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1 Introduction
Some connectives and quantifiers are systematically absent from the lexical inventories of natural
language. This is an old observation, which was brought back to prominence within a modern
setting by Horn (1972, 1989). The fundamental observation is that out of the four corners of the
Square of Opposition, the two that correspond to ∃ and ∀ receive a priveleged status: the one
that corresponds to ¬∃ is sometimes found, though not always, and it tends to be morphologically
marked (n-words); and the fourth corner, the one corresponding to ¬∀ is never lexicalized. So, for
example, we find or and and, as well as the n-construction neither. . . nor, but there is no *nand
(nor do we find xor). Similarly, we find some and all, and also the n-word none, but we do not find
*nall (not all; we also have no word for some but not all). In the domain of individuals, we find
a(n) and the but neither *nthe nor a lexical item that would mean a but not the. And the same holds
for modals (may,must,*nmust), adverbs (sometimes, always, never, *nalways; possibly, certainly,
*ncertainly).

It should be noted that there does not seem to be a cognitive restriction that prevents us
from dealing with the missing corner. The absent entries can readily be constructed and used
analytically. Moreover, they are routinely arrived at via conversational reasoning (Grice, 1989 and
much subsequent work). For example, some but not all, which entails not all, is often the preferred
reading for some.

A proposal for deriving the typological pattern is presented by Horn (1989), who makes direct
use of Grice’s conversational principles, along with a general economy condition on inventories
and a specific pressure against negation. It is precisely the ability of conversational reasoning
to derive the missing corner, Horn suggests, that makes that corner redundant. By strengthening
some to implicate not all (using all as a stronger scalar alternative) we can achieve almost the same
effects as by lexicalizing not all. An economy condition on inventories now applies, penalizing
systems that have a lexical not all in addition to the strengthenable some. But why these particular
three corners? After all, the same reasoning could let us eliminate some using the corners none, all,
∗We thank Asaf Bachrach, Danny Fox, Irene Heim, and Ivona Kučerová.
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and not all.1 Horn’s answer is that negation is avoided whenever possible. The attested 3-corner
system has ¬ as part of the n-word none, while the unattested one has ¬ both as part of none and
as part of not all. The former system has fewer occurrences of negation, and consequently it is the
winner.

We think Horn’s intuition is correct, and we would like to use it to derive the typological pattern.
As it stands, however, the idea faces certain challenges, which we think are inherent in the standard
framework of quantification and negation in which Horn’s proposal is couched. For example, in
certain cases, the economy setting would lead us to expect a much more compact inventory than
the one we actually find. What we have in mind here is the case of binary connectives, where the
whole system can be defined in terms of just ¬∧. That is, we should expect to find nand and none
of the other corners. Strangely, this is the complement of what we do find.

Another puzzling aspect of Horn’s proposal is that it forces us to ignore the duality of ∃ and
∀, treating them instead as primitives. But the duality of these quantifiers is important. We only
need one primitive quantifier. The other one can and should be defined using duality (either define
∃ := ¬∀¬ or define ∀ := ¬∃¬). Once we do that, however, we observe two new instances of
negation in our inventory. How many negations we have in total now depends on whether we
take ∃ to be the primitive quantifier or whether we choose ∀. If ∃ is primitive, the attested system
of some,all,none has three instances of negation: two for ∀ and one for none. The unattested
all,none,not all has four negations: two in none and one each of the other two. If we choose ∀ as
our primitive quantifier, the attested trio will again have three negations. The unattested one, on
the other hand, will now have only two negations. For Horn’s proposal to go through, then, we
would need to either ignore the duality of ∃ and ∀ or to stipulate that ∃ is primitive.

