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Abstract

As architecture and engineering push the boundaries of what is possible with highly-

glazed façades, the traditional approach of leaving shading control up to active oc-

cupants becomes a larger energy burden. Shades, if operated correctly, can provide

substantial reductions both to the space conditioning loads of the building and its

lighting use. Because of the delayed thermal response to solar gains, predictive con-

trols are beneficial.

In this study, the framework for a transferable model-based predictive controlled

shading solution is laid out. The analysis began with a numerical investigation into

thermal model training using a Bayesian approach — namely the Ensemble Kalman

Filter — for calibrating a low-order control model of the space. The trained model

had its effectiveness demonstrated and was successfully utilized within the EnergyPlus

environment to control the shades of single zone office and provide total electricity

savings of 35% in a complete building automation system.

Later, these methodologies were adapted and utilized in a demonstrative setting

built within a research facility to attempt and identify the challenges associated with

the scaling of the approach. The results showed an environment which effectively

managed occupant needs both visually and thermally and which ultimately was found

to save energy in comparison the previously existing system in the building.
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Chapter 1

Introduction

1.1 Background

Buildings account for over 50% of Canada’s electrical energy use in both commer-

cial and residential buildings for space heating/cooling and equipment and lighting

demands [1]. The full breakdown of Canada’s end use of energy in commercial and

residential settings can be seen in Fig. 1 over a number of reported years. Any strate-

gies to reduce the energy use for conditioning the space of a single building could

then result in a huge opportunity at a nation-wide level if properly designed with

transferability in mind.

Since the 1900s, the management of the indoor climates in buildings has been

maintained through heating, ventilating and air conditioning (HVAC) systems or the

actuation of window and window shading devices by the occupant(s). All of these

strategies are controlled solely on the basis of instantaneous stimuli. For example,

the heating or cooling equipment operates when the interior temperature exceeds

or falls below a setpoint value. These systems are commissioned based on a set

of standard setpoints which often do not account for the specific properties of the

building. Even in those situations where attempts are made to utilize the building’s

1
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(a) Commercial

(b) Residential

Figure 1: Canadian energy end use data, data taken from NRCan [1].

physical characteristics, such as during optimal starts and stops, the commissioning

is based on rules of thumb (e.g., calculations based on square footage) or estimates

of the thermal capacitance. This approach relies on the experience of the technician

and typically favours a conservative controls approach, which does not risk potential

occupant discomfort.

At the same time as building controls are still designed very traditionally, there

has been a growing increase in ‘modern’ building design which typically use highly-

glazed façades. Whether motivated by aesthetic arguments or the potential occupant
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benefits, the increasing technological innovations in glazed system construction

(e.g., low-E or spectral selective coatings) have meant that it is common to find

buildings that have substantial portions or entire façdes assembled of glazed materi-

als. One of the most challenging issues with so much glazing is the controlling of the

transmitted solar radiation (solar gains), on a scale never dealt with by traditional

controllers, while managing visual comfort expectations. Compared to the more tra-

ditional air-based systems (i.e., entrainment or displacement ventilation), the effect

of the high solar gains is thermally lagged. This effect is illustrated in Fig. 2. The

peak outside temperature occurs after solar noon (the peak solar condition) while the

peak room temperature occurs hours later then that. The room temperature profile

is dependent on when a shading actuation occurs, say at either point A (peak solar)

or B (peak outdoor temperature), and seasonally either point could be the ideal one

depending on the current situation. In order to determine the effect of a control

decision in the current hour then, the controller must know what the effects will be

hours in advance.

Figure 2: Thermal lag effects in buildings.
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1.1.1 Managing Solar Gains

The solar gains of a building are usually managed by the proper selection of building

construction materials or passive shading features developed in the design process.

Even then, the control typically relies on the use of installed window shading devices.

Moveable window shading devices (e.g., roller shades, venetian blinds, vertical blinds,

etc.) are installed in most commercial buildings. Their control is often left to the

discretion of the building occupants who are difficult to understand and rely upon

for making ideal decisions. Their actuation movements are based on a number of

visual and thermal stimuli that determine their level of comfort with the conditions.

Researchers have attempted to summarize these conditions, including Kuhn et al. [2]

and O’Brien et al. [3]. The summary of these stimuli from Kuhn et al. [2] is shown

in Fig. 3. With so many stimuli resulting in control actions (including subjective

metrics like glare), there is a high level of uncertainty in how occupants will actually

utilize their shades. Making it more difficult still to rely on occupants, there is little

incentive to reset these actions when the source of discomfort is removed [4–6]. This

means shades are often left in a suboptimal position from an energy standpoint. The

actuations are then very infrequent, responding more to changes in terms of weeks

and months, and less responsive to short-term condition changes [3].

Since occupants are so inherently difficult to rely upon, the obvious progression

in approach was the automation of building shades; which with ideal operation can

be highly effective. Lee et al. [7] found automated shading could reduce total cooling

and lighting energy along with the peak cooling loads. Tzempelikos and Athienitis [8]

were better able to quantify savings and found that the optimal movement of shades

was capable of reducing secondary energy use (lighting, heating and cooling) by 31%.

These automated strategies are often set to look only at energy saving arguments so
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Figure 3: Comfort interactions of an occupant with window shades, adapted from
Kuhn et al. [2].

the occupants begin to adapt and remove the benefits. In the work by Velds [9], au-

tomated venetian blinds were used to block direct sunlight from entering a workspace

while a luminance sensing electric lighting system was designed to keep a workplace

illuminance value of 500 lux (a common value selected based on investigation on vi-

sual comfort and glare, a topic expanded in Appendix A). The study with occupants

found that they were frustrated by the lack of control over either system (about twice

as unhappy for not having it with the lighting control). Reinhart and Voss [10] found

that of 3005 automatic blind manipulations 45% were re-adjustments done manually

as an override of the control algorithm of an automated blind system. In 88% of these,

the occupants reversed the closing of the blinds. When automated shades are present,

occupant mannerisms begin to change. Sutter et al. [11] found that users adjusted

their blinds three times more often when the system was automated; most likely since

it was now much easier to control. More extreme are the cases of well-documented

adaptations to the automated system installed, such as was discovered by Konis [12]

and shown in Fig. 4.
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Figure 4: Example of personal space modification, reproduced with permission from
Konis [12].

1.2 Problem Definition

While blinds have largely been ignored in their integration in predictive building sys-

tems their automation has been a curiosity to researchers and industry for decades

[13]. Predictive control methodologies and heuristics are incredibly diverse with no

one solution been proven better than the others yet — as can be seen by the lack of

developed products or applications. Opposition by the building occupants has his-

torically met attempts at blind automation. The goal then is to be able to develop a

system that is easily implemented, effective at contributing savings but most impor-

tantly will not cause occupants to become hostile towards the system. The challenge

in addressing and properly developing the system to answer all these questions ex-

ceeds the abilities of this investigation. Instead, the study will develop and answer the
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questions, but will stop short of being able to get the long-term test results required

to properly validate the methods.

1.3 Contribution of Research

Within the scope of current work:

1. the use of recursive parameter estimation for determining effective building

thermal parameters was investigated;

2. a model-based predictive control strategy utilized in the EnergyPlus simulation

environment for the thermal model’s blind control was designed; and

3. an office-based test facility was commissioned in which automated blind controls

were implemented and studied.

1.4 Organization of Research

The thesis is divided into the following chapters:

Chapter 2 discusses a survey of literature on the use of predictive controls in build-

ing applications and system calibrations of their associated control models. The

concluding summary sets the foundation for this work.

Chapter 3 describes the numerical approaches devised. The baseline model devel-

oped as the basis of the simulation work is specified as is the formulation of

both the model training methods and minimized cost functions.

Chapter 4 presents the results of the model training using all the developed meth-

ods. The chapter then presents and discusses a number of results from the
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implementation of the MPC strategies including a number of design decisions

made.

Chapter 5 outlines the steps taken to create a demonstration facility built on a

newly commissioned building automation system. A brief series of results com-

paring the facility to a neighbouring office space are presented.

Chapter 6 discusses the feasibility of the MPC strategy for blind automation both

in implementation and financial terms.

Chapter 7 provides the concluding remarks based on the simulation work and the

demonstration facility. The chapter ends with a discussion on future work both

as an extension of this study and into new research areas.

Appendices A through C present additional material which is supportive of the

research presented, including MATLAB scripts, devised code for BACnet protocol

and a report on visual comfort and glare.



Chapter 2

Literature Review

This chapter presents a review of the literature that is relevant to the present work

and research. The review starts with an investigation of past studies and applications

of predictive control in the building context using both complex and low-order control

model methods. This is followed by an investigation on past research on the training

approaches used in conjunction with these simplified models.

Many of these studies deal with buildings and their energy profiles. More details

on these subjects and their subsequent calculations and histories can be found in

other sources. Fundamental concepts of heat transfer and shading can also be found

in sources such as Kuhn et al. [2]. A fundamental look at elements of visual comfort,

an important theme of shade automation design, can be found in Appendix A.

2.1 Predictive Controls in Buildings

The predictive control of building systems is not a new idea but outside of academics,

has not been widely applied [14]. The transition from predictive controls from more

traditional heuristics, as is seen in much of the research, is usually not a hardware de-

cision and most integration is only a software adjustment to already existing building

9
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automation systems (BAS). Often when talking about the use of predictive control,

model (or model-based) predictive controls (MPC) are discussed. MPC is an ad-

vanced technique for optimizing control by predicting system behaviour for a period

of time and applying a cost function, which is minimized. In buildings, particularly

with thermal storage technologies or a high thermal mass that looks to be utilized,

control decision effects will not be felt for prolonged periods of time and as such a

predictive methodology is required.

Predictive strategies in buildings are also an important topic in the development

of demand responsive designs of building system and grid technologies. Demand

response controls can benefit both the user and the utility through peak shaving

and load shifting on the grid by the prediction of utility demands and prices [15].

The predictions are actuated at the building level across the grid to achieve the

desired benefits. These demand response controls have been applied to numerous

systems including HVAC and lighting and have looked both at short-term and long-

term variables to the operation of buildings [16]. This high-level predictive strategy

is already highly visible in the residential market, with such products as Ontario’s

peaksaver PLUS program.

2.1.1 Predictive Control Using Complex Models

In the mid-90s a simulation-based investigation on control strategies that could co-

ordinate a dynamic building envelope with an electric lighting system for comfort

and energy reduction was conducted by Lee and Selkowitz [17]. In this study, the

researchers looked to develop and compare a predictive system and its performance

with more traditional control strategies that were based on energy or lighting designs.

Their predictive control strategy, as illustrated in Fig. 5, was designed to predict the
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requirements of lighting and cooling and select the strategy that resulted in the min-

imum energy usage. In the implementation, this required the pre-calculation of the

light and cooling energy balance for all positions and states of the systems (something

computationally difficult even now 20 years later) at each timestep. As a result of

their study, Lee and Selkowitz [17] found that regardless of the control strategy (re-

active or predictive) any algorithms had to be designed to meet multiple performance

criteria (i.e., electricity consumption, peak demand, cost, occupant preferences, etc.)

and be able to resolve those contradictory situations between criteria. Further, and

most importantly, any controls must be accommodating to occupant preferences (even

at the cost of losses in savings) or risk becoming “sabotaged” by the occupant.

Figure 5: A conceptual diagram of cooling, lighting and summed electricity use as
functions of shading coefficients (SC) or visible transmittance (Tv) for a hypo-
thetical dynamic envelope and lighting system, adapted from Lee and Selkow-
tiz [17].
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More recently May-Ostedorp et al. [14, 18] investigated the use of MPC for the

operation of windows for commercial building use. The goal was to be able to extract

rules offline from MPC results. Once these rules were extracted they could be easily

implemented as the basis of the controls, as they are computationally more efficient

than a dynamic model simulation. A proof-of-concept along with extensions into

advanced data-mining techniques indicated the promise of this approach at controlling

a building using an existent BAS while achieving the results of a more advanced MPC

controller. The rule extraction method was found to reduce the potential electricity

savings from the full MPC approach by 3% but computation used only one run as

opposed to thousands of runs of a fully developed EnergyPlus model. The authors

did acknowledge that significant work still remained to prove this approach in a

real building system and required thorough investigation on the subject of non-ideal

forecasts, a condition they had assumed.

Mahdavi and Pröglhöf [19] evaluated natural ventilation as a possible application

for MPC. Part of that project looked at the complex effect that the opening of a

window can have on an otherwise effective running HVAC system. Natural ventilation

has the potential to keep occupants thermally comfortable while not relying on active

thermal and cooling measures/systems but often is operated to counter the buildings

active HVAC operation. Mahdavi [20] and Mahdavi et al. [21] investigated the use of

prediction schemes for use in shading and daylighting controls. The approach relied on

a self-updating model of the sky (based on calibrated digital photography) and judged

shading position based on ranked preferences. Simulation results were promising

enough that the system was incorporated into a system for testing [21]. Experimental

testing in a full-scale facility found the controls to reliably create strategies that

minimized the use of energy intensive building systems and effectively utilized natural

light and ventilation.
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Corbin et al. [22] sought to create an MPC strategy using a coupled optimizer

between EnergyPlus and MATLAB. The researchers developed an online and offline

methodology illustrated in Fig. 6. Though both are complex and reliant on a very

robust system to be able to be implemented, only the relatively simpler offline vari-

ety was taken into testing. For determining the optimum process, a particle swarm

optimization was implemented. Particle swarm optimizations can encounter compli-

cations as they are non-deterministic. This means convergence is not guaranteed or

can be very time-consuming to achieve. Results on a standard building in which

setbacks and thermostats were adjustable found savings of 5% over a baseline. In a

building design in which more thermally active storage was available, savings were

found to be possibly as high as 54%. Use of the EnergyPlus model was noted to be

a hindrance to the process in its time requirement to run; something that was not as

fatal a flaw in a system that was only actuating in hourly or multi-hour increments.

2.1.2 Predictive Control Using Reduced-Order Control

Models

One of the largest projects on the investigation of MPC in a building application was

the OptiControl project carried out in Switzerland by several academic institutions,

government agencies and industrial partners [23]. The overall goal of the project

was to “minimize the energy usage of buildings while maintaining or improving the

occupant comfort and reducing peak electricity demand” by utilizing integrated room

automation; which was the BAS at a building zone or room level. The integrated room

automation was responsible for control over the the blinds, electric lighting, heating,

cooling and ventilation. The project led to the development of advanced control

algorithms for peak load reduction and climate control. Furthermore, the project



CHAPTER 2. LITERATURE REVIEW 14

(a) Offline methodology

(b) Online methodology

Figure 6: MPC metholodologies adapted from Corbin et al. [22].

brought attention to the stochastic nature of dealing with a system with occupants

and dynamic weather [24–27]. The predictions and controls were based on the complex

resistance and capacitance (RC) model of the building and the subsystems shown in

Fig. 7. Model parameters were treated as known characteristics about the system;

something much more difficult to do in less fully understood and researched situations.

Investigations showed the effectiveness of a two-level design (i.e., controls looking at

long term and energy saving solutions and a second system which could be quick to

react and ensure occupant comfort) [28,29] along with the effectiveness of employing

a predictive over rule-based control strategies, including shades [28].
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Figure 7: Thermal RC network showing all supported subsystems, adapted from
Gyalistras et al. [23].

Ma et al. [30, 31] researched the use of MPC for the reduction of cooling through

the predictive charging of a cooling system. The MPC was brought in to find the

optimal control sequence to satisfy cooling loads while minimizing the electricity

costs and improve the plant coefficient of performance (COP). The system relied

on the predictive knowledge of building loads, forecasted through a reduced-order

building network model using an RC building model, and weather forecasts to charge

a large storage tank. The system was able to provide optimized scheduling and

operation for the central plant at the University of California, Merced. In comparison

between standard operation and the MPC managed systems, substantial reductions

were achieved to the operation costs while moderate returns were made on the COP.

