B � A there exists a

set C � E satisfying property P such that B = C \ A. Then the EVC-

dimensions of G with respect to P are given by

EVC

P

(G) := maxfjAj : A is P-edge-shattered g (3)

De�ning the EVC-dimensions for connectedness, trees, paths and stars

yields EVC

con

(G), EVC

tree

(G), EVC

path

(G) and EVC

star

(G). If clear

from the context we will simply say "shattered" instead of "edge-shattered".

Lemma 2.1 also holds for the EVC-dimensions. However EVC

tree

and

EVC

con

are not necessarily equal. For example EVC

tree

(C

3

) = 2, but

EVC

con

(C

3

) = 3, where C

3

is the cycle on three vertices. For n � 3,

EVC

tree

(C

n

) = EVC

con

(C

n

). Also, as in Example 2.1, we get that

EVC

con

(P

n

) = 2. However for complete graphs the situation is quite di�er-

ent as the following theorem indicates.

Theorem 7.1 Let K

n

be the complete graph on n vertices, n � 5. Then

EVC

con

(K

n

) =

n(n � 1)

2

� (n� 2):

Proof First we show that EVC

con

(K

n

) �

n(n�1)

2

� (n� 2). Consider a set

B = fe

1

; : : : ; e

n�1

g of all edges being adjacent to one arbitrary vertex u. Let

A denote the set of all remaining edges of K

n

. Clearly jAj =

n(n�1)

2

�(n�1).

For any subset fc

1

; : : : ; c

k

g � A we can �nd for every c

i

an edge e

j

i

2 B

connecting c

i

to u. Now we can choose C = fc

1

; : : : ; c

k

g[ fe

j

1

; : : : ; e

j

k

g and

we get C \A = fc

1

; : : : ; c

k

g. Thus A is shattered. However we can add one

more edge to A because in the construction above we have for every c

i

two

choices for e

j

i

. Thus one element from B can be moved to A.

With the help of Turan's theorem we can now show that a set of cardi-

nality greater than

n(n�1)

2

�(n�2) cannot be shattered. This theorem states

that a simple graph on n vertices, having more than

p�2

2(p�1)

n

2

edges contains

K

p

(see for example [10]). If we consider an arbitrary graph G = (V;E)
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with jV j = n and jEj =

n(n�1)

2

� (n� 3) we can apply Turan's theorem with

p = n � 1 because then jEj >

p�2

2(p�1)

n

2

. Hence G contains K

n�1

and there

is one vertex u of degree 2, since

n(n�1)

2

� (n� 3)�

�

n�1

2

�

= 2.

Now let us assume that we could shatter a set of cardinality jEj =

n(n�1)

2

� (n � 3) in K

n

. As we have shown there must be in this case a

vertex u which is adjacent to exactly two edges (u; u

1

) and (u; u

2

) in E.

Note that the edge (u

1

; u

2

) must be in E. Now take an edge (u

3

; u

4

) 2 E

not adjacent to (u

1

; u

2

). For n � 5 such an edge always exists. This edge

cannot be connected to (u

1

; u

2

) without using other edges from E. Thus a

set of cardinality jEj cannot be shattered.

For any connected graph, the EVC-dimensions for trees and connected

sets can lie only within a small interval, as the follwing theorems indicate.

Theorem 7.2 For any graph G with n vertices,

n� 1 � EVC

tree

(G) � VC

tree

(G)� 1

Proof First we prove the lower bound. Consider a spanning tree of G with

l(G) leaves. Taking the edges associated to these leaves the result follows

from Theorem 4.3 immediately. The upper bound is trivial since a shattered

set must be a tree and cannot have more than n� 1 edges.

Theorem 7.3 For any graph G with n vertices,

jEj � EVC

con

(G) � jEj � (n� 1):

Proof The upper bound is trivial. For the lower bound consider a spanning

tree T through all n vertices. Then all remaining jEj� (n� 1) edges can be

shattered, since each of these edges is adjacent to T . Thus any two edges

not in T can be connected via T .

The precise relationship between the VC-dimensions and the EVC-

dimensions can be characterized via line graphs. For a good overview on line

graphs see e.g. [6]. We say L(G) = (V

�

; E

�

) is the line graph of G = (V;E),

if V

�

= E and E

�

= ffe

1

; e

2

gje

1

; e

2

2 E and e

1

; e

2

have a common vertexg

Lemma 7.4 If L(G) is the line graph of a graph G, then

G is connected, L(G) is connected
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Proof By de�nition in a connected graph there exists a path between any

pair of vertices. Thus also any pair of edges is connected. By the de�nition

of a line graph, it immediately follows that two edges are connected in G if

and only if the corresponding vertices in L(G) are connected.

Now it is easy to show that the EVC

con

-dimensions of a graph are equal

to the VC

con

-dimensions of its line graph.

Theorem 7.5 If L(G) is the line graph of a graph G then

VC

con

(L(G)) = EVC

con

(G)

Proof We only show that VC

con

(L(G)) � EVC

con

(G). The � case can be

done in a very similar way.

Consider a set A

�

� V

�

, which is shattered in L(G). This means by

de�nition that for all B

�

� A

�

there exists a connected C

�

with B

�

=

A

�

\C

�

. Now consider B and C. Because of Lemma 7.4 also C is connected.

It follows that also A is shattered.

Theorem 7.6 It is NP-complete to decide for an input consisting of some

graph G = (V;E) and a number k � 1, whether EVC

con

(G) � k holds.

Proof The proof is very similar to the NP-completeness proof for VC

con

in

Theorem 4.6. We use the same notation as in Theorem 4.6 and just sketch

the construction.

For a MINIMUM SET COVER instance, we construct a graph G =

(V;E) consisting of four parts A, B, C and D. Part C contains two vertices

c

1

and c

2

that are connected by an edge. Part D contains m + 2 vertices

that are all connected to vertex c

2

. Part B has vertex set fv

1

; : : : ; v

m

g,

where v

i

corresponds to the set S

i

; every v

i

is connected to c

1

. Finally,

part A consists of n stars with roots fw

1

; : : : ; w

n

g. Every star has m + 1

edges. There is an edge between v

i

and w

j

i� a

j

2 S

i

. It can be shown that

EVC

con

(G) � jEj � (n+ t+ 1) if and only if the MINIMUM SET COVER

instance has a solution.

8 Conclusion

We have investigated several set systems resulting from special graph proper-

ties of simple loopless graphs and the associated VC-dimensions for vertices

(like VC

con

, VC

path

, VC

star

, VC

tree

, VC

nbd

and VC

cycle

) as well as for
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edges (like EVC

con

, EVC

path

, EVC

star

, EVC

tree

). We studied the com-

putational complexity of VC

P

for several graph properties P and showed

that they all are NP-hard with the exception of the neighborhood property

(which is complete for the class LogNP) and the star property (which is

computable in polynomial time). We derived several combinatorial prop-

erties of these set systems and related them to special graph parameters

(like the maximum number of leaves in any spanning tree). In addition, for

the path and cycle properties we constructed graphs G with the minimum

number of edges under the condition VC

P

(G) � k.

This paper is just a �rst step towards a systematic investigation of the

Vapnik-Chervonenkis dimension on graphs. Problems that deserve further

studies are e.g. the investigation of set systems induced by other graph

properties (like planarity, bounded genus, k-connectivity, bounded diameter,

k-colorability, or forbidden subgraphs) or the problem of determining the

complexity of computing VC

con

, VC

path

, etc. for specially structured graph

classes (like interval graphs, cographs, partial k-trees, or planar graphs).
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