2 The proposal
We propose that Horn’s idea can be made to work if instead of seeing the inventory of natural
language operators through the quantificational prism of ∃ and ∀ we switch to talking about those
operators in terms of min and max. The main difference between the two perspectives is that the
quantificational approach relies on the notion of truth, while our min/max perspective relies on
the notion of ordering. The domain of truth values is naturally ordered (with 0 < 1), allowing for
some overlap between the two perspectives. However, from the min/max perspective the domain
of truth values is simply a special case, and the same inventory of operators can be applied to other
domains, as long as an ordering is defined. Moreover, even within the domain of truth values (and
more generally, domains of types that end in t) the min/max perspective will sometimes make
different predictions than those of the quantificational one.

Before spelling out the details of our proposal, let us see how we could talk about a few familiar
operators using min and max. Take and, for example. As a binary sentential connective, and
takes two sentences and returns 1 if and only if both of its arguments have the truth value 1. In
{min,max} talk, this can be straightforwardly rephrased by saying that and returns the minimum
truth value of its two arguments. Extending beyond two sentential arguments is not much more

1The other two options may or may not be possible. Much depends on what gets negated and what gets
strengthened. Our presentation assumes, with Horn (1972), that only stronger alternatives are negated. This has
been standard in the literature, but see Groenendijk and Stokhof (1984), van Rooij and Schulz (2004), Spector (2006),
and Fox (2007a) for arguments that this assumption might have to be revised.
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challenging: and still returns the minimum truth value of the set of truth values of its arguments.
A lexical entry for and would be the following (where Dt is the domain of propositions):

(1) [[ and ]]= λP ∈ Dt
n.minP

Syntactically, and can take non-sentential arguments, as in John and Mary are students. A standard
treatment of non-sentential coordination reduces these cases to the sentential case, either in syntax
(by means of so-called Conjunction Reduction) or in semantics. Here is an entry based on the latter
option, in analogy with the quantificational approach (cf. Partee and Rooth, 1983):

(2) [[ and ]]= λA ∈ Dα
n.λ f αt.min{ f (Ai) : i = 1, . . .n}

The treatment of or is entirely parallel. We only need to substitute max for min in all of its
occurrences above. Generalizing to every and some is likewise straightforward. The thing to
observe is that the entry for and involved two somewhat artificial constraints. First, the cardinality
of A was limited (exactly n). Second, A was ordered (an n-tuple). For what we are trying to do,
though, all we need is for A to be composed of elements, and for the application of the predicate f
to those elements to yield something of type t. Once we notice this, we can simplify the way our
entries look, and we can account for every (and some) along the way:

(3) [[ every ]]= λA⊆ Dα .λ f αt.min{ f (x) : x ∈ A}

We are almost ready to state our general constraint on operators. The last thing to get rid of in our
entries is the restriction to types that end in t. For entries of the kind we just saw, any set that ends
in a type for which min and max are defined would work just as well. Dt is one such type, and the
natural ordering, 0 < 1, yields the results we needed for things like and, or, every, and some, but
we see no particular reason to stipulate that other types are prohibited. Here, then, is the form of a
natural language operator (stated here in terms of µ ∈ {min,max}):

(4) [[ Opµ ]]= λA⊆ Dα .λ f αβ : β ∈ Dom(µ).µ{ f (x) : x ∈ A}

Using (4) we can state a preliminary constraint on lexicalization that handles morphologically
simplex lexicalizations.2

(5) CONSTRAINT ON LEXICALIZATION (the basic case): Morphologically simplex operators
in natural language are of the form Opµ , as defined in (4), where µ ∈ {min,max}

What counts as a legal input to µ (=min/max)? First, the input must be a set. Then, µ must be
able to compare elements within the set, so it is good if the set is at least partially ordered. Finally,
the set cannot be empty (what would it mean to return the maximal element of the empty set?).
These are all near-trivial points, but they have some interesting consequences, often quite different
from those of the quantificational approach. Let us see some examples.