For this reason, the authors felt price was to be a more beneficial metric for selling

the idea to stakeholders than electricity use.
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Passive solar buildings are designed to optimally utilize solar gains so space con-

ditioning in both heating and cooling seasons does not rely on the use of mechanical

or electrical means. Specific research has been conducted on predictive controls used

in these passive solar buildings. Kummert et al. [32,33] and Kummert and André [34]

were able to provide simulation and experimental results of RC model based MPC

against more common controller practices. The model-based controller extended on

more traditional energy and monetary cost functions developed by other researchers

and added an associated cost of occupant comfort (based on the Predicted Percentage

of Dissatisfied [35]). Looking only at the heating of the spaces, results found that a

predictive system could provide saving and comfort improvements.

Radekci and Henecy [36] applied an MPC strategy as part of a completely inte-

grated control scheme over a multi-zone building using a second-order RC model. A

major, and unique, component of the control scheme was the use of an “Experiment

Generator” that would apply modifications to the controls and operations at oppor-

tune times to better estimate parameters. Though only based on simple heuristics

in this study, extensions on this topic were seen as a major research opportunity.

Attention was drawn to potential issues with these inverse methods coming to phys-

ical impossibilities (such as negative values) and false convergence — both of which

were addressed with an overall observation function (a role filled by human interven-

tion) which helped prevent these issues. The MPC system’s actuating of the HVAC

resulted in a 7.5% reduction over the standard thermostat-based system.
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2.2 System Calibration of the Low-Order Control

Models

Many researchers, identifying the need and potential of predictive controls or optimal

HVAC operation, have investigated the training of simplified building models. Tech-

niques are as highly varied as the range of engineering applications in which inverse

modelling techniques have historically been applied.

Chen and Athienitis [37], investigated the use of a recursive least-square approach

for training a multi-parameter model which estimated a building’s thermal behaviour.

The authors attempted to model a test-room over a six-month period. In their ap-

proach they noted that the technique was limited by issues that could “significantly

impact the quality of the recursive least-squares estimator”. More concerning was

the reported possibility of “unstable or physically meaningless estimated models” if

excitations were non-perpetual or poorly captured. Even so, a high order polynomial

was eventually trained that gave a 0.27◦C average root mean square deviation over

a 24 hour period between the modelled and actual behaviours. This high accuracy

was possible with very well processed data in which high-frequency white noise was

removed from all the model inputs. This is much more feasible in the direct solar gain-

test room which was monitored using well calibrated devices then a more standard

building situation.

Dewson et al. [38] attempted to use a least-square method to solve a simplified

building model constructed of five building parameters. The results indicated that un-

der very well controlled situations the least-square approach was capable of producing

a model capable of having an error of only 1◦C, however the model was plagued with

under-prediction of peak indoor temperatures. Further the authors noted general

issues in: (1) non-uniqueness of solutions, (2) dependence on the initial conditions on
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the avoidance of local minima and (3) a large variation in parameter values between

subsequent training runs. A major conclusion drawn was the need for parameters to

adapt in these simplified models when being used as the basis for a building energy

management (BEM) system; a major advantage of more recursive techniques.

Braun and Chaturvedi [39] looked to calibrate models capable of predicting tran-

sient cooling and heating requirements. Their approach relied on the use of accurate

initial estimates with prescribed bounds for the parameters in their RC model. Opti-

mal values were found by utilizing a “global direct search algorithm” on the transfer

function version of the equations. These estimates were augmented with a nonlinear

regression algorithm. This stylisation of a hybrid approach can be very powerful but

direct and global search algorithms can be very computationally demanding, espe-

cially with poor initial guesses. Even so, the authors managed to train a model using

only two weeks of field data to calibrate a model capable of predicting cooling loads

within about a 9% error.

Fux et al. [40] proposed a Bayesian approach to the online modelling of a first-

order (as defined in Sec. 3.3.1) RC model using the extended Kalman Filter (EKF).

An investigation into the training of various orders of simplified models had resulted

in similar issues to those encountered by other researchers attempting to train a

model. This motivated the progression to a self-adaptive approach achieved using

the EKF; particularly in systems with non-quantified perturbations. Results of the

study showed the EKF fulfilled its design requirements but results were a ‘best-case

scenario’ since the study was based on a very unique passive house located in the Swiss

Alps with low occupation. The researchers attempted to estimate the disturbances

(occupant heat gains) simultaneously with the states. The authors however assumed

that these disturbances were governed by a periodicity on both daily and monthly

scales. This is known to be an oversimplification of the system as these patterns tend
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to be much more stochastic. As such, during the training, the disturbance value can

be artificially inflated leading to difficulty in the training of the R and C value.

Radecki and Henecy [41] utilized another Bayesian approach with the unscented

Kalman Filter (UKF). Similar to Fux et al., [40] the author’s trained a low-order RC

model for use as part of a control system for a building. As part of the investigation,

the author’s compared results of the UKF to an EKF and found the UKF to be both

easier to implement (as it does not require the calculation of a Jacobian) and on

repeated runs was much less susceptible to divergence during parameter estimation.

Further in line with Fux et al. [40], the authors also sought to predict disturbances

but only after the R and C values were nearly estimated. The authors once again

assumed that these disturbances were highly standardized over a 24 hour period and

cyclic. The model predictions were highly dependent on these disturbance models in

order to achieve reasonable results with the baseline model.

Candanedo and Athienitis [42] explored the use of simplified linear transfer models

for the development of control strategies in solar homes. Solar homes provide a unique

testing opportunity because of their usually increased thermal mass, meaning thermal

changes are much slower to react, along with their usual inclusion of motorized blinds

or advanced control systems. The methodology used MATLAB’s System Identifica-

tion Toolbox to determine a transfer function for the building’s thermal response.

The model was applied to the control by finding a setpoint sequence that minimized

a cost function over a control horizon (the MPC process). Though effective both as

a modelling technique and control basis, the approach required a high-order (in this

case a system with three capacitances was selected) Laplace Transform function to be

calculated. Without the required computational capacity this poses many feasibility

issues.



CHAPTER 2. LITERATURE REVIEW 20

Candanedo et al. [43] worked on developing a control-oriented simplified mod-

elling strategy for MPC. A third-order thermal network had its state space repre-

sentation calibrated using the MATLAB Optimization toolbox. As a demonstration

of the concept, the measured data was created using an EnergyPlus simulation of a

five-zone office building. Training data was limited to only a few parameters includ-

ing: operative temperature, solar gains, internal gains, exterior temperature and the

heating/cooling powers. The demonstrated process showed promise but the authors

acknowledged questions in the scalability of many of the process particulars. Such

things as the model order were noted as being highly dependent on the situation to

which the method was being applied. The potential value in taking the process offline

and based on general rules were mentioned, but not explored.

2.3 Summary

Several different approaches for the implementation of MPC methods within the the

building context were reviewed. A number of methods were found to be effective

in their applications but all were met with challenges and lacked a transferability in

their techniques. For that reason many of the elements of the MPC control structure

will no be extended from the past investigations and will look more to inspire a new

control strategy.

Moving forward, the control architecture will utilize an RC model similar to the

studies in Sec. 2.1.2. These models had similar benefits to the full models without

many of the challenges. A recursive methodology for parameter estimation based

on the works of Radecki and Henecy [41] and Fux et al., [40] will be applied but

alternative versions of the approach that has unique characteristics will be considered.



Chapter 3

Methodology

3.1 Introduction

In order to accomplish the problem designed, a certain methodology was followed.

Initially it was determined simulation would be the appropriate basis of design. As

such a baseline model was designed as a comparison of savings between predictive and

traditional heuristic-based approaches. Following that the predictive methods were

designed. Identifying the need for an accurate model that could be easily implemented

an investigation into different model sizes and the effectiveness of a proven technique

from other applications was conducted. Based on these findings, an MPC control

was assembled into EnergyPlus and utilized by the simulation as a control method.

Lastly these controls were adjusted to find optimal control strategies and to include

different optimization techniques as well as consider the comfort of occupants in the

decision process.

21
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3.2 Baseline Modelling

With no building at the disposal of the research that had a complete enough histor-

ical data set of all key variables, a simulation approach was initially required. As

such, a baseline thermal model that could be actively measured and adjusted by

the researchers was developed. Of the three main building performance simulation

(BPS) tools actively used in research (EnergyPlus, ESP-r and TRANSYS), Energy-

Plus was selected as the tool of choice for this research. It is one of the most accepted

and widely used BPS tool, with detailed documentation available elsewhere (such

as Lawrence Berkeley National Laboratory [44]). EnergyPlus has the added benefit

of being very well equipped with auxiliary programs and support, including well-

developed coupling with OpenStudio and SketchUp. These capabilities significantly

increase functionality without an increase in required training or experience.

The geometry of a single rectangular thermal zone, hereafter referred to as the

shoebox model, was designed in SketchUp. The office was modelled with 8 m2 of

exterior, south-facing exterior window and 7 m2 of exterior wall area. The concrete

floor slab was set to have an area of 25 m2 and a thickness of 0.15 m. This basic

geometry is captured in Fig. 8.

Further specifications were made within EnergyPlus to be able to thermally model

the zone. The interior walls were set as adiabatic; an assumption based on the

assumed symmetric boundaries with the rest of the building. Windows were modelled

using a simple glazing system, and were specified to have a solar heat gain coefficient

(SHGC) of 0.6 and a corresponding U-factor of 2 W · m−2 · K−1. Infiltration and

ventilation were set to have a combined air change rate of 0.5 air changes per hour

(ACH). Heating and cooling demands were met using an ideal loads air system using

nighttime setback thermostat settings. The ideal loads system was not connected to a
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Figure 8: Isometric view of the shoebox model generated in SketchUp.

central air system and instead was modelled as a variable air volume (VAV) terminal

unit, which provided the required supply temperature and humidity to meet the

loads of the space. For cooling, temperature setpoints were set at 24◦C and 28◦C for

occupied and unoccupied periods respectively. For heating, setpoints were set at 21◦C

and 16◦C for occupied and unoccupied periods respectively. Occupancy was assumed

to be a fixed 9:00 am-5:00 pm weekday routine for a single occupant who provided an

internal heat gain of 100 W (with a sensible fraction of 0.6). Other internal gains were

included for lighting at a power density of 10 W ·m−2 and miscellaneous equipment

at 5.4 W ·m−2 [45]. Lights were automated in a strictly binary matter (i.e., on or off),

and were tasked with providing 500 lux at the workplane defined 0.8 m above the

floor in the centre of the room. All simulations were modelled in Ottawa, Ontario,

an ASHRAE Zone 6 climate.

3.2.1 Baseline Building Automation

In order to compare any developed control strategies, a baseline performance model

was needed. Based on the same building model as the predictive strategies, a situation
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Figure 9: Elevation view of office space modelled in EnergyPlus and OpenStudio.

in which a building owner had installed automated shades for the workspace was

created. The shades were designed to operate similar to the manual controls observed

by Newsham [46], and later implemented by Reinhart [47] as automated shading in his

Lightswitch-2002 algorithm. The control scheme is illustrated in Fig. 10. Of particular

interest is the general level of inactivity in terms of blind movement occurring. The

opening of the shades occurs upon their entry in the morning. In this strategy, the

blinds are used as a visual control and are closed either when beam radiation is

striking the occupant or else when the intensity outside exceed the 233 W ·m-2. The

lights in the zone were considered to be to be activated when the occupants arrived

and turned off upon their departure for the evening with no opportunity for dimming;

a fairly standard occurrence [46, 47].
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Figure 10: A model representing the action of an occupant, adapted from Newsham
[46].

3.3 Controller Methods

The controller methods are the fundamental topics upon which implemented control

were designed. Included are the summary of training methods and structure of the

MPC approach.
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3.3.1 Lumped Capacitance Model

The implementation of controls using a fully calibrated thermal model, such as that

described in Sec. 3.2, has been attempted by others [14,18,22]. An approach similar to

that was designed earlier using a coupled system with MATLAB [48], which eventually

became the basis for predictive controls on the Team Ontario Solar Decathlon project.

It is difficult to imagine such a model be created and maintained for each building

that exists even as more buildings are being modelled then ever. Adding to the

complicating factors, as the buildings get larger so do the models. These larger

models become more difficult to incorporate into control decisions and keep up-to-

date with changes in the buildings performance. For these reasons, a smaller model

was deemed to be necessary. Moreover if it could be trained, the need for detailed

building and material knowledge would be removed. Lumped capacitance models,

similar to those found in research already for building controls [39–41] seemed ideal.

Lumped capacitance models can be formed either as white box or gray box models.

White box models are models in which the underlying physics are fully understood

and parameters known, represented as the ability to see the gears within the box in

Fig. 11(a). Black box models are defined as a system where nothing is known about

the system; only the input and outputs are known, as illustrated as in Fig. 11(b)

in which nothing inside the box can be ‘seen’. The gray box models fall in-between

these two classifications. In it, the governing relationship is partially understood (or

a simplified relationship is) and the parameters, often effective values, can somehow

be determined. As an example, EnergyPlus models would be classified as a white

box model. The emphasis here shall be placed on the successful implementation of a

lumped capacitance gray box model.

The models are based off of electrical circuit analogy: R represents a thermal
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(a) White box

(b) Black box

Figure 11: Model classifications.

resistance (how energy flow is reduced) and C represents a thermal capacitance (how

the energy is stored or released). The nodes connected between the electrical compo-

nents are points where voltage would be measured, but here represent a temperature.

The model order is equal to the number of capacitances within the circuit and can

be solved using differential equations or finite equations. A graphical representation

of thermal models of different orders can be seen in Fig. 12.

For this investigation the order of the model was limited to only two options, a first

and second-order. Some researchers have noted the ability of first-order models to

be acceptable for the needs of MPC control strategies [40,41], particularly in shorter

periods of prediction or smaller zones. Meanwhile many researchers have found that

models using multiple capacitances better performed then a first-order model [49–52].

For controls applications, the simpler the model the easier it is to introduce into the

existing BAS of a building.
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Figure 12: RC representations of various ordered models.

First-Order Building Model

In a first-order model, a single R and a single C are used. A schematic of this can be

found in Fig. 13. In this case the R value represents the effective resistance between

the ambient temperature (Tamb) and the indoor air temperature (Tair) while the C

term represents the effective capacitance of the thermal zone.

Figure 13: First-order schematic of a building model.
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The physics of the space are governed by the laws of heat transfer that can be

solved using the explicit finite difference equation expressed as Eqn. 1. Here the

subscript k represents the timestep, while j is an index for the current node and i is

an index for all connected nodes to the current node (j). The explicit finite difference

method, is a numerical alternative to the analytical solution of the governing partial

differential equations (PDE). By linearising the Taylor series expansion of the PDE’s

and assuming the parameters are time-independent at each instant. The space can

be discretized into nodes, each with its own independent set of equations that rely

only on the present values. Though the finite difference method assumes linearity

and invariability which contributes to its difficulty in validation in comparison to

analytical methods. Its unconditional stability and realistic testing however still make

it a preferred methodology [53].

For this system, the equation can be expressed more specifically as shown in

Eqn. 2. The indoor air temp (Tair) and outdoor temperature (Tamb) along with

the energy rates from the HVAC and solar gains are assumed to be measurable and

accessible to the building control system (e.g., via the building automation system

or a local weather station). The R represents the effective thermal resistance of the

interior space to the ambient conditions while the C represents the ability of the space

to store and release the energy. The Qsol term represents the solar gains incident on

the exterior surface of the room and Qaux represents the added or removed energy in

the zone (e.g., internal load gains, HVAC loads, etc.).

The first-order model is not without its limitations and would be ill-suited for

certain applications. For example, modelling a space of with high thermal mass could

lead to inaccurate results. Since the first-order model assumes that all energy is

directly transferred to the the air node and does not account for components which are

radiated to the thermal capacitance there are instantaneous temperature movements
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that exceed the real system. In high thermal mass buildings this splitting of energy

results in a secondary release of energy, which is slower and has a significant effect.

Tj, k+1 =
Δt

Ci

[
Q+

∑
j

Tj, k − Ti, k

Ri,j

]
+ Tj, k (1)

Tair, k+1 =
Δt

C

[
Qaux +Qsol +

Tair, k − Tamb, k

R

]
+ Tair, k (2)

Second-Order Building Model

The second-order model breaks the system into more nodes, each which has its own

set of equations. With its increased number of nodes and finer resolution (compared

to the first-order model) the second-order model should be better able to capture the

thermal response of the zone. One of the major issues it addresses is the splitting

of energy gains or removals from only occurring at the air node. An illustrating

representation of the model can be found in Fig. 14.

Figure 14: Second-order building model schematic.
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The lumped resistance term, Rair, represents the effective thermal resistance be-

tween the walls and the interior air. The lumped capacitance term, Cair, represents

the combined thermal mass of the air and contents of the room. The term Rw rep-

resents the thermal resistance between the zone and the exterior environments while

Cw is the lumped capacitance of the zone construction. The Q’s represent the same

energy rates as before in the first-order models (Sec. 3.3.1). The α and β are fractions

to represent the fraction of the loads that are released at the air versus surface node.

The general explicit finite difference equation (Eqn. 1) is defined for the two nodes

represented in this model as Eqn. 3 and Eqn. 4. In order to determine the indoor

air temperature (Tair) both equations are required to be solved at each timestep and

represent two states either to be measured or predicted. The system is assumed to

have similar access to information that the first-order model was given.

Tair, k+1 =
∆t

Cair

[
(1− α)Qsol + βQaux +

Tw, k − Tair, k

Rair

]
+ Tair, k (3)

Tw, k+1 =
∆t

Cw

[
αQsol + (1− β)Qaux +

Tamb, k − Tw, k

Rw

+
Tair, k − Tw, k

Rair

]
+ Tw, k (4)

3.3.2 Parameter Estimation

For use as a building model, the effective value of the C’s and R’s (in either the

first or second-order models) must be determined based on the thermal zone(s) of

study. These values are unique for each set of constructions [39, 40] and need to

reflect the ’as-built’ situation. To successfully calibrate these parameters manually

would be tedious and nearly impossible, so inverse modelling methods are employed to



CHAPTER 3. METHODOLOGY 32

automate and expedite the process in a reliable manner. A number of past approaches

were discussed in Sec. 2.2, all of which had their own unique set of shortcomings. More

traditional methods such as recursive least-squares could be implemented when the

state measurements are assumed perfectly known and non-corrupted by noise. For the

first-order model this would have been acceptable as the only state (Tair) is measured.

The second-order model would not be valid because of the unmeasured second state

(Tw). A statistical-based method would be better suited in this case as it does not

require the same deterministic conditions. Similar to Radecki and Henecy [41] and

Fux et al. [40] a Bayesian approach was developed — the EnKF — as its inclusion of

random sampling was felt to give a more robust solution then other’s attempts.

3.3.3 The Ensemble Kalman Filter

The Ensemble Kalman Filter, is a recursive parameter and state estimation algorithm

meaning it will continually update and improve estimates of both. Previously it has

been used in various engineering applications and in climate modelling [54]. The

EnKF carries an ensemble of values (based on random sampling based on probabili-

ties) for its prediction and updating — similar to a particle filter — but it is much

more efficient to operate. Compared to other Kalman filtering techniques, such as

the UKF and the EKF, the EnKF better handles closure issues in the covariance (the

variance of multiple items simultaneously) calculations [55] and does not require the

calculation of the Jacobian (which requires a function to be derived and the deriva-

tives taken) to deal with non-linearity (like the EKF) or deterministic sampling (like

the UKF). Further the EnKF avoids the problem of maintaining the covariance of

the EKF and UKF resulting in unreliable and unstable variable estimates when the

modelled system is highly non-linear; as it is in the building heat transfer problems

and during joint state and parameter estimation [56,57].
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The EnKF’s origins come from the standard Kalman Filter (KF) [58] and so

any derivation is obligated to begin there. In the most basic terms, the KF creates a

weighted relation between an incoming observation and a prior estimation and iterates

this process as new information becomes available. More formally, the KF starts with

a state vector x (which is n-dimensional) which contains the estimates of the states

and parameters (i.e., the R’s, C’s and temperatures). It is assumed to have a Gaussian

probability distribution so it is definable as a mean (µ) and a covariance (Q). The

variable selection and derivation here follows closely to the work of Mandel [59]. The

probability density function (pdf) of this state vector, when assumed Gaussian, can

be expressed such as in Eqn. 5. This pdf is referred to as the prior.

p(x) ∝ exp

(
−1

2
(x− µ)TQ−1 (x− µ)

)
(5)

New data (d) is collected on the system, in this case the new air temperature

measurement in the space. The data has a known Gaussian pdf, which has a covari-

ance of R and a mean of Hx (where H is an observational matrix and relates the

measurement to the forecasted state). The prior and the measurements are blended

to determine the data likelihood that captures the pdf of the data d being collected

based on the system state x. This data likelihood is expressed as Eqn. 6. In this

application it answers the question: “What is the probability of this air temperature

measurement considering the current environmental conditions and latest R and C

estimates?”

p(d|x) ∝ exp

(
−1

2
(d−Hx)TR−1 (d−Hx)

)
(6)

When the prior and data likelihood are combined using Bayes Theorem, the pro-

duce a new pdf referred to as the posterior which can be expressed as Eqn. 7. This
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posterior is the new ‘best estimate’ of the what the parameter values are.

p(x|d) ∝ p(d|x)p(x) (7)

Once the measurement d has been utilized it has become set as a value so the state

d|x is defined as x̂. Since both the prior and data likelihood were Gaussian initially,

their resulting pdf will also be Gaussian. This new posterior pdf will be of the form

of Eqn. 8, in which µ̂ and Q̂ are new posterior means and covariance matrices defined

in Eqn. 9 and Eqn. 10 respectively.

p(x̂) ∝ exp

(
−1

2
(x̂− µ̂)T P−1 (x̂− µ̂)

)
(8)

µ̂ = µ+K (d−Hµ) (9)

Q̂ = (I −KH)Q (10)

Both of µ̂ and Q̂ rely on the the K matrix, which is officially referred to as the

Kalman Gain Matrix. This matrix takes the form of Eqn. 11, and is what adjusts the

estimates of R and C to their updated value.

K = QHT
(
HQHT +R

)−1
(11)

As the values evolve through this repeated process the associated errors diminish

but never disappear. Ultimately it is impossible to get a value with no error associated

as the measurement values (of the temperature) are always assumed to have been

biased by an error.
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The EnKF was developed by Evensen [55] originally to address computational

challenges regarding the difficulty in maintaining these covariance matrices, particu-

larly in large data sets or in situations where the state parameters are not independent.

The EnKF is a Monte Carlo approximation to the standard Kalman Filter. Instead

of maintaining the covariance matrix for the pdf of x, it is maintained in an ensemble

which is a representative sample X (defined in Eqn. 12).

X = [x1,x2, ...,xN ] = [xi] (12)

This ensemble is an n×N matrix, which has N columns representing the number

of samples taken randomly from the estimates of the state and parameter’s prior

distribution. For this reason the matrix X is referred to as the prior matrix. The

data (d) is implemented in an m×N matrix D (Eqn. 13), where m is the number of

measurement points.

D = [d1,d2, ...,dN ] = [di] (13)

A posterior distribution from the samples can be achieved from the solving of the

Eqn. 14.

X̂ = X +K (D −HX) (14)

The Kalman gain is computed using the same general form as Eqn. 11 except

the state covariance matrix (Q) is now replaced with the sample covariance (C) and

appears like that in Eqn. 15

K = CHT
(
HCHT +R

)−1
(15)
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The general concept in its application is shown as in Fig. 15. The update step

begins with processing of an observation that is compared with the predictions using

the calculated Kalman Gain. Finally the updating step is completed when state

and covariance predictions are improved using the Kalman Gain. In this situation,

the states estimated are the temperature of the nodes, while the parameters are the

effective material properties of thermal resistance and capacitance. A more complete

and thorough explanation of the EnKF and its methods can be found elsewhere, such

as Evensen [60].

Figure 15: Schematic of the EnKF process.

3.3.4 Global Optimization

Just as the EnKF attempted to find the optimal values of R and C to fit the model

as new data was introduced, other methods exist to provide the same functionality.

To provide a further comparison to the R and C values a global search approach was

attempted for the first-order model only. Similar in design to the training conducted

by Kramer [61], the method relied heavily on standard MATLAB functions to find
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the minimum error based on adjusted R and C values. This MATLAB reliance and

computational power requirement makes it ill-suited for any widespread application

(e.g., in a controller). Starting with an initial estimate of values, the response of

the first-order model is predicted over a time window. The minimization function is

calculated as the sum of the squared differences between the indoor air temperature

of the model prediction and simulation, shown in Eqn. 16.

error =
n∑
1

(Tair,model − Tair, sim)2 (16)

The built in “fminsearch” finds the local minimum of the scalar function (Eqn. 16)

of several variables, starting at an initial estimation (which was found using a large

parameter sweep) over a series of iterations. The built-in function relies on the Nelder-

Mead simplex method, which does not utilize derivatives to find minimum function

values, but rather it just evaluates function values to determine the optimum val-

ues. Unlike the EnKF which recursively updates using new data, this approaches

just requires one static set of data upon which the function looks to optimize. The

algorithm runs until the area of the polytope in the solution space reaches a defined

size.

3.3.5 Model-Based Predictive Control

The general objective of MPC is to be able to determine the future system response

based on a manipulated variable that optimizes the future operation of a system or

plant while staying in a certain acceptable set point range. In this case, the system

is the automated room while the manipulated system is the blind actuation. A

general approach to MPC is illustrated in Fig. 16. The plant is optimized within

a limited window, the prediction-time-horizon, using only the specifics (i.e., current
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temperature, solar radiation, etc.) at the beginning of the timestep (at time k) that

are a result of the measurements and past control inputs (i.e., what position the blinds

have been in).

Figure 16: A general illustration of MPC.

The major consideration in the design of an MPC strategy are:

1. the model of the process

2. the known history of the past

3. an optimizing cost function (J)

The first two items are taken care of using the EnKF to train the model and

the availability of data provided through the building simulations, which in this case

could represent a BMS. The selection of the optimization cost function is where MPC

strategies can widely differ between applications.
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Optimizing Cost Function

An optimal control sequence was developed using Newton’s Method of Optimization,

similar to that employed by Gunay et al. [62]. Newton’s Method is simply another

method of finding the zeros of a function which could be easily implemented. In this

situation the goal was to minimize the difference between the Reference System and

the Predicted System (see Fig. 16). Here then the general optimizing cost function

then becomes the function seen in Eqn. 17.

J = (Rs − Y )T (Rs − Y ) + ∆UR̄∆U (17)

The Rs data vector contains all of the setpoint information (the heating and

cooling setpoints), while the Y represents the vector of predicted states (what the

temperature of the room will be if nothing is done). The first term of Eqn. 17 is

then linked to the minimizing of the errors between the predictions and the setpoint

information. The ∆U is the square coefficient matrix for the control sequence array;

R̄ is diagonal matrix containing the tuning parameters (r) that indicates how the

controls should be weighted at each timestep. This second term of Eqn. 17 signifies

the balance between the desire to minimize the error and the magnitude of the ∆U

signal. For example, in the case that r equals zero, the optimization goal is interpreted

as the situation where no attention would be paid to how large ∆U can be. The formal

definition of ∆U can be seen in Eqn. 18; note the potential simplification to include

the Hessian (H) in Eqn. 19.
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∆U =
(
ΦTΦ + R̄

)−1
Φ (Rs − Y ) (18)

= HΦ (Rs − Y ) (19)

= Ψ (Rs − Y ) (20)

The square coefficient matrix Φ is specific to the situation. The dimensions of

the matrix are Np × Np and the coefficients are determined in the conversion of the

system to the state-space representation. The Ψ calculated eventually becomes the

weighting factor used in the calculation of ∆U . For example the first-order model

expressed in Eqn. 2 and using a prediction-time-horizon of seven hours (i.e., Np = 7)

results in the Φ seen in Eqn. 21 where A = 1− 1
R·C .

Φ =



1 0 0 0 0 0 0

A 1 0 0 0 0 0

A2 A 1 0 0 0 0

A3 A2 A 1 0 0 0

A4 A3 A2 A 1 0 0

A5 A4 A3 A2 A 1 0

A6 A5 A4 A3 A2 A 1



(21)

3.3.6 Implemented Control Design

The entire MPC algorithm was placed into EnergyPlus using the built-in energy

management system (EMS). The EMS object is a high-level controller that is able
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to access a wide variety of sensors within the simulation and allows the user to im-

plement custom control strategies over almost all of the building’s systems. The

complete strategy is illustrated in Fig. 17, and consisted of three main portions: (1)

the predicting agent, (2) the analysis agent and (3) the decision agent. The predicting

agent was responsible for the using the trained RC model to forecast the response of

the building over a set prediction horizon. These trained parameters came from the

offline work performed in MATLAB, because software limitations, including lack of

data array structures, prevented the EnKF methods from being embedded within the

EMS environment. Forecast data for solar intensity on the exterior surface and the

ambient temperature were passed to EMS as a file; similar to how many BAS are now

able to access the Internet for data. Forecasts were designed to be realistic and not

be exactly the same as the weather used by the simulation so a random error value

was included. This was to make the situation seem more plausible. The analysis

agent took the forecasted thermal response and compared the predicted internal tem-

peratures to the setpoint values at their respected timesteps. Their differences were

then weighted (by Ψ) using the associated values derived in Sec. 3.3.5. The decision

agent used the weighted sum to determine the appropriate control response, in terms

of shade actuation. These control decisions could be based on the costs arguments

but also on the potential comfort of any occupants in the space.

3.4 Numerical Investigation

With so many unknowns about the function of the designed controller a number of

elements were numerically tested to get a foundation for the designs used later. The

main investigations preformed are further described below.
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Figure 17: Implemented control method.
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3.4.1 Training Conditions

Extracting performance and environmental data from the shoebox model, the training

of the parameters in both the first and second-order models could be conducted within

a MATLAB environment. The model parameters of the RC model were given as an

initial estimation, based on basic knowledge, and were trained to effective values

offline using the EnKF. Other researchers who have utilized Kalman Filter-based

approaches, such as Radecki and Henecey [36], encountered issues in the variance

values and improper convergence and needed an overlying self-excitation methodology

to monitor and correct value convergence. For this reason, the training process was

attempted using differing timestep lengths to understand and hopefully avoid the

same issues. It is hypothesized that the shorter timestep, which will have less variance

in values will be more susceptible to the same issues found by Radecki and Henecey

[36] and would need to be more carefully approached or avoided.

3.4.2 Forward Modelling

Forward modelling was performed to demonstrate the effectiveness of the training

methods and the simplified models at capturing the thermal performance of the build-

ing space. In order to demonstrate the capabilities, the mean value after the model

had been trained for an adequate amount of time and the values were relatively sta-

ble was placed in for the parameters of the RC model. The data collected from the

EnergyPlus model in terms of loads and ambient conditions was fed into the model

to determine how close the RC model could determine the interior temperature of the

space through the solving of Eqn. 2 and the set of Eqn. 3 and Eqn. 4. The results of

the global optimization for parameter estimation were used in the comparison as the

relative ‘best-case scenario’ for estimation and forward modelling. If the first-order
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model was able to adequately capture the thermal behaviour compared to the base-

line EnergyPlus results and the ‘best-case scenario’ then it would be the more ideal

model going forward because of its easier implementation.