3 Some immediate consequences
3.1 Other domains
The quantificational approach relies on the notion of truth: the contribution of a quantifier Q is
defined in terms of the truth of substitutions to sentences in which Q appears. For example,

2In (9) below the constraint will be extended to accommodate n-words.
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Someone smokes is true iff there is an x such that the sentence x smokes is true. Our proposal,
on the other hand, makes no reference to truth. The primitive notion our entries rely on is ordering,
and their application to propositions is done derivatively, using the ordering within the domain of
truth values. We should expect to find operators similar to every and some over domains that do
not end in t, as long as an ordering is defined. Individuals, for example, have often been taken to be
collections ordered by the part-of relation, but they quite clearly do not end in t. A maximality
operator along the lines of (4) but applying to the partially-ordered domain denoted by a noun will
give us something very similar to Link (1983)’s notion of the definite article, one that can apply to
both plural and singular individuals. An entry that uses (4) as a template could look like this:

(6) [[ max e ]]= λA⊆ { /0}.λ f <{ /0},β> : β ∈ De.max{ f (x) : x ∈ A}

It is not obvious how the quantificational approach to every etc. could generalize to this domain.
It is interesting to note that while our proposal derives the entry for a definite article, it has

nothing to say about indefiniteness. Replacing max with min in (6) would try to return the
minimum element in a collection of individuals (ordered, as before, by part-of). When there
is more than one atomic individual, min would be undefined, resulting in presupposition failure.
When there is only one atomic individual, min would return exactly the same result that max
would, namely that individual. Either way, there is no need to lexicalize min. We seem to predict,
then, that natural language should have at most a definite article.

How bad is this prediction? We are not sure. Some languages do have what many people refer
to as an indefinite article. What this indefinite article does, however, is less clear. Heim (1982), for
example, argues that indefinites are not themselves operators (instead, they introduce variables).
If this analysis is correct, it is probably a good idea to avoid predicting an indefinite counterpart
to (6).3 Typological evidence also seems to distinguish between the two articles. Many languages
have a definite article but not an indefinite one. Even in languages like English, German, and
French, where both articles exist in the singular, only the definite article makes it to the plural part
of the paradigm. And in many languages (e.g., Danish, Greek) the indefinite article looks more
like an adjective, often similar in form to the numeral one, than like a full fledged determiner. We
are therefore happy to be able to derive the definite article, and not overly worried at this point
about our inability to generate an indefinite article as its mirror image.4

3.2 Existential import
We mentioned above the rather unremarkable fact that min and max need a non-empty set as an
argument. An immediate consequence of this is that whenever a natural language operator happens
to receive an empty argument, the result is undefined. The arguments for and and or are provided
explicitly, so we cannot use them to test this prediction. On the other hand, every and some, as well
as the, take an intensional definition of their domain, in the form of their NP sister. We predict,
then, that these elements will introduce an existential presupposition over the domain of their sister.

3Heim (1982) also argues against the view that definites are operators. Instead, she treats them as things that select
a referent that has already been introduced. This may seem at odds with our operator-based definition in (6), but we
think the two accounts are consistent.

4The indefinite article might still end up being definable in terms of min/max. If this is the case, though, we
suspect that its domain will be different from that of the definite article and closer to the domains of adjectives and
numerals, elements about which we have nothing to say at this point.
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Adding an existence presupposition to the restrictor of a quantifier has been argued by Strawson
(1952) to be necessary for capturing intuitively valid inferences in natural language, specifically
the inference from ∀ to ∃. More recently, von Fintel (1999) has argued that this notion of entailment
(his Strawson Entailment) is central to the proper treatment of NPIs. While the facts are complex,
standard projection tests suggest that our prediction might be right:5

(7) Do you happen to know whether every/some/the delegate from France will need a translator?

If (7) is asserted, the hearer would be well within her rights to complain by saying ‘Hey, wait
one minute, I didn’t know that there would be delegates from France.’6

To the extent that this argument is correct, the quantificational perspective fails to provide an
explanation. A definition of ∃ and of ∀ that presupposes a non-empty domain is certainly possible,
but nothing about the notions of existential and universal quantification requires that.7 Within the
∀,∃ framework, introducing Strawson entailment required a significant addition to the theoretical
machinery; the min/max framework derives it.