3.4.3 Optimization Metric

As part of the optimization construction, the value about which the system is to be

minimized needs to be determined. The first logical approach would be the minimiza-

tion of total electricity used by the zone for HVAC and lighting. Most researchers

applying MPC strategies to building controls have used this metric. In this case, the

minimization function uses equal weightings for each hour so the tuning parameter

(r) was selected as 0.5.

Alternatively, some investigations have looked at the minimization of costs. Re-

ductions in costs can be highly lucrative and much easier to sell to stakeholders

because of its tangible results. Many commercial and residential settings are subject

to time of use (TOU) billing. With this comes varying utility costs both seasonally

and daily. In Ontario, commercial buildings who use less then 250,000 kWh and have

peaks lower then 50 kW are on the Regulated Price Plan (RPP). Large commercial

buildings can be charged in a similar TOU method but pay a different rate. For

this reason it remains possible that reducing total utility use might not also result in

lowest total monetary costs. A break down of a TOU schedule for Ontario is shown

in Table 1. Rates are listed as from Hydro One [63].

Though rates change seasonally, the increased rates during the period of

7:00 am-7:00 pm (7:00-19:00) during weekdays are a constant trend. In implementa-

tion then, these hours are weighted as a higher cost to all other hours and controls
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Table 1: Time of use billing schedule rates for RPP customers.

Time Summer Season Winter Season Weekend and Holiday

(May 1 - Oct 31) (Nov 1 - Apr 30) (Jan 1 - Dec 31)

[cents/kWh] [cents/kWh] [cents/kWh]

0:00-7:00 7.2 7.2 7.2

7:00-11:00 10.9 12.9 7.2

11:00-17:00 12.9 10.9 7.2

17:00-19:00 10.9 12.9 7.2

19:00-00:00 7.2 7.2 7.2

decisions should be made accordingly. By not adjusting further for the seasonal dif-

ferences, any potential controls are much easier to implement, as a seasonal switch

in setting is not also required. To accomplish this decision weighting, the tuning pa-

rameters were required to be adjusted for each prediction-time-horizon length. With

the cheaper hours being weighted as 0.25 and the higher rates at 0.75. The weighting

values are fairly arbitrary, since in the weighted sum the values become normalized.

The critical aspect (compared to the previous design which had everything weighted

uniformly at 0.5) was that the values were different and skewed for more expensive

hours to a higher value. Since, as was previously mentioned, a weighting of zero gives

an absolute setpoint with no discretion for the energy required to keep it there. The

lower priced hours should be closer to this condition then the peak-hours.

Other utility pricing schemes could lend itself to predictive control strategies. One

example of which is the pricing of the utility based on a peak value over a certain time

interval. The method here was not set up to be directly transferable to situations

such as this. These would most likely require the forecasting of a prolonged period

or would require the continual checking of peak values forecasted in the short term
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and compared to a historic log of past peaks.

3.4.4 Prediction-Time-Horizon Length

A consideration with any predictive strategy is the length of time to look ahead

and base control decisions. In this MPC, a receding horizon strategy was employed.

In this scheme only the first timestep’s control decision was implemented but the

optimal strategy over the entire prediction-time-horizon was still sought. If too small

a time horizon is considered, the thermal capacitance will not be fully utilized. Yet,

if too long a prediction-time-horizon is considered, decisions become more effected by

errors in forecasts, models and increased computation effort. It is then ideal to find

the right balance in lengths. The optimal prediction-time-horizon is situationally

independent, and is a function of the properties of the space. For example, the

larger the thermal mass the longer the required window. In order to investigate

this numerous simulations were run with varying prediction-time-horizon lengths to

determine an adequate length for control in this situation.
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Results

4.1 Numerical Investigation

The numerous research questions outlined in Chapter 3 were explored. Investigations

initially started numerically using the first-order model of the simulated building

space. The performance of the first-order model was compared to a second-order

model in key design considerations. Finally these results were transferred to the

control of a physical space in a demonstrative situation.

4.2 Parameter Training Results

4.2.1 First-Order Models

Global Optimization

Initially, the first-order model was trained using a global optimization technique (out-

lined in Sec. 3.3.4). The values found through this method are listed in in Table 2.

These are considered to be very near the best estimate of the values for predicting the

thermal behaviour of the modelled space. The fit of these parameters between the

47
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training data and the fitted model can be seen for an 84-hour period in Fig. 18. The

RMS error value of this fit had an RMS error of 1.5◦C. It can be seen that the trained

model responds slower to changes then the modelled space, as such it does not hit

the same maximum and minimum values as the shoebox model. The result is related

to the effects of heat transfer not captured in the process between the thermal mass

and the rest of the space. As a result the thermal mass to charges and discharges less

effectively.

Figure 18: An example of the first-order model training using global optimization
over an 84-hour time period.

Table 2: Global optimization minimum search.

Component Unit Value

C J ·◦ C−1 8.694× 106

R ◦C ·W−1 0.057976

The inability of the model to fit better to the training data is a result of the sim-

plifications that a first-order model places on the representation of the zone. Many of
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the advanced heat transfer process at work in conditioning the space are not captured

in the training data. For example the changing infiltration or exfiltration of the space

is not considered. These data sets could have been reported out of the shoebox model

however it would be unreasonable to have this sort of information in a standard BAS.

It could have been estimated based on a schedule or consistent value but this was

viewed as being too ideal a set of knowledge and too far from many actual building

control situations and too reliant on a very informed individual.

EnKF Training

The use of the EnKF to recursively train the parameters was more novel than the

global optimization method but had elements which, based on similar approaches by

other researchers, were of particular interest. Firstly using a 30 minute timestep the

values of R and C converged to those values seen in Table 3. Being ensemble values,

they are represented as a Gaussian distribution expressed as a mean and variance.

Since the values were trained for such a long period of time the variance value evolved

down to a very small value, when compared to the mean. If the value were to continue

to decrease the system would run into operation issues and would potentially need

to be artificially perturbed. The system being trained from however was very static

compared to real-world situation which would help prevent this issue in practice.

Table 3: First order model EnKF converged values using 30 minute timestep.

Component Unit Value Variance

C J ·◦ C−1 8.0227× 106 2.885× 10−6

R ◦C ·W−1 0.045 5.02× 10−10

The resulting values based on the EnKF were found to be similar to those found
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by the global optimization (Table 2). The nature of the system being classified

means that there are multiple possible combinations that result in a similar level

of accuracy. As can be seen in Fig. 19, there are many combinations of R and C

that result in minimized errors of the same magnitude. The apparent movement of

the ideal combination through seasonal changes illustrated in the differences between

Fig. 19 (a), (b), and (c) further illustrates the need for a recursive strategy for any

system looking to capitalize on a simplified thermal model. This parameter shifting is

most likely related to simplifications made within the modelling of the system but also

the relationship in the values to different environmental conditions. For example, the

thermal resistance (and consequently conductivity) is a function of the temperature

while the capacitance value is a function of the relative humidity. Depending on

where the models start from in progression towards the minimized region numerous

different values could be converged to even if using the same methodology. Though

problematic in defining a ‘correct answer’ it means that in terms of building controls

a large range of values are potentially acceptable to the training and implementation

of parameters.

In order to explore the potential limitations of the method when perturbations

to the system were differing, the timestep length between data points was adjusted

from one minute to one hour at various intermittent durations. The progression of

these values for the resistance value (R) is illustrated in Fig. 20. As can been seen

most timestep lengths evolved to a similar value when starting at the same condition

and given the same 5000 timesteps. The only exception to this being the one-minute

timestep, which if given more timesteps would most likely eventually achieve a similar

value. This is indicative of the problems incurred by Radecki and Henecy [41] in

which a system had convergence issues. Later Radekci and Henecy [36] determined
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(a) RMS error in Winter

(b) RMS error in Summer

(c) RMS error in Fall

Figure 19: Error contours for a 24-hour period at different times of the year.
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this was a result of not enough perturbation to the system during training. This

same issue would be experienced by the one-minute timestep with there not being

enough difference between the measurements of the state between timesteps to drive

the system as effectively. They solved this issue using a perturbation function during

ideal times in building operation. The opposite effect can be seen in the initial

evolution of values shortly after initialization in Fig. 20. The longer timestep lengths

(i.e., one hour or 30 minutes) initially move much faster to evolve, seen as the faster

rise in values. In practical applications though a one-minute timestep is not required

and could actual be detrimental to system performance depending on the network

configuration and the quantity of data already being sent through the network. This

hardware limitation become problematic in efforts to access many aspects of current

BAS systems.

Figure 20: Parameter estimate evolution for first-order model.
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4.2.2 Second-Order Model

The training of a second-order model was attempted. Using the same 30 minute data

as for the first-order model, effective values for all the parameters were found to be

those in Table 4. The converged values for the second-order model are more difficult

Table 4: Second-order model EnKF converged values using 30 minute timestep.

Component Unit Mean Value Variance

Cw J ·◦ C−1 8.72× 105 2.61× 103

Rw
◦C ·W−1 1.65 2.76× 10−4

Cair J ·◦ C−1 7.84× 106 2.41× 103

Rair
◦C ·W−1 0.51 2.33× 10−5

to validate. A global optimization is difficult to accurately train with four parameters

as there are a significant number of potential combinations that give similar results.

Secondly, being effective values, it is difficult to split the material properties and

calculate the values. One aspect of note in the converged values are the high variance

on the capacitance values. This is partially a result of the wall temperature only

being forecasted and never actually measured. Meaning that this state is always very

uncertain. As the capacitance value of the wall is subject to high variability so to

is the capacitance of the air node, since so many combinations of these values will

result in reasonable results. This high uncertainty of a non-measured state would

be nearly impossible to apply in training methods such as a least-square or recursive

least-square as in these methods knowledge of states is assumed to be known and

nearly ideal.

The capacitance value for the interior node in comparison to the relative capaci-

tance of the air in the space was found to be approximately 100 times larger in both
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instances. The effective values found by the recursive training accounts for the air

and the construction materials, which is why the value was found to be larger.

4.2.3 Forward Modelling Results

The forward modelling was intended to gauge the validity and abilities of the building

model parameter values. Using weather and auxiliary load data, which was not used

in the training interval, the indoor air node’s temperature was forecasted using the

various trained model and compared to the simulated environment in EnergyPlus,

as seen in Fig. 21. The 24-hour forecast illustrates the model abilities and short-

comings but the 1-hour forecast repeated each hour over a 24-hour period is more in

line with the conditions in the controller as after each timestep the predictions were

recalculated.

The associated RMS errors for the plots in Fig. 21 are contained within Table 5.

As can be seen there is a considerable decrease in the values in the associated errors

between the two different forecast lengths. More interesting is the increased error of

the second-order model relative to the first-order model as trained using the EnKF.

Partially explainable by the higher uncertainty in the values meaning the values were

better trained in the first-order model. A secondary issue could be the lack of a steady

state value being achieved in the wall node over such a short period (i.e., there is an

insufficient burn-in period). This is a potential implementation issue when being used

in a consistently refreshed model of the system.

Based on these results, the abilities of the first-order model were deemed to be

sufficient for the required model as part of the MPC. Ultimately the added complexity

of the second-order model did not provide a similar increase in the accuracy of the

predictions.
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(a) 24-hour forecast

(b) 1-hour forecast

Figure 21: Forecasting comparisons for 24 and 1-hour ahead.
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Table 5: Calculated RMS error values from plots in Fig. 21.

Training Method and 24-hour forecast 1-hour forecast

Model Type RMS error [◦C] RMS error [◦C]

EnKF First-Order 2.193 0.520

EnKF Second-Order 2.696 0.540

Global Optimization First-Order 1.058 0.481

4.3 MPC Elements

Prediction-Time-Horizon Length

The aspects of the prediction-time-horizon length were tested to determine the ideal

length for the building model. Numerous simulations were run using the total elec-

tricity minimized controls and various lengths of the prediction-time-horizon. In each

run the cumulative heating and cooling loads were compared to that of the baseline

model. The results for three of these prediction-time-horizon lengths are shown in

Fig. 22 as cumulative energy usage for both heating and cooling. As can be seen, as

the time length change so too do the loads. Further, and expectedly, as the heating

loads increases the cooling load decreases. Under a 7 hour prediction-time-horizon,

the baseline reactive system has either an advantage in cooling or heating loads, as

seen by the offset between the curves. Extending the horizon up to 9 hours in length

did not result in significant energy savings (if any) so 7 hours was deemed to be ideal

length going forward. The cooling loads were found to be the more susceptible of

the two to the prediction-time-horizon variation. Unlike the heating electricity usage,

which saw benefits with all timestep lengths, the solar gains are not advantageous.

No matter when they are added it is still a benefit to zone. The cooling energy us-

age is dependent of the delayed thermal effect of the solar gains. The selection of
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optimal lengths was found to be a very under-discussed topic within the literature on

predictive controls.

4.3.1 Optimization Strategies

The MPC control strategy in the shoebox model was implemented using two different

optimization strategies. This allowed for a comparison as to whether it was more ben-

eficial to optimize for electricity use or cost. The total heating and cooling electricity

and costs are presented in Fig. 23.

It is noticeable that using either optimization method provides similar savings

either in electricity or total cost at 34% and 38% respectively. The majority of the

savings come from the heating system over the baseline that, especially during the

winter months, would have the blinds closed for long periods of the day rejecting the

useful solar gains. The increased savings in cost compared to the electricity use is

indicative of the time in which much of the savings occurred. Since the majority of

benefits (both in terms of solar gains and rejection at the correct times) occur during

the daytime hours when costs of electricity are higher.

The actual energy consumption used by the both cost function methods is com-

pared to the baseline once again in Fig. 24. The figure shows that in actuality the

energy consumption in the space when using a method biasing for TOU does not

result in a different amount of energy being used by the heating and cooling system.

The TOU method has only two times of transition upon which controls should be

heavily weighted to times of cheaper energy rates. These two times (7:00 am and 7:00

pm) occur at times when solar gains are not major considerations of the system so

shade actuation did not vary drastically. Had this control been actuating an HVAC

system in which more modulation was possible (and not just a binary on/off) such as
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(a) Loads with 5 hour prediction-time-horizon

(b) Loads with 7 hour prediction-time-horizon

(c) Loads with 9 hour prediction-time-horizon

Figure 22: Cumulative heating and cooling loads.
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(a) Total heating and cooling electricity use.

(b) Total heating and cooling electricity cost.

Figure 23: Comparison of optimization cost functions.
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in Ma et al. [30,31] or the OptiControl project [23] there would have been expected a

larger distinction between strategy choice.. This system did not look at the altering

of the lights within the space, which in the shoebox model were on during occupied

hours and represented another 21 kWh/m2 and could be the potential for significant

further savings in systems that had lights controllable by the BAS.

Figure 24: Electrical energy use by both optimiziation methods compared to the
baseline.

Systems Extensions into Lighting

An extended aspect of the optimization strategies looked at the inclusion of a visual

comfort criteria within the Decision Agent portion of the controller. Though not

controlled explicitly by the MPC approach, the inclusion of visual criteria is essential

to developing a system that occupants are willing to accept. Further it is possible

in many BAS to control the lighting. For that reason it could be automated along

with other elements within the space. As can be seen in the Fig. 25, the energy usage

by the heating, cooling and lighting of the space is tabulated once again optimized

either for cost or energy but now allowing for the lights to be turned off automatically
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if the shades had been closed for visual comfort reasons. As can be seen with both

strategies, the heating loads increased and cooling loads decreased, a result of the

decrease in lighting use in the space which contribute to the heating load. This

approach adds more potential savings for the building operators over the baseline

model.

(a) Total heating, cooling and lighting electricity use.

(b) Total heating, cooling and lighting electricity cost.