4 Ordering and negation
4.1 Internal negation
The min/max approach relies on ordering, and in orderings, directionality matters: < a,b >∈ ≤
is not the same as < b,a >∈≤.8 So far we assumed certain natural orderings over domains, but the
directionality of those choices was largely a matter of convention. For any ≤ we can just as easily
define an ordering that goes in the opposite direction: ≤ new = {< a,b >:< b,a >∈≤}. Clearly,
min≤ ≡ max≤new (and similarly, max≤ ≡ min≤new). This suggests a role for a directionality-
reversing operator, as well as a simple way to state the intuitive duality of min and max. Define
an operator ◦ (pronounced suhrk) that reverses ordering relations in the way just described (that is,
◦(R)≡ {< a,b >:< b,a >∈ R}), and use the following entry for one of the operators, say for min:

(8) [[ min≤ ]]= λX ∈ Dom(max).max◦(≤)(X)

Of course, we could also use ◦ to define max in terms of min. The important point is that
our two operators are mutually interdefinable in terms of ◦ (which serves as some kind of
internal negation), and that the relationship between them is captured by means of a simple
ordering-reversal operation. The choice of what counts as min and what counts as max, then,
depends on what we take to be the ordering relation ≤. Given the standard definitions of
< t = {< 0,1 >} and < e =part-of, max is used to define existential-like operators (as well as

5While much of the literature on the existential import of quantifiers has focused on truth-value intuitions, we
believe that von Fintel (2004) is right in putting more faith in projection as a diagnostic. For discussion of the
complexities involved in attributing existential presuppositions to quantifiers see de Jong and Verkuyl (1985), Lappin
and Reinhart (1988), Diesing (1992), Heim and Kratzer (1998), Abusch and Rooth (2004), and Geurts (2007), among
others.

6We follow von Fintel (2004) in using the Hey, wait a minute! test (HWAMT, modeled after Shanon, 1976) as
a diagnostic for presupposition. See Singh (2008a) for a discussion of cases where the HWAMT seems to target
additional entailments of the sentence. As far as we can tell, that discussion does not affect our current point.

7In fact, it is standard textbook practice to say that ∃ is false and ∀ is true when the domain is empty.
8In fact, by weak antisymmetry, the one would preclude the other, unless a = b.
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the definite article, confusingly enough), while min is used to define universal-like operators (and
perhaps the indefinite article). In terms of which operator should be our primitive one, nothing so
far helps us choose, but we will soon see that it makes more sense to take max as our primitive
operator, and to define min in terms of max and ◦, as outlined above.

Note that stating the duality of the traditional quantificational operators ∀ and ∃ requires
two reversal operations, one on either side of the quantifier that is taken to be primitive. For
example, ∀ ≡ ¬∃¬. The possibility of inserting ¬ on either side of a quantificational operator
suggests a four-member inventory of operators along the lines of the Square of Opposition:
{Op,¬Op,Op¬,¬Op¬}. The intuitively priviliged status of the pair {Op,¬Op¬} remains
something of a mystery. From the min/max perspective, the privileged pair is {Op,Op◦}, which
results from the single choice of the direction in which ≤ is read.

A subtle point, closely related to the previous one is that our notion of duality depends not on
the domain of the operators but on the symmetry inherent in the notion of ordering. In contrast,
the duality of ∀ and ∃ is based on the notion of negation within the domain of truth values. As
mentioned above, it is not obvious how the quantificational perspective could generalize to domains
that do not end in t. Now we can say something stronger. Even if we were to define a variant of
one of the propositional operators to a different domain, we wouldn’t have an obvious way to
make duality carry over. What does the negation of an individual mean, for example? The fact that
duality does seem to hold seems to be an advantage of our system.