Figure 25: Comparison of optimization strategies when including visual comfort.
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Demonstration Facility

5.1 Introduction

The control algorithm was implemented in a physical space, less to fully utilize the

system developed through simulation and numerical work in Chapter 3 and more to

attempt to implement a system based off of the lessons learned during it. The goal

was to develop a system, appropriate for a standard BAS and address challenges and

problems of incorporating a system that interacted with a building and its occupants.

5.2 The Delta Controls Lab

A demonstration facility was developed in the Delta Controls Lab of Carleton Uni-

versity. The 12 m2 office is located on the western edge of the Carleton campus; see

Fig. 26(a). The space has an approximate southwest orientation with three large win-

dows on only one wall and a window-to-wall ratio of 60%. The space is conditioned

with two overhead radiant panels fed by hot water lines from a centralized heat plant

on campus and two air diffusers which deliver neutral temperature air in the heating

season and conditioned air during the cooling seasons. The office is regularly occupied

62
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(a) Physical Location

(b) Elevation and Layout

Figure 26: Delta Controls Lab overview
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by up to five graduate students who keep a fairly consistent occupation level from

7:30 am - 6:00 pm. Outside of these times the office is usually unoccupied. Three

non-dimmable lighting fixtures each with two fluorescent bulbs provide overhead illu-

minance. The operative temperature strategy of the room was not changed from the

static setpoint style the room had previously been controlled under. The setpoints

were found to be a very narrow operation band and were adjusted to have a heating

setpoint of 21◦C and a cooling setpoint of 25◦C. Though not ideal for both heat-

ing and cooling seasons simultaneously, they fall within seasonal limits of comfort as

defined by ASHRAE Standard 55 [64].

5.2.1 Facility Setup

The number of adaptations to the space for this investigation was kept to a minimum.

Realistically the more changes to a standard office space, the more the incurred

cost by building owners and the less likely they will be undertake a project of this

nature. The existing roller shades were retrofitted using Somfy Sonesse RTS 30

motors (Fig. 27(a)) connected wirelessly to the BAS using a Somfy dry contact device

(Fig. 27(b)). A Delta DSC-1146E, a commercially available building controller, was

installed so automation of the zone’s VAV, radiant panels and shades could be handled

by the experimental system and not require access to the rest of the Canal building’s

controls. The installed system is shown in Fig. 28. Two ceiling-mounted analog

photodiode sensors were installed and connected the room controller (the DSC) to

monitor interior lighting conditions. A 10k thermister was placed in the plenum near

the radiant panel’s pipes to be used in fail-safe applications to make sure there was

no risk of pipes freezing from control errors.
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(a) Sonesse RTS 30 motor

(b) Dry contact device

Figure 27: Somfy hardware used for shade controls.

The only exterior data provided to the room controller was the outdoor air tem-

perature (OAT) that was already delivered to controllers through the existing BAS.

In addition to the OAT, environmental conditions were logged using a weather station

installed on the roof of an accompanying building and shown in Fig. 29(a). Measure-

ments of horizontal solar radiation, along with outdoor temperature and vertical solar

radiation at the same orientation as the Delta Control Lab’s windows were logged at

15 minute intervals. To measure the transmitted solar radiation, Onset silicon pyra-

nometers were positioned just on the inside of the glazing as well as just behind the

blind as shown in Fig. 29(b). These pyranometers were not able to be connected to

the BAS and were removed when long-term testing had begun as they had a unique

adapter to the data logger. It was attempted to find pyranometers which could be

connected to the controller, however it was difficult to source ones which gave a high

enough voltage reading to be compatible.
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Figure 28: Installed BAS in the Delta Controls Lab.

5.3 Investigation

The demonstration facility was designed for continuing studies whose scope far exceed

what was done in this investigation. The main investigations preformed were the com-

missioning of the system and determine the relative effectiveness of an implemented

MPC design.

5.3.1 System commissioning

Besides the physical connections to devices, the system had a number of control

programs that needed to be developed on the BAS for fundamental operations. With

no connection between the BAS and an exterior data source (such as the weather

station or the pyranometers) the predicted shading controls needed to rely on two

ceiling photodiodes for a host of data. As such the sensors needed to have relations

derived which directly correlated the solar flux into the room to that of the average

ceiling illuminance. In this way the BAS would be able to estimate the flux of energy
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(a) Weather Station (b) Pyranmometers

Figure 29: Enviromental condition monitoring equipment.

into the space in order to predict the space’s response.

5.3.2 Effectiveness of an implemented control scheme

The implemented control strategy here blended the work done in the simulation work

in Chapter 3 with the work of Gunay et al. [62] and adjusted it for the application

in a less ideal environment. Following these ideas, the need for complete hourly fore-

casts was removed and instead the notion that current conditions could be linearised

over the control horizon was attempted. A control scheme was implemented in the

DSC using the native GCL+ programming language (the full code can be found in

Appendix C). The control sought to be a total control solution and not just one that

would be implemented during certain times. As such conditions in the controls for

night time (when solar gains are not possible) and the design to place occupant com-

fort as the paramount concern were introduced. During occupied hours, the control

sequence was implemented as is illustrated in Fig. 30. The non-occupied hours were
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controlled using a much simpler Decision Agent in which the blinds were controlled

strictly on thermal merits; which often is their utilization for a small increase in the

insulating properties of the space while lowered. The MPC strategy is the same as

was presented in the Fig. 17. The controls were implemented in the Delta Controls

lab starting in March 2014. Intending to be a long-term test situation both at effec-

tively managing the expectations of the occupants both visually and thermally while

attempting to reduce the energy consumption of the zone. Occupants were given

control override abilities over the system as the testing progressed. However, in the

quantification of the effectiveness energy and cost (less objective metrics) were se-

lected for analysis. For this reason, along with allowing for better management of the

internal loads, most energy-based analysis took place on weekend hours and was com-

pared to the use by a neighbouring office. The use of HVAC along with the interior

temperature of the space were recorded and compared to that of physically similar

office spaces down the hallway which could be monitored through the existing BAS.

The comparison was designed to quantify the potential savings of the implemented

shading system over an unaltered space.

5.4 Demonstration Facility Results

5.4.1 System Commissioning

The system commissioning was a critical step because the Delta Controls lab was

taken off of the existing BAS and placed on its own. The entire operation of the zone

was no longer being managed by the professionally commissioned system and any

design failures could potentially do serious damage to the HVAC system of the zone.

For that reason particular care was placed on the development of the fundamental
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Figure 30: Daylit hour control process.
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operations and fail-safe protocols were installed before any of the more advanced

shading controls could be implemented.

The first of these custom systems was the correlation of the lighting conditions in

the space. Using the pyranometers and installed photodiodes a series of measurements

were taken relating the transmitted solar to the illuminance on the ceiling. This

relation is shown in Fig. 31 along with the linear regression fit. The value of

0.1655 W ·m−2 · ft-cd−1 was utilized as the conversion factor within the room’s BAS

system to relate the rooms measured illuminance to get a sense of the transmitted

radiation through the window. The fit (based on the R2 = 0.6648) is not particularly

high but its partially a result of the location of the sensors on the ceiling; which

protects it from any direct solar radiation on the window. Further the value for

illuminance was based on the average of two sensors; one of which is located behind

more obstructions due to the furniture positions. Though potentially something that

could have been adjusted, it represented a real situation in an office space where

occupants have created a environment that is non-ideal for the operation of a building

automation strategy.

Figure 31: Illuminance and transmitted radiation relationship.
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As part of the predictive system’s approach an R and C estimated value were

required. Ideally there would have been opportunity to train this using the recursive

EnKF approach developed earlier as part of the room’s developed BAS but due to

constraints including the data processing rates, values were embedded within the

controller following offline calculations. The values used by the BAS are shown in

Table 6.

Table 6: Demonstration facility values.

Component Unit Value

C J ·◦ C−1 2.16× 106

R ◦C ·W−1 0.05

The values are similar (in the same order of magnitude) to the values found using

the various methods in the simulation investigation, but of course that was a different

building. This offline approach to the parameter estimation would represent a fairly

accurate situation in any advancements of this system to more commercial spaces.

Starting with a reasonable value in the controller, a recursive method could then be

implemented in order to update the thermal parameters and account for any change

of conditions.

5.4.2 Occupant Comfort

Occupant comfort was a major concern of the automated blind system, especially

since historically it is on this front that most automated shading systems are found

to be lacking. In the use of a primarily visual based system for thermal performance

needs, the visual aspects still need to be a constraint.
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Thermally, the space was well controlled, as is shown in Fig. 32. With the imple-

mentation of the controls it can be seen there was generally a decrease in temperature

fluctuation, particularly around the heating setpoint. At the time occupants had com-

plained about the room being too cold. Part of these generally warming conditions

would be the changing of seasons; however upon looking at the outdoor air tempera-

ture during that time (as seen in Fig. 33) the temperature remained fairly consistent

during the two time periods. A major complaint of the initial control was the lack

of any occupant-based decision (something that had been intended to be included in

a refinement of the controls). With its controls there was a marked change both in

the temperature profile of the room but also the amount of time in which the shades

were closed (illustrated in Fig. 32 and Fig. 34, respectively). The temperature had

more fluctuation within the thermal comfort range but members of the office com-

munity typically were more accepting of the control strategy. The shade data and

radiant panel data (Fig. 34 and Fig. 35) only were measured after the system had

been commissioned. However from the switch to include visual comfort (i.e., the data

in the grey) shade occlusion was dropped from 71% to 30%. The radiant panel also

had a decrease in usage, however that was partially attributed to seasonal changes to

warmer temperatures around that time.

5.4.3 Energy Reduction

Energy reduction comparisons were made during the monitoring of the zones over

weekend periods; a time in which the interior gains were minimal. The control setup

in the Delta Controls Lab was compared to a similar office space on the same floor

and with the same orientation. Data points were limited by the existing BAS for the
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Figure 32: Indoor temperature of the Delta Controls Lab.

Figure 33: Outdoor temperature of the Delta Controls Lab.

other room but conclusions could be drawn nonetheless. The data collected on the

sample office and the Delta Controls Lab are contained within Fig. 36 and Fig. 37

respectively.

Notably in comparison of the two spaces are the complete differences in shading

position. The sample space had the blinds closed for the weekend, a common oc-

currence where the occupant did not open blinds when leaving at the end of day,

while the predictive system had the shades open the entire time. This is the same
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Figure 34: Shade position in the Delta Controls Lab.

Figure 35: Radiant panel function in the Delta Controls Lab.

phenomena observed by Haldi and Robinson [65]. The lack of shade movements by

the predictive system are a result of the indoor temperature never falling low enough

for the system to forecast the need of heating. This approach resulted in a complete

non-requirement of heating energy by the radiant panels. At the same time, the room

did not overheat during the daytime as the ventilation rate never increased above the

baseline ventilation rate.

In a straight comparison then, the predictive system appears to save a significant

amount of energy but much of that had little to do with optimal shading positions

and more with shortcomings in the existing control methodologies and controls. As

can be seen in Fig. 36 the system was trying to keep the temperature between 20◦C

and 22◦C, which is a smaller temperature band then was allowed by the predictive

system, but during an unoccupied weekend could be considered extremely conserva-

tive. Secondly as can be seen in the fluctuations of the temperature, are what appear

to be a small dead band. As a result the system is subjected to a periods of repeated

on-off switching. In some instances, such as just after 12:00 pm on April 27 in Fig. 36,

a significant spike in system ventilation will immediately follow a heating action.
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Figure 36: Sample office results.

The demonstration facility so far has provided a number of insights, both ex-

pected and unexpected, but still remains an on-going investigation. The original goal

of being able to remove the zone from the existing BAS was a success, as was the

implementation of an MPC strategy. The idea of using the neighbouring office spaces

however is more challenging then originally anticipated because of their current con-

trol setup. The potential of altering the controls in the Delta Controls Lab is possible

but purposely making the design system to match performance is non-ideal.
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Figure 37: Delta Controls Lab results.



Chapter 6

Discussion

The combination of simulation work and brief demonstrative opportunity allowed for

exploration both of the theoretical and practical aspects of a MPC-based shading

controls. Based on these results and insights, discussion on the overall feasibility of

MPC of blinds could occur.

6.1 Model-Based Control of Blinds Feasibility

Implementation of an MPC strategy for shading automation (or other HVAC control)

systems are a viable solution to the increased automation of a building based off of

both past and current simulation studies. Yet implementation in physical system

remains infrequent and highly specialized. Part of the hesitation in the implementa-

tion of such strategies comes from the design of many of the applied approaches in

the past. They have often relied on either full BPS constructions or high-order RC

models that required detailed knowledge of the construction [17–22]. This approach

is acceptable to the researcher but not for the industry personnel who is faced with

time limitations during commissioning and who must consider the maintainability of

a design for the life of the system. This facilitates the need for recursive methods that
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are able to reduce the burden on operators and better utilize the capabilities of most

BAS. Though identified as an effective method by past research [40,41] little has been

done to address the implementation challenges into industrial applications by relying

heavily on proprietary software such as MATLAB [42, 43]. Even in the attempts of

this research, which were designed with application into the code of an existing BAS

or simulation program explicitly sought, implementation was challenging and needed

to be scaled back. The EMS of EnergyPlus is limited in many aspects, particularly

the limiting of program lines to only 100 characters and the limiting of programs

to only 120 lines. This coupled with a lack of array handling and lack of a robust

compiling error-handler makes the implementation of any relatively large controls

needlessly difficult. If it is not feasible to even create these controls in a simulated

environment in which time and system operation are not as critical how can it be

expected of operators of a physical BAS. During the implementation of the controls

into the room controller, challenges were faced both in the hardware and software.

Physically the devices ran into difficulty both in internal storage capacity and the

processing of so much data. This resulted in the slowing down of refresh rates and

functional speeds. In the software, the system was found to advertise functionality

(such as data arrays) that were not reliable in execution. The end product in terms

of developed control was found to be 10 to 20 times larger than the existing BAS

code. These sorts of encountered problems were never mentioned by the researchers

who actually performed physical installations, which is most likely a result of very

little implementation that did not use custom control setups.

The exploration of how implementation could be performed was not considered

in any of the literature, even in the studies where experimental runs of a physical

situation were performed [21,30,31]. As more ‘learning’ algorithms become available

in consumer goods (e.g., Nest Thermostats) there undoubtedly will be an increased
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push for new recursive methods and the beginning of more accessible options particu-

larly in this age of knowledge dissemination. One potential implementation strategy

could take lessons from the architecture of current systems both in buildings and nu-

merical software. As was found in the existing BAS of the Canal Building, advanced

functionality (e.g., PID controllers) are embedded as predefined functions within the

native language (GCL+). It is then highly conceivable that any recursive parameter

estimation technique could be set up as a function in a similar fashion. This would

remove a substantial portion of the learning curve to the designers and commission-

ers while still providing the functionality. The maintenance and innovation of these

methods would be performed by the larger control companies who are already active

in research and development. A similar built-in functionality could be applied to the

modelling of a system at the zone level or room level for use as an MPC controller. If

the EnKF was implemented in its general form its training abilities could be used by

multiple different systems including setpoint learning, scheduling or HVAC controls.

The largest issue with the widespread application of the predictive, or even au-

tomated, shading would be the sourcing of the required motor for retrofits or the

inclusion as part of a shading system purchase. From the experience gathered here

it was found very few manufacturers are producing motors for shading applications.

In many cases the motors that are designed are for the simple “open or close” situa-

tion and not the stepped motor response, which could have generated a more robust

control option from a daylighting and occupant visual comfort aspect. In the imple-

mentation of automated shades in the New York Times Headquarters, Lee et al. [66]

noted the same difficulty in sourcing of these devices, with most available products

catering to niche market applications. Many of the retrofit applications of shades are

in fact not in the domain of industrial products at all and are more in the realm of the

hobbyist looking for a project. This situation does illustrate the possibility of how
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this system could be made modular; separated from the central BAS and operating by

its own governed controller embedded within the shade assembly. It would however

be difficult to calibrate for the same thermal control benefits that the fully integrated

system would be able to achieve. The addition of the motor to the shades would add

complexity to the façade design as the motor cost per shade is not insignificant at

the moment, so a cost-benefit analysis would need to occur for the project.

The commissioning of this system was not without its ‘workarounds, which in

a full-scale system could be revised. The largest of these was the reliance on the

photodiodes to translate the solar energy flux into the room which is inefficient and

potentially difficult to calibrate. Even with extensive calibration of a reactive system,

as was completed in the New York Times Building, correlations became invalid not

by the changes to the building or its envelope but by the construction of the buildings

around the office tower [66]. This highlights how calibration would be susceptible to

becoming uncalibrated relatively easily even before the consideration of the changing

of surface materials, or reorganization of furniture. Fortunately, access to pyranome-

ters here meant that the measured flux could be correlated to ceiling measurements,

however these values are highly influenced to the light availability during calibra-

tion. The correlation used here, though deemed acceptable, still had a high degree

of inaccuracy in capturing the relationship. A more suitable approach would be the

inclusion of pyranometers as part of the BAS on the interior side of the glazing. This

was not accomplished because of the lack of compatibility between the sensor and

the controller but could be rectified by hardware companies if so insisted by demand.

This would have reduced the need of on-site calibration (an expensive proposition in

industry) and provided more reliable results. This device (depending on the com-

plexity of the design of the building) would not be required in all zones and could be

installed singularly for each orientation. Expanding on the idea of adapting controls,
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these relations could be continually be updated recursively by software in a similar

method to other setpoint values by the system.

6.1.1 Economic Feasibility

An aspect of any proposed strategy is of course the economic benefit of the system.

The relative cost over a standard shading system in an office would only be the motor

installation. The hardware costs of the Somfy devices used in the Delta Controls Lab

were $235 per device, which ideally could cover up to a 10 foot span and a $90 wireless

receiver to connect to an existing BAS. The use of wired alternatives, if considered

early enough in the design phase, would also be possible and potentially a better

alternative. The scope of the acquired data for the demonstrative setup would not

allow for the cost savings to be calculated so the calculations come from the simulation

contributions. From the shoebox models physical dimensions a single motor could be

utilized by a window twice as wide. The sunken costs of the instillation compared to

the cumulative savings are shown in Fig. 38. Based on this, the payback period, when

not considering savings in capital costs on the HVAC, for this system would have been

just over 6 years. This cost is highly dependent on the orientation, design of passive

shading elements and material parameters. As such the implementation of these

controls would have a higher payback period on all other orientations. Compared to

other payback periods on energy retrofits of Canadian office buildings, as reported by

Chidiac et al. [67] lighting energy reduction retrofits had payback periods of 5.8 to

7.5 years. Comparatively then, these values are competitive with other retrofits.
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Figure 38: Simple payback period representation.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The study, design and development of a predictive, model-based shading control strat-

egy were accomplished. The predictive shading controls were designed to utilize a

building’s thermal mass by predicting the building’s thermal response to a number of

factors over a prediction-time-horizon and automated shade positions in a way that

reduces the costs (both electrical and monetary) of the building’s operation.

A numerical investigation was accomplished using a shoebox model (i.e., a single-

zone office space) that solved challenges including recursive parameter estimation

techniques and implementation and compared strategies. Low-order control models

were trained using the Bayesian method of an EnKF and their performance were

compared to a brute-force global search optimization. In comparing strategies the first

and second-order models both resulted in similar parameter estimates, both models

were not without their implementation issues including lack of potential convergence

when system perturbation were not large enough. Based on the comparisons it was

found that a first-order RC model was actually able to outperform the second-order

counterpart in a situation where limited system information was provided.
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In the simulated office space an automated reactive strategy was compared to

that of an implemented MPC strategy. Two different methods were attempted, one

in which electricity use was minimized and one in which total utility costs were

minimized. Both methods resulted in similar savings in electricity and cost. It was

ultimately determined that using cost gave a higher savings but that the amount of

electricity used by the system did not change. Electricity savings for heating and

cooling were found to be 42% and 26% respectively in a system that controlled for

only thermal benefits. If an automated lighting system was explored that allowed the

lights to be turned off when shades were closed with high solar gains, the heating,

cooling and lighting savings were reduced by 12%, 49% and 54%. Overall this led to

a 35% reduction in total energy use. Financially, this system was calculated to have

a payback period of at least 6 years in ideal circumstances.

Finally, a demonstration facility was constructed within the Delta Controls Lab

and a brief study was conducted. Along with automated shades, a number of sensors

and controllers were set up in order to recreate a small-scale BAS that could actively

be tested. A modified predictive scheme was installed that addressed a number of

the complications and shortcomings discovered during its commissioning. In terms

of thermal comfort, the controls were able to keep the building zone in a thermal

comfort range while reducing the space’s reliance on the conditioning system. The

system was able to do this while maintaining a level of visual comfort during occupied

hours. During non-occupied weekends, the system was found to perform as expected

and drastically reduce the energy use as compared to an identical office with manual

shades and a control setup from the existing BAS of the building. A majority of the

savings was not from the active control of shading devices and were a result of a more

robust set of setpoints and control strategies for the ventilation and radiant panels

then existed in the building’s existing BAS. This result illustrates one of the main
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problems with current building’s and how they are controlled.

7.2 Recommendations for Future Work

The architectural trend of transparent building envelopes has become mainstream,

but how to manage the increased levels of solar gains in ways that are not only

beneficial to the building’s operation but create an acceptable environment to the

building’s occupants is becoming a critical issue. A considerable amount of effort

should be placed into the scalability and effectiveness of any solution that seeks

to address these issues and relieve the considerable amount of reliance on so-called

“active occupants”. As the method developed has shown promise, it should be given

more time to get more meaningful results. If possible a better set of measurements

in terms of energy use and occupant satisfaction in the both the Delta Controls Lab

and the existing neighbouring offices would allow for more energy quantifications

to be performed. There would be considerable benefit in the ability to have the

neighbouring systems adjusted to address many of the anomalies encountered during

its observation.

With automated shades being so pivotal to visual and thermal comfort of the

occupants the system must be adaptable to the occupant’s request and desire for

overrides. As such these occupant adjustments need to be tracked by the system

and, if possible, learned from to create an environment that continually evolves with

occupant desire and predicts actions that minimize the need for occupant interactions.

Introductory work on this concept has already been developed by Gunay et al. [68]

and would be easily included with what would work out to only be a software update

to the BAS. Another element of the controller on the software side which was not

included so far was a recursive estimation of the thermal parameters by the installed
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building controller. Based on the experiences here many of the ideas developed and

explored numerically were unable to be implemented in industry standard equipment.

A more scalable approach relying on more standard operations should be tested.

Finally an assortment of environments should be investigated both in simulation

and with the outfitting of MPC-based shades. With regard to simulation, only one

climate zone was used in this work. Differing climates could be accommodated with

little effort and could benefit more or less by this strategy. Similarly, only one style

of shading technology was implemented with only open and closed control options.

Alternative shading styles such as venetian shades or the ability to close a roller blind

only half way would add control options particularly in terms of occupant comfort

considerations. In terms of the physical implementation, only so much can be learned

from a single office space that is occupied by a group of students who are more

informed and complacent to building research. A project of this scale would provide

valuable insights into the occupant interaction but also the problems associated with

a retrofit project that could come with various layouts, designs, orientations and

currently installed resources.
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Appendix A

Daylighting Fundamentals

A.1 Daylight

The most fundamental aspect to the concept of solar control and daylighting is the

source of all natural light on planet — the sun. The sun admits a broad-spectrum of

electromagnetic (EM) radiationThe source of the most of the solar radiation is the

sun’s photosphere. The extraterrestrial irradiance (i.e solar radiation at the top of

the earth’s atmosphere) is approximated as blackbody radiation at 5800K. The peak

of the solar spectrum occurs between wavelengths of 380 - 770 nm, which happens to

correspond to visible range of the human eye [69].

As the sun’s radiation passes through the atmosphere certain wavelengths are

absorbed and attenuated (not all equally) by various components of the atmosphere.

As a result the power of the solar radiation drops from an average value of

1360 W · m-2 at the surface of the atmosphere down to levels at sea level varying

from 80 W ·m-2 to 1200 W ·m-2 during the solar noon; based on variables including

latitude, season and solar conditions.

Sunlight is more efficient in terms of luminous efficacy, then most commercial

artificial lighting used in commercial buildings which provides a broad electromagnetic
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spectrum which creates a more dynamic interior space which promotes better human

health and performance [70], too much of a good thing however can be detrimental

and can lead to situations of glare. It can not be forgotten as well, that light is still

in fact a radiant energy and energy outside of the visible spectrum still exists and

will heat the interior environment which can be undesirable in buildings.

A.2 Daylight Performance Metrics

Daylight, though an integral part of a building environment, has no standard per-

formance metric. With so many different shading, control and interior options it

is important to understand what happens within a building space. Unfortunately,

unlike other building environment metrics, daylight is a ”notoriously difficult” [71]

building performance aspect to quantify. With the increase of computation power

and simulation, more of the daylight analysis is being conducted through simulation,

and with it more parties are becoming involved in the design of the building quantify

daylighting as something included in the design process [72].

Historically used, the Daylight Factor (DF) is defined as the ratio of the internal

illuminance at a point in a building to the unshaded, external horizontal illuminance

under a CIE (International Commission on Illumination) overcast sky [73]. Never

intended to be a measure of good daylighting design, it was instead intended to be

a minimum legal lighting requirement [71]. Even so it remains the most widely used

performance measure of quantitative daylighting measure [72, 74] Daylight factors

continued usage is a result of its responsiveness to a buildings geometry, surrounding

landscape and buildings, and surface properties. Further the same features that often

are associated with good daylighting correspond to high DF values. However, the

DF value takes the approach that the more light the better, which often is not the
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case. Other drawbacks include, that its sky model uses worst case sky conditions, and

that the DF value is the same for all façade orientation and building locations which

removes its ability to help develop glare prevention strategies on multiple façades.

Reihnart and Walkenhorst [75], were the most recent to update the definition of

Daylight Autonomy (DA) to be the fraction of a considered time interval which a

minimum illuminance level can be maintained by daylight alone at a specific point.

Typically the time interval in question are the hours per year when a workplane is

occupied. The required minimum illuminance level can range from 150 [46] to more

then 1000 lux [76] based on legal requirements or user preferences. When investigating

workplane illuminance, several points on the centre line of a room from the façade to

the back wall are used for measurements.

Useful Daylight Illuminance (UDI) was developed by Nabil and Maradalievic [74]

and was designed to be a more robust alternative for daylight factors. Unlike daylight

factors, UDI is a climate-based analysis which utilizes realistic, time-varying sky and

sun conditions to predict hourly levels of absolute daylight illuminance [77]. Instead

of calculating the meeting of a threshold value of illuminance, UDI is the percentage

of occupied hours per year where daylight levels are useful. Useful is defined as any

illuminance falling within the range of 100-2000 lux, while lower then 100 lux or larger

then 2000 lux are considered not to be useful as they have found to be insufficient

as a sole source of illumination or likely to produce visual or thermal discomfort, or

both [77] respectively. When investigating workplane illuminance, it is investigated

for several points on the centre line of a room from the façade to the back wall, just

like DA.

These daylighting metrics are looked at as a signs of a well designed building

in terms of daylighting, and are the most widespread by professionals investigating

daylighting topics [72]. The drawback of allowing so much light into a space is the
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potential for visual discomfort and cause glare - a topic none of these metrics address.

A.3 Visual Comfort

Visual comfort is perhaps the most important aspect of the proper daylighting of any

space. Often a blind system, automated or not is fundamental if a daylit space is too

meet the demands of a user in a comfort respect. Heuristic lighting set points are

designed to be conservative and avoid glare, but more importantly the possibility of

complaints. Lighting standards typically require an office workplane illuminance of

at least 500 lux where paper-based work is carried out. Lower workplace illuminaces

should be used when a computer and visual display unit (VDU) are used [78], but

conditions should never go below 100 lux as it is deemed too dark while anything over

2000 lux is considered likely to produce glare [77].

Glare is attempted to be avoided when utilizing daylight, but what glare is exactly

is difficult to quantify and therefore difficult to avoid. In the Lighting Handbook of the

Illuminating Engineering Society of North America, glare is defined as the sensation

produced by luminance within the visual field that is sufficiently greater then the

luminance to which the eyes are adapted to cause annoyance, discomfort or loss in in

visual performance and visibility [78].

Glare is divided into two main categories - disability and discomfort. Disability

glare is physiological condition where stray light in the eye reduces visibility and visual

performance from a reduction of contrast. For example, direct sunlight or reflections

from a bright window off a shiny surface or a VDU. Discomfort glare alternatively

is a psychological condition, and therefore is highly subjective. It ultimately does

not necessarily reduces visual performance or visibility but does provide annoyance

from high contrast between luminous sources and room surfaces. Discomfort glare is
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highly dependent on the angular displacement of the source from the observers line

of sight and the size of the source of glare [79].

Occupants tend to have different reactions to each type of glare. When disability

glare occurs, occupants tend to adjust their position or utilize a shading device [80].

Discomfort glare can occur with no change to the work performance of the occupant

but headaches and eyestrain might develop due to continuous adaption of the eyes to

the highly contrasting lighting conditions. Discomfort glare is the more common issue

within a building, and being so subjective, is where glare metrics and quantifications

have been attempted to be applied.

A.3.1 Glare Quantification

With the subjective nature of discomfort glare, attempts have had to be made to

create metrics which predict the human response. Osterhaus [80] investigated the

current state of these attempts and their predictive capabilities. The investigation

concluded that the available methods are of limited practical use for daylight offices

and that no method had been developed a unified model for both daylighting and

electrical lighting. Major glare indices are the Daylight Glare Index (DGI), the CIE

Glare Index (CGI), the Unified Glare Rating System (UGR), the Visual Comfort

Probability (VCP) and Daylight Glare Probability (DGP).

The DGI (or Cornell Equation), Eqn. 22, was first developed by Hopkinson and

Bradley [81] following research at the Building Research Station in England and at

Cornell University. It was developed for quantifying discomfort glare from daylighting

(the first discomfort glare index to not be developed for artificial lighting). Since the

initial investigation, others have attempted to modify and build off the original model.

Chauvel et al. [82] investigated how the values of glare discomfort changed for the

different components composing daylight. Nazzal [83] revised the DGI and developed
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the DGIN, derived a model that assessed the degree of visual discomfort based which

could be implemented in RADIANCE, which provides luminance values. One of the

major revelations from Nazzal and Chutarat was substituting average luminance, with

background luminance. This adjustment was experimentally supported by the work

of Fisekis et al. [84]. Despite its advances, evolution and widespread adoption, it still

can lead to unreliable results with limitations coming from non-uniform glare sources

and size of glare source [80].

The CGI, Eqn. 23, was adopted by the CIE following a tasked investigation by

Einhorn to develop a compromising and standard glare calculating procedure [85].

The resulting equation took elements from existing knowledge and blended results

and approaches used in different nations and researchers at the time. The formulation

was acknowledged to be not be reliable in all circumstance and environments and

was intended to be a starting point for more complete analysis with more field-work

support and equation adjustments in the future [85].

The CIE proposed and implemented an updated to the CGI method in the form

the UGR, Eqn. 24 [86] , which among other things addressed the inability of CGI

to handle the additivity of glare source areas [84] and the difficulty in measuring di-

rect illuminance [87]. The system was developed with data only from artificial light

sources and restricts the angular source size to a range of solid angles. The approach

is not recommended for discomfort glare from indirect lighting or non-uniform lumi-

naries of large glare sources. It was intended to a be a more computationally-friendly

alternative to the earlier CGI metric; but it has been found that the exact testing

procedure and method for development is not clearly discussed [87].