4.2 External negation
We mentioned that the ≤-reversing operator ◦ can be thought of as an internal negation, applying
to the ordering argument of µ . It is important to notice that whenever µ is defined, ◦ will be
defined as well. Differently from the traditional perspective, where ∃ and ¬ are primitives, on our
account something like ◦µ◦ will not always be well-defined. For example, when applied to De,
max takes a collection of individuals and their sums and returns its maximal element, if such an
element exists. Using internal negation amounts to min, which may correspond to something like
the indefinite article.9 In any case, it seems rather pointless to try to externally negate the maximal
element. max was defined on a collection, where the relation of part-of holds. Once we find
the maximal element, we arrive at a singleton domain. No non-trivial ordering is definable on this
element. It makes sense, then, to treat max and min as providing us with pairs of operators rather
than with squares.10 We can also see why languages lexicalize the but not *nthe. The operator ◦ is
an argument of µ , and may also be present syntactically in the right place for all we know. More
importantly, regardless of the domain, the two operators resulting from using µ with and without
◦ are always well-defined. External negation, on the other hand, is not always well-defined, and
in any case the external reversor will not be an argument of µ , and will probably not even form a
constituent with it. There is no reason to lexicalize such a thing.

So we have pairs like some and all, and we don’t have *nall. What about none? The standard
story predicted four operators per domain and had to explain why we find only three out of those
four in natural language. Our system avoided that problem, predicting only the basic duality. This
avoided the overgeneration problem of the standard story, but now we have to explain how to get

9Though, as mentioned earlier, this is probably incorrect.
10Contrasting with the ¬,∃ perspective.
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three operators out of two.11 We said earlier that external negation is not always well-defined.
But sometimes it is. Even then it would not be quite as organic as internal negation (the external
operator is not a semantic argument of µ and does not form a constituent with it), but at least we
can figure out what it does. In the domain of propositions, for example, µ returns a proposition.
This can be reversed, assuming that a higher operator is sensitive to the natural ordering of truth
values. External negation, in such cases, will amount to standard truth-conditional negation. If our
basic µ is max, external negation will mean what the English none seems to mean. If our basic µ

is min, external negation will mean what *nall would have meant. It seems, then, that we should
take max as primitive. As far as we can tell, all of the so-called n-words (none, no, neither. . . nor,
never, etc.) go in the same direction.

(9) CONSTRAINT ON LEXICALIZATION (final version):
a. Basic case (repeated from (5)): Morphologically simplex operators in natural language

are of the form Opµ , as defined in (4), where µ ∈ {min,max}
b. N-words: It is possible to lexicalize Op◦max, and the result is an n-word

4.3 Back to the missing corner
We moved from a ∃,¬ perspective to a max,◦ one so as to avoid overgeneration. We played with
different ways to state our new inventory, but we just saw that using max as primitive might make
more sense. The evidence, though, came from those cases where external negation is possible. By
allowing external negation to be used in defining a lexical operator we have opened the door again
to the Square of Opposition. If external-not can combine with max, why couldn’t it combine with
min(≡max◦)? As suggested in the introduction, we believe that an answer can be found in Horn
(1989). Recall that Horn attributes the missing corner of the Square to (the diachronic effects of)
Gricean reasoning combined with language’s abhorrence of negation: using ∃,∀, and ¬ we get the
attested three corners, {∃,∀,¬∃}; the fourth corner, ∃¬, is derived by strengthening ∃ to imply ¬∀.
Within our framework, {max,◦max,max◦} is sufficient, while ◦max◦ (≈ *nall) can be derived
by Gricean reasoning.

Horn notes that Gricean reasoning could also support a different system, where the lexicalized
operators are {∀,¬∀,∀¬}, and where the missing corner is ∃. Systems of this kind, however, are
empirically unattested, and Horn suggests that the reason is a markedness constraint that penalizes
negation in lexical inventories: the unattested system has two negations, compared to one in the
attested system. We mentioned, however, that while Horn’s intuition seems compelling, using it
within his framework would force us to ignore the inherent duality of ∃ and ∀. If we want to be
able to express the duality of ∃ and ∀, maintaining Horn’s idea of negation avoidance requires the
stipulation that ∃ is primitive.