The VCP, Eqn. 25, is a more complex version of the Guth discomfort glare

ratio (DGR) [88] - a very early glare metric. The VCP is another strictly empirical

model, which was defined by the Illuminating Engineering Society of North America
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(IESNA). It is only valid in situations with standard sized, ceiling mounted artificial

lighting instillation with uniform luminances. It is unable to deal with very small or

very large glare sources; meaning it does not provide accurate results in spaces with

daylighting sources.

The DGP metric, Eqn. 26 , was developed from SubTask A of the International

Energy Agency’s (IEA) Solar Heating and Cooling Task 31 in order to model the

occupant’s use of lighting and glare controls [89]. Research was conducted by Wienold

and Christoffersen [90] on experiments in Germany and Holland in which responses

from surveyed users were correlated to measurements of a CCD camera. The DGP

works to replace other discomfort glare indices and takes into consideration glare

sources as a result of focus on a work task and not direct viewing of the glare source.

The relation ended up being a result of vertical eye illuminance, the glare source

term of CIE glare index and some empirically derived constants. It seeks to calculate

the probability that a person is disturbed by glare. Particularly novel compared

to past methods is the ability to predict discomfort in bright scenes when visual

contrast is not significant. Most notable is the implementation of this formula into the

Evalglare a simulation engine based off of RADIANCE. Weinold was responsible for

the development of a simplified daylight glare probability (DGPs) that only correlates

glare to vertical illuminance [91], shown in Eqn. 26. This method is much easier to

calculate using simulation results and is the approach used by OpenStudio when

RADIANCE is used for glare calculations. The major limitation of this approach is

the neglecting of any individual glare sources and for that reason can only be applied

when there is no direct sun or specular reflections hitting the observers eyes [91].

DGI = 10 · log

(
0.478

∑
i

L1.6
s,i · ω0.8

s,i

Lb + 0.07 · ω0.5 · Ls,i

)
(22)
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CGI = 8 · log

(
2 ·

1 +
(
Ed

500

)
Ev

∑
i

L2
s,i · ωs,i

P 2
i

)
(23)

UGR = 8 · log

(
0.25

Lb

∑
i

L2
s,i · ωs,i

P 2
i

)
(24)

V CP =

224.4− 46.8 · log

∑
i

(
0.5 · Ls,i ·

(
20.4 · ωs,i + 1.52 · ω0.2

s,i − 0.075
)

Pi · L0.44
a

)−0.0914
+50

(25)

DGP = 5.87 · 10−5 · Ev + 0.092 · log

(
1 +

∑
i

L2
s,i · ωs,i

P 2
i

)
+ 0.16 (26)

DGPs = 6.22 · 10−5 · Ev + 0.184 (27)

Each of these glare metrics works on its own scale and range of values as to what

constitutes glare as Imperceptible, Perceptible, Disturbing and Intolerable. These

threshold values are contained within Table 1. Similar in most values is that lower

value pertain to lower glare; the only exception being VCP.

Table A.1: Glare indices values and thresholds.

Degree of Perceived Glare DGP DGI UGR VCP CGI

Imperceptible < 0.35 < 18 < 13 80− 100 < 13

Perceptible 0.35− 0.40 18− 24 13− 22 60− 90 13− 22

Disturbing 0.40− 0.45 24− 31 22− 28 40− 60 22− 28

Intolerable > 0.45 > 31 > 28 < 40 > 28
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A.4 Fenestration

Fenestration is a general term referring to the windows, skylights and door systems

of a building. These building components are relied upon to separate the interior and

exterior environments and can effect the the building energy usage through four basic

mechanisms: thermal heat transfer, air leakage, solar heat gain and daylighting [92].

As recent building trends have led to the design of highly transparent building faades

[93], there has been increased research in the areas of optimizing fenestration using

dynamic components to control the four major basic energy mechanisms. Though

both conventional and innovative shading devices are being employed in commercial

applications and seen as cutting-edge, a dynamic one (if even simple) that is able to

provide both visual and thermal control to occupants under various environmental

conditions can make substantial changes to building energy performance [8].



Appendix B

MATLAB Code

B.1 EnKF Training

The code contained in this section is an example of the EnKF code used for the

training of the second-order model.

B.1.1 Initialization Program

clc

close all

clear all

%%−−−−−− Start Here −−−−−−%%

%designed to run Ensemble Kalman Filter (2R2C)

% Dec 7/2013

% Written By: Brent Huhcuk

% v3.2 − designed to split components with fractions upon surfaces and have

105
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% delayed starts and stops

% − designed to use more available data

% − Requires CSV to be in the same directory

%%====================== Retrieve Data =========================

%−−−−−Import EnergyPlus CSV data−−−−−−

%Import data and heading

results=importdata('Learning newsol noshade inf 30min.csv',',',1);

results headings=results.textdata(1,2:size(results.textdata,2));

data=results.data;

output lines=size(data,1); %number of hours that simulation was run for

%Determine critical index values

index zone heat=find(strcmp(deblank(results headings),...

'ASHRAE2014:Zone/Sys Sensible Heating Rate [W](TimeStep)')==1);

index zone cool=find(strcmp(deblank(results headings),...

'ASHRAE2014:Zone/Sys Sensible Cooling Rate [W](TimeStep)')==1);

index Tamb=find(strcmp(deblank(results headings),...

'ASHRAE2014:Zone Outdoor Dry Bulb [C](TimeStep)')==1);

index Window HeatGain=find(strcmp(deblank(results headings),...

'SW:Surface Outside Face Solar Radiation Heat Gain Rate [W](TimeStep)'...

)==1);

index IndoorTemp=find(strcmp(deblank(results headings),...

'ASHRAE2014:Zone Mean Air Temperature [C](TimeStep)')==1);
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index People = find(strcmp(deblank(results headings),...

'ASHRAE2014:Zone People Number Of Occupants [](TimeStep)')==1);

index Lights = find(strcmp(deblank(results headings),...

'ASHRAE2014:Zone Lights Electric Power [W](TimeStep)')==1);

index HeatSP= find(strcmp(deblank(results headings),...

'ASHRAE2014:Zone/Sys Thermostat Heating Setpoint [C](TimeStep)')==1);

index CoolSP= find(strcmp(deblank(results headings),...

'ASHRAE2014:Zone/Sys Thermostat Cooling Setpoint [C](TimeStep)')==1);

index infgain = find(strcmp(deblank(results headings),...

'ASHRAE2014:Zone Infiltration Sensible Heat Gain [J](TimeStep)')==1);

index infloss = find(strcmp(deblank(results headings),...

'ASHRAE2014:Zone Infiltration Sensible Heat Loss [J](TimeStep)')==1);

%Remove data

Load Heat = data(:,index zone heat);

Load Cool = data(:,index zone cool);

Qhvac = Load Heat + Load Cool*(−1);

Tamb full = data(:,index Tamb);

Qsol full = data(:,index Window HeatGain)*1;

Tin full = data(:,index IndoorTemp);

Qpeople = data(:,index People)*100;

Qlights = data(:,index Lights);

HeatSP = data(:,index HeatSP);

CoolSP = data(:,index CoolSP);

Inf gain = data(:,index infgain)/(60*30);

Inf loss = data(:,index infloss)*(−1)/(60*30);

% Combine loads for single Qaux term

Qt full = Qhvac + Qpeople + Qlights + Inf gain + Inf loss;
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%%====================== Run EnKF =========================

%−−−−−− Initialize parameters −−−−−−−

TSH = 2; % number of timesteps per hour

TSm = 30; % number of minutes in a timestep

N=2000; %number of ensembles

dt=60*TSm; %time−step

QsolFrac = 0.3;

QtFrac = 0.7;

timestart = 24*7*2*TSH + 0*TSH; %when training starts

timelength = 24*7*24*TSH; % how long to train data

trainingperiod = timestart + timelength; %how long the training occurs

%−−−−−− Data Prep −−−−−−−

%Trim data to appropriate lengths **add a +1 to timestart

Tamb = Tamb full(timestart:(trainingperiod + 24*TSH));

Qt = Qt full(timestart:(trainingperiod + 24*TSH));

Qsol = Qsol full(timestart:(trainingperiod + 24*TSH))*0.6;

Tin = Tin full(timestart:(trainingperiod + 24*TSH));

%−−−−− Assign Initial Value Estimates −−−−−

%Parameters to be estimated

Rw mean =1.5*10ˆ(−1);

Cw mean =9.0*10ˆ(4);
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Ri mean = 5.32*10ˆ(−1);

Ci mean =3.02*10ˆ(3);

Tw mean = 0;

gamma = 0.5; %Meausrement Error

%−−−−−− Create Inital Ensembles −−−−−−−

for i=1:N

Ti(i) = normrnd(Tin(1),0.1); % Temp air

Tw(i) = normrnd(Tw mean,0.1); % Temp wall

Capw(i) = normrnd(Cw mean, 50); % Capacitance wall

Rw(i) = normrnd(Rw mean,0.001); % Resistance wall

Capi(i) = normrnd(Ci mean,50); % Capacitance air

Ri(i) = normrnd(Ri mean,0.001); % Resistance air

end

% compile ensemble matrix

ensemble xk = [Ti; Tw; Capw; Rw; Capi; Ri];

%−−−−−− Define Function −−−−−−−

function f = @ModelEq v2; % The model equation

function h = @MeasureEq v2; % The measure equation

param h = 0;

for i = 1:length(Tamb)−1;

param = [Tamb(i); Qt(i); Qsol(i)];
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% − Assign Errors −

qk1 = normrnd(0, 0.1ˆ2,[1,N]); % Error Ti 0.01

qk2 = normrnd(0, 1ˆ2,[1,N]); % Error Tw 0.01

qk3 = normrnd(0, 0.001ˆ2,[1,N]); % Error Cap Wall

qk4 = normrnd(0, 0.001ˆ2,[1,N]); % Error Res Wall

qk5 = normrnd(0, 0.001ˆ2,[1,N]); % Error Cap air

qk6 = normrnd(0, 0.0001ˆ2,[1,N]); % Error Res air

% Define error matrix

ensemble qk = [qk1; qk2; qk3; qk4; qk5; qk6];

% − EnKF Prediction Step −

[ensemble xk, mean xkp1, covariance xkp1] = EnKF predict(...

ensemble xk, ensemble qk, function f, param );

% Assign measuremnent error to data point

observation = Tin(i+1) + normrnd(0, gammaˆ2);

ensemble epsk = normrnd(0, gammaˆ2,[1,N]);

% − EnKF Update Step using observation −

[ensemble xk, mean xk a, covariance xk a] = EnKF update(...

ensemble xk, ensemble epsk, function h, observation, param h );

% Remove Mean value for value progression

TempCapture i(i) = mean xk a(1);

TempCapture w(i) = mean xk a(2);

CapCapture w(i) = mean xk a(3);

RCapture w(i) = mean xk a(4);

CapCapture i(i) = mean xk a(5);

RCapture i(i) = mean xk a(6);
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end

%%====================== Results Summary =========================

% − Print Out Final Values −

CapForward w

RForward w

CapForward i

RForward i

Cap w std

R w std

Cap i std

R i std

%%−−−−−− End of Script −−−−−−%%

B.1.2 EnKF Prediction Step

function [ensemble xkp1, mean xkp1, covariance xkp1] = EnKF predict(...

ensemble xk, ensemble qk, function f, param )

%EnKF predict Ensemble Kalman Filter predict step

%

% Syntax:

% [ensemble xkp1, mean xkp1, covariance xkp1] = EnKF predict(...

% ensemble xk, ensemble qk, function f, param )

%

% INPUTS:

% ensemble xk − M x N ensemble of xk
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% ensemble qk − M x N process noise

% function f − Model function that relates xk+1 to xk

% param − Parameters of function f. Default empty

%

% OUTPUTS:

% ensemble xkp1 − Forecasted ensemble xk+1

% mean xkp1 − Forecasted mean of xk+1

% covariance xkp1 − Forecasted covariance of xk+1

%

% Description:

% Perform Ensemble Kalman Filter prediction step.

%

% Author: Philippe Bisaillon 2012

% Adapted with permission by: Brent Huchuk Dec 2014

%Check input arguments

if nargin < 3

error('myApp:argChk', 'Not enough input arguments')

end

if nargin < 4

param = [];

end

if ˜strcmp(class( function f ),'function handle')

error('myApp:argChk', 'function f must be defined a function handle')

end

if nargout > 3

error('myApp:argChk', 'Too many output arguments')
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end

%Get the dimensions of the ensemble. N is the number of samples and M

%is the dimension of each sample

[M N] = size(ensemble xk);

if [M N] ˜= size( ensemble qk )

error('myApp:argChk', ...

'Dimensions of ensemble and noise matrix are not the same')

end

%forecast each sample

ensemble xkp1 = zeros(M, N);

for i=1:N

ensemble xkp1(:,i) = function f( ensemble xk(:,i) , ensemble qk(:,i) ,...

param );

end

%the mean is required

if nargout > 1

mean xkp1 = mean( ensemble xkp1 , 2); %get the mean of each row

end

%the covariance is required

if nargout > 2

ensemble xkp1 prime = ensemble xkp1 − repmat(mean xkp1, 1, N);

covariance xkp1 = ensemble xkp1 prime * ensemble xkp1 prime' / (N−1);

end
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B.1.3 EnKF Model Equation

function [X] = ModelEq v2(xk, qk, param);

%%=========================================================================

%desgined to run with Ensemble Kalman Filter

% Dec 7/2013

% Written By: Brent Huhcuk

% v2.0 − Runs second order model equations for EnKF

%−−−−−−−−−−−−−−−−−−−−−−−−−− Model Equation −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−− Initialize parameters −−−−−−−

dt=30*60;

n = length(xk);

QsolFrac = 0.3;

QtFrac = 0.7;

%===== Param are values for weather =====

Tamb = param(1);

Qt = param(2);

Qsol = param(3);

%==== Assign Errors received from passed vector ====

qk1 = qk(1);

qk2 =qk(2);
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qk3 =qk(3);

qk4 = qk(4);

qk5 = qk(5);

qk6 = qk(6);

%==== Assign Initial value =====

X1 k = xk(1,:);

X2 k = xk(2,:);

X3 k = xk(3,:);

X4 k = xk(4,:);

X5 k = xk(5,:);

X6 k = xk(6,:);

% Predict the values for all states and parameters

for i = 1:1

% Ti

X1(i) = dt/X5 k(i)*((X2 k(i) − X1 k(i))/X6 k(i) + Qt*QtFrac +...

Qsol*(1−QsolFrac)) + X1 k(i) + sqrt(dt)*qk1*randn();

%Tw

X2(i) = dt/X3 k(i)*((Tamb − X2 k(i))/X4 k(i) + (X1 k(i) − ...

X2 k(i))/X6 k(i) + Qsol*QsolFrac +Qt*(1−QtFrac)) + X2 k(i)...

+ sqrt(dt)*qk2*randn();

%CapW

X3(i) = X3 k(i) + sqrt(dt)*qk3*randn();

%Rw

X4(i) = X4 k(i) + sqrt(dt)*qk4*randn();

%Capi

X5(i) = X5 k(i) + sqrt(dt)*qk5*randn();

%Ri
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X6(i) = X6 k(i) + sqrt(dt)*qk6*randn();

end

% Define predicted values in matrix for reporting back to main script

X = [X1; X2; X3; X4; X5; X6];

end

B.1.4 EnKF Update Step

function [ensemble xk a, mean xk a, covariance xk a] = EnKF update(...

ensemble xk, ensemble epsk, function h, observation, param h )

%EnKF update Ensemble Kalman Filter update step

%

% Syntax:

% [ensemble xk a, mean xk a, covariance xk a] = EnKF update( ...

% ensemble xk, ensemble epsk, function h, ensemble d, param h )

%

% INPUTS:

% ensemble xk − M x N ensemble of xk

% ensemble epsk − O x N measurement noise (O depends on the measurement

% function)

% function h − Measurement function that relates the measurement to

% xk

% observation − O x 1 Measurement

% param h − Parameters of function h. Default empty

%

% OUTPUTS:

% ensemble xk a − Updated ensemble of xk with new observation

% mean xk a − Updated mean

% covariance xk a − Updated covariance
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%

% Description:

% Perform Ensemble Kalman Filter update step.

%

% Author: Philippe Bisaillon 2012

%Adapted with permission by: Brent Huchuk Dec 2014

%Check input arguments

if nargin < 4

error('myApp:argChk', 'Not enough input arguments')

end

if nargin < 5

param h = [];

end

if ˜strcmp(class( function h ),'function handle')

error('myApp:argChk', 'function h must be defined a function handle')

end

if nargout > 3

error('myApp:argChk', 'Too many output arguments')

end

%Get the dimensions of the ensemble. N is the number of samples and M is

%the dimension of each sample

[M N] = size(ensemble xk);

if N ˜= length( ensemble epsk )

error('myApp:argChk',...
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'Length of ensemble and noise matrix are not the same')

end

%Create the observation error matrix

O = length(observation);

t obs = zeros(O, N);

D = zeros(O,N);

In = zeros(N,N);

for i=1:N

t obs(i) = function h( ensemble xk(:,i) , ensemble epsk(:,i), param h);

D(:,i) = observation − t obs(:,i);

end

In(:,:) = 1/N;

ensemble bar = ensemble xk * In;

ensemble prime = ensemble xk − ensemble bar;

t obs prime = t obs * ( eye(N) − In );

S = t obs prime * t obs prime' / (N−1);

C = ensemble prime * t obs prime'/ (N−1);

K = C / S; %Kalman Gain

ensemble xk a = ensemble xk + K * D;

%the mean is required

if nargout > 1

mean xk a = mean( ensemble xk a , 2);

end
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%the covariance is required

if nargout > 2

ensemble xk a prime = ensemble xk a − ensemble xk a * In;

covariance xk a = ensemble xk a prime * ensemble xk a prime' / (N−1);

end

B.1.5 EnKF Measurement Equation

function [ tobs ] = MeasureEq v2( ensemble xk , ensemble epsk, param h )

%%=========================================================================

%desgined to run with Ensemble Kalman Filter

% Dec 7/2013

% Written By: Brent Huhcuk

% v2.0 − Runs second order model equations for EnKF

% − The measurement equation (H) for the EnKF

%−−−−−−−−−−−−−−−−−−−−−−−−−− Measure Equation −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Hk = [1 0 0 0 0 0];

tobs = Hk*ensemble xk;

end
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B.2 Global Optimization

The code contained in this section is an example of the global optimization technique

used for the training of the first-order model.

B.2.1 Initialization Program

clc

close all

clear all

%%−−−−−− Start Here −−−−−−%%

% Feb 26/2014

% Written By: Brent Huhcuk

% v1.0 − desgined to use Least Squares in hopes of finding the optimal

% solution of the 1R1C model

global C1Data ModParT

%%====================== Retrieve Data =========================

load C1Data.txt

%%============================ Global Opt ==============================

% Define datat arrays

xdata = [Tamb,Tin,Qt];

ydata = Tin;
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% Define first order equation (PDE format)

fun = @(p,xdata) dt/p(2)*(xdata(3) + (xdata(1) − xdata(2))/p(1)) + xdata(2);

% Initial guess for parameter estimates

ModParT(1)=10; % Resistance

ModParT(2)=1e5; % Capacitance

% Pass functions to fminsearch funtion

estT = fminsearch('SsqFunT',ModParT);

%%====================== Results Summary =========================

% − Print Out Final Values −

disp('The minimizing values are:');

print('Cap = ');

(estT(2))

print('Res = ');

(estT(1))

%%−−−−−− End of Script −−−−−−%%

B.2.2 Model Equation

function xdot=modeleqT(t,x)

%%=========================================================================

%desgined to run with Ensemble Kalman Filter
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% Feb 26/2014

% Written By: Brent Huhcuk

% v1.0 − Model differential Equation Temperature for 1R1C Global Opt

%−−−−−−−−−−−−−−−−−−−−−−−−−− Model Equation −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

global C1Data ModParT

%−−−−−− Initialize parameters −−−−−−−

nClData=size(C1Data);

nt=nClData(1); % Number of time steps

dt=60*30; % timestep [s]

tu=0:dt:(nt−1)*dt;

% Retrive parameters

GT=ModParT(1); % Resistance

CT=ModParT(2); % Capacitance

% Extrapolate for continous data

Tet=interp1(tu,C1Data(:,1),t);

Irradt=interp1(tu,C1Data(:,3),t);

% Predict temp response

xdot(1)=(1/CT )* ( (1/GT)*(Tet −(x(1))) + Irradt );

%%−−−−−− End of Fucntion −−−−−−%%

B.2.3 Error Equation
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function q=ssqfunT(p)

%%=========================================================================

%desgined to run with Ensemble Kalman Filter

% Feb 26/2014

% Written By: Brent Huhcuk

% v1.0 − Model differential Equation Temperature for 1R1C Global Opt

%−−−−−−−−−−−−−−−−−−−−−−−−−− Sum of Square function −−−−−−−−−−−−−−−−−−−−−−−−

global C1Data ModParT

%−−−−−− Initialize parameters −−−−−−−

nClData=size(C1Data);

nt=nClData(1); % Number vof time steps

dt=60*5; % timestep [s]

tu=0:dt:(nt−1)*dt;

% Retrive parameters

ModParT(1)=p(1); % Resistance

ModParT(2)=p(2); % Capacitance

Te = C1Data(:,1); % Exterior Temp

Irra = C1Data(:,3); % Q data

Ti = C1Data(:,2); % Indoor Temp

x0=[Ti(1)];

[t,x]=ode23('ModelEqT',tu,x0);
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% Extrapolate for continous data

Tisim=interp1(t,x(:,1),tu');

% Calculate Sum of Square

uT=(Tisim−Ti);

u=[uT];

q=sum(sum(u.ˆ2));

%%====================== Results Summary =========================

figure(1)

plot(tu,Ti,'b',tu,Tisim,'r')

ylabel('Ti')

legend('meas','sim')

title(['p1−3= ', num2str(p(1)),' ',num2str(p(2)),' NA'])

drawnow

%%−−−−−− End of Fucntion −−−−−−%%
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GCL+ Control Code

The code contained in this section is an example of the code used for the actuation

of the blinds within the Delta Controls Lab.

//==== Predictive Blind Automation Algorithm ====

// − Operating Instructions −

//Blind Automation Algorithm Program

//Turn off HVAC for Experiment by Turning OFF BO2

//Begin Experiment by commanding either BO9 or BO10 to On

//Calculate Solar Irradiance based on Lux reading

//Add digital inputs Light Override and Blind Override

// − Define Constants and Variables −

Variable Q sol //Solar Heat Gain(W)

Variable E ill //Room Illuminance (Lux)

Variable T out //Outdoor Air Temp (degC)

Variable T in //Indoor Air Temp (degC)

Variable CO 2 //CO2 Concentration

Variable Occ Sensor //Occupancy sensor status

125
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Variable Occ //State of presence in room

Variable V State //Visual Comfort State

Variable T State //Thermal Comfort State

Variable T Detect //Thermal Comfort Checking

Variable Light Override // Occupant Control Variable (lights)

Variable Blind Override // Occupant Control Variable (blinds)

Variable LightSwitch // Value Holding variable

Variable BlindSwitch // Value holding variable

Variable LightState // Value holding variable

Variable BlindState // Value holding variable

Variable d U // Valuce of Delta U for control decision

Variable T 1 // Predicited temperature timestep 1

Variable T 2 // Predicited temperature timestep 2

Variable T 3 // Predicited temperature timestep 3

Variable T 4 // Predicited temperature timestep 4

Variable T 5 // Predicited temperature timestep 5

Variable T 6 // Predicited temperature timestep 6

Variable U 1 // Predicited U−value timestep 1

Variable U 2 // Predicited U−value timestep 2

Variable U 3 // Predicited U−value timestep 3

Variable U 4 // Predicited U−value timestep 4

Variable U 5 // Predicited U−value timestep 5

Variable U 6 // Predicited U−value timestep 6

Constant A1 = 0.5372 // U−value weighting timestep 1

Constant A2 = 0.1435 // U−value weighting timestep 2

Constant A3 = 0.0383 // U−value weighting timestep 3

Constant A4 = 0.0102 // U−value weighting timestep 4

Constant A5 = 0.0027 // U−value weighting timestep 5
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Constant A6 = 0.007 // U−value weighting timestep 6

Constant CSP = 25 // Cooling Setpoint (degree C)

Constant HSP = 20 // Heating Setpoint (degree C)

Constant R = 0.05 // Thermal resistance (K/W)

Constant C = 2160000 // Thermal Capacitance (J/K)

Constant Tau = 108000 // R*C (S)

Constant d T = 600 // Delta t for DE assessment (Seconds)

//Assign Occupency and CO2 Sensors

CO 2 = 'AI101 CO2'

Occ Sensor = 'BI105 MOTION DETECTER'

//− Detections −

//Determine if occupant is in the room (based on occ or CO2)

// keep occupation as on for 60 minutes

If Occ Sensor = 1 Or CO 2 > 450 Then

Occ = 1

End If

If Occ OnFor 60M Then

Occ = 0

End If

//Determine if occupant has overridden lights

If BI6−Light Override=1 Then

LightSwitch=1

LightState= CS RM7206 BLINDS LIGHT

End If

//Determine if occupant has overridden blinds

If BI7−Blind Override=1 Then
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BlindSwitch=1

BlindState= 'Blind Control'

End If

//If overrides on either has occured hold override on for 60 minutes

If LightSwitch=1 OnFor 60M

LightSwitch=0

ElseIf LightSwitch=1 And Light Override−BI6=1 Then

LightSwitch=0

End If

If BlindSwitch=1 OnFor 60M

BlindSwitch=0

ElseIf BlindSwitch=1 And Blind Override−BI7=1 Then

BlindSwitch=0

End If

Light Override = BI6

Blind Override = BI7

//Determine if the lighting level in the room is dark, acceptable or bright

If E ill < 3 Then

V State = 0 //Dark

ElseIf E ill < 20 Then

V State = 1 //Useful Daylight

Else

V State = 2 //Bright

End If

//Determine if the lights should be on or off based on override request and

//current conditions.
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If LightSwitch=1 and LightState=OFF Then

V State = 0 //Dark

ElseIf LightSwitch=1 and LightState=ON Then

V State = 1 // Useful Daylight

End If

//Determine if the blinds should be up or down based on override request

//and current conditions.

If BlindSwitch=1 and BlindState=Up Then

V State = 2 //Bright

ElseIf BlindSwitch=1 and BlindState=Down Then

V State = 1 // Useful Daylight

End If

//Pull in the current temperatures

T out = CN RM7206 OAT

T in = 'AI101 TEMP'

// Correlate illuminance values to solar radiation flux

E ill = (CN RM7206 LUXS1 + CN RM7206 LUXS2) / 2

Q sol = 12 * E ill

//Thermal response predictions

DoEvery 10M

T 1 = T in + ((((T out − T in) / R) + Q sol) * (d T / C))

T 2 = T 1 + ((((T out − T 1) / R) + Q sol) * (d T / C))

T 3 = T 2 + ((((T out − T 2) / R) + Q sol) * (d T / C))

T 4 = T 3 + ((((T out − T 3) / R) + Q sol) * (d T / C))

T 5 = T 4 + ((((T out − T 4) / R) + Q sol) * (d T / C))

T 6 = T 5 + ((((T out − T 5) / R) + Q sol) * (d T / C))
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//Determine if the temperature predictions fall between setpoints and

//assign the values to the U−values

If T 1 > CSP Then

U 1 = T 1 − CSP

ElseIf T 1 < HSP Then

U 1 = T 1 − HSP

Else

U 1 = 0

End If

If T 2 > CSP Then

U 2 = T 2 − CSP

ElseIf T 2 < HSP Then

U 2 = T 2 − HSP

Else

U 2 = 0

End If

If T 3 > CSP Then

U 3 = T 3 − CSP

ElseIf T 3 < HSP Then

U 3 = T 3 − HSP

Else

U 3 = 0

End If

If T 4 > CSP Then

U 4 = T 4 − CSP

ElseIf T 4 < HSP Then

U 4 = T 4 − HSP
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Else

U 4 = 0

End If

If T 5 > CSP Then

U 5 = T 5 − CSP

ElseIf T 5 < HSP Then

U 5 = T 5 − HSP

Else

U 5 = 0

End If

If T 6 > CSP Then

U 6 = T 6 − CSP

ElseIf T 6 < HSP Then

U 6 = T 6 − HSP

Else

U 6 = 0

End If

d U = (A1 * U 1) + (A2 * U 2) + (A3 * U 3) + (A4 * U 4) + (A5 * U 5) + (A6 * U 6)

End Do

//Control Decisions based on thermal predictoins

DoEvery 10M

If Q sol > 0 Then //Check for Daytime

//If system predicts underheating determine wheather to open shades or

//initiate increased flow in the radiant panels.

If d U < 0 And 'Blind Control' = Down Then

'Blind Control' = Up
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'Cooling Activate' = Off

Else

If d U < 0 And 'Blind Control' = Up Then

421844.CS 03VVRRP7206 = 100

'Blind Control' = Up

'Cooling Activate' = Off

End If

End If

// − Occupied Periods −

//If system predicts overheating determine wheather to close shades or

//initiate increased ventilation and cooling.

If d U > 0 And 'Blind Control' = Up Then

'Blind Control' = Down

421844.CS 03VVRRP7206 = 0

'Cooling Activate' = Off

Else

If d U > 0 And 'Blind Control' = Down Then

'Blind Control' = Down

421844.CS 03VVRRP7206 = 0

'Cooling Activate' = On

End If

End If

//If system remains in temperature range no system should come on

If d U = 0 Then

'Cooling Activate' = Off

421844.CS 03VVRRP7206 = 0

End If

Else
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// − Unoccupied Periods −

//If system predicts underheating determine wheather to open shades or

//initiate increased flow in the radiant panels.

If d U < 0 And 'Blind Control' = Up Then

'Blind Control' = Down

Else

If d U < 0 And 'Blind Control' = Down Then

421844.CS 03VVRRP7206 = 100

'Blind Control' = Down

'Cooling Activate' = Off

End If

End If

//If system predicts overheating determine wheather to close shades or

//initiate increased ventilation and cooling.

If d U > 0 And 'Blind Control' = Down Then

'Blind Control' = Up

Else

If d U > 0 And 'Blind Control' = Up Then

'Blind Control' = Up

421844.CS 03VVRRP7206 = 0

'Cooling Activate' = On

End If

End If

//If system remains in temperature range no system should come on

If d U = 0 Then

'Cooling Activate' = Off

421844.CS 03VVRRP7206 = 0
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End If

End If

// − Visual Comfort Considerations−

// If occupied visual conditions should override the energy decision

If Occ = 1 Then

If V State < 2 And 'Blind Control' = Down Then

'Blind Control' = Up

ElseIf V State = 2 And 'Blind Control' = Up Then

'Blind Control' = Down

ElseIf V State = 0 Then

CS RM7206 BLINDS LIGHT = On

End If

End If

//If unoccupied or visually neutral the shades should be open

If V State > 0 Or Occ = 0 Then

CS RM7206 BLINDS LIGHT = Off

End If

End Do

//Report d U variable for logging purposes

'Heat Balance Variable' = d U
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