Within our system, on the other hand, Horn’s idea of avoiding negation yields the correct
results without any such stipulation. The attested system, as mentioned, is {max,◦max,max◦}

11Maybe we don’t have to. Penka (2007) has argued that negative quantifiers are never part of natural language. She
treats n-words as uniformly indefinite, attributing their apparent negative behavior to agreement with a higher negative
operator. If she is right, our {min,max} would be the full inventory of lexicalizable operators. However, this would
still not account for the systematic absence of universal-like n-words. All things considered, then, it would be good
to find a more principled explanation for the distribution. As mentioned above, we will do this by following Horn
(1989)’s proposal.
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(with ◦max◦ ≈ *nall derived Griceanly). The other 3-way system based on max is
{max◦,◦max◦,◦max} (with max ≈ some derived Griceanly), but this system has four instances
of ◦, and hence loses to the attested system, which has only two. In this respect, the min/max
setting is similar to the quantificational one. In contrast with the quantificational setting, however,
switching to a system where min is primitive (rather than max) no longer helps. The two contenders
are {min◦,◦min◦,min} and {min,◦min,◦min◦}, each of which has three instances of ◦, hence
losing to the attested, max-based system.

5 Non-classical logics
In talking about the propositional domain, we restricted ourselves to classical, two-valued logic.
Even there, as is obvious from even a cursory glance at the long and controversial history of the
Square, there was ample space for logically possible but empirically unattested operators. Moving
to non-classical systems adds more possible states for each proposition, an increase that gets
polynomially amplified when several propositions are combined by a connective or a quantifier.
The space of logically possible connectives increases exponentially with the size of the table. This
is not just a conceptual issue. Non-classical logics have often been argued to be the proper way
to account for presupposition. It has been supposed that presupposition corresponds to partiality
in the domain of a function, a new truth value (say, 0.5), or uncertainty about which of the two
classical truth values hold. These perspectives are interestingly different in many ways, but for our
purposes, to which we will return shortly, a crucial feature they share in common is that this new
state, which we will designate neutrally as ~, can be directly compared with the classical values,
and that 0 ≤ ~ ≤ 1. The potential exacerbation of the overgeneration problem has been a serious
concern, as discussed in detail by Soames (1982, 1989) and Heim (1983, 1990), and more recently
by Schlenker (2008a), Fox (2007b), and George (2008). To take a simple example, the classical
unary operator ¬ is one of 22 = 4 possible operators of this kind. Adding ~ increases the number
of such operators to 33 = 27, of which 3 overlap with classical negation with respect to 0 and 1.
More dramatically, the classical binary propositional connective and is one of 2(2×2) = 16 possible
connectives of this kind. ~ expands the space to 3(3×3) = 19,683 possible connectives, of which
3(9−4) = 243 are consistent with classical and. Even if one can think of an explanation for why
we find the operators that we do, why don’t we also see some of the other possible ones, at least
occasionally?

Once we switch from {∃,∀} to {min,max}, the problem with adding ~ disappears. The only
unary operator is reversal, ◦, which gives rise to the ordering 1≤ ◦~≤ ◦0. From 19,683 possible
tables for a binary propositional connective we are down to exactly two:

(10) a. and
min 0 ~ 1

0 0 0 0
~ 0 ~ ~
1 0 ~ 1
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b. or
max 0 ~ 1

0 0 ~ 1
~ ~ ~ 1
1 1 1 1

No other binary propositional operator is definable using min and max. Under our earlier
assumption that these are the only possible entries for morphologically simplex operators in
natural language, we have nothing to worry about. We mentioned above that external negation
can sometimes be used, and we suggested that when this happens it is by combining with max
(rather than with min≡max◦) and that the result is a morphologically complex n-word. For this,
too, overgeneration doesn’t arise. The only possibility is this:

(11) nor
◦max 0 ~ 1

0 1 ~ 0
~ ~ ~ 0
1 0 0 0

Interestingly, our system not only avoids the overgeneration problem, it coincides exactly with the
Strong Kleene system, a historically significant contestant for a descriptively adequate framework
for presupposition. Moreover, it extends straightforwardly to any number of arguments (including
an unbounded set, as in quantifiers) as well as to any set of truth values (finite or not) that has
the relevant kind of ordering. Unfortunately, it also goes against a long history of work on
presupposition that demonstrates that the empirical patterns of projection involve asymmetries
between the arguments of connectives. Here are some early examples.

(12) (Horn, 1972 ex. 2.6)
a. []John is a man and (he is) a bachelor
b. [#]John is a bachelor and (he is) a man

(13) (Karttunen, 1973 ex. 16)
a. []Jack has children and all of Jack’s children are bald
b. [#]All of Jack’s children are bald, and Jack has children

Such examples have motivated the incorporation of asymmetry into the basic mechanism of
presupposition and its projection. Within frameworks that rely on non-classical logics, from Peters
(1979) to the more recent proposals of Beaver and Krahmer (2001), Fox (2007b), and George
(2008), this has motivated asymmetric truth tables, often following an intuition that the left-to-right
order in which arguments are presented has truth-functional consequences. As should be clear by
now, our system has no way to produce an asymmetric table.

This is hardly the place for a detailed discussion of the intricacies of presupposition projection,
but we would like to mention some of our reasons to think that our symmetric system is on the right
track.12 First, to the extent that our diagnostics can serve to probe non-classical truth values, there

12For more detailed proposals involving symmetric projection see Chemla (2008) and Schlenker (2008b).
Both follow Horn (1972) in relegating the above asymmetries to a presupposition-independent constraint against
incremental redundancy. We will do the same in (18) below.
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is no difference between the two propositional arguments in (12) and (13). For example, while
the two sentences in (13) differ in felicity, uttering ‘Hey, wait a minute! I didn’t know that Jack
had children,’ would be just as inappropriate as an objection to (b) as it would be for (a). Could
it be that the inapplicability of the HWAM! test for (b) has to do with the oddness of the original
sentence? We think not. It is sometimes possible to get rid of the oddness of Karttunen-like
sentences by embedding them, as can be seen in (14) below. This is in itself a surprising fact, but
more importantly, the HWAM! test remains inapplicable.

(14) a. There are exactly five workers in this factory [who LOVE their wife] and [who HAVE
a wife]

b. There are exactly five workers in this factory [who HAVE a wife] and [who LOVE their
wife]

(15) [#]Hey, wait a minute! I didn’t know that someone in this factory has a wife.13

So it looks like the left-to-right asymmetry in Karttunen’s sentences, while real, has little to
do with the truth-functional component. What is the asymmetry about, then? We are not sure, but
left-to-right asymmetries have been observed in many other domains that could be loosely grouped
together under the heading of discourse appropriateness.14 Grice (1989), to cite an early example,
noted that the order in which conjuncts are presented is taken to imply a temporal or causal order
between their denotations. Thus the two sentences in (16) both entail the same two events but
suggest different orders in which they took place.

(16) a. They got married and had a child
b. They had a child and got married

And in the domain of implicature, it has been argued by one of us (Singh, 2008b) that linear order
corresponds to the strength of the scalar items that appear in disjunctive sentences like (17):15

(17) a. []He talked to Sue or to both Sue and Mary
b. [#]He talked to both Sue and Mary or to Sue

We think that it would be short-sighted to confine a left-to-right mechanism to presupposition,
especially since it appears to be irrelevant there, while phenomena across the pragmatic board
seem to have access to such a mechanism. For our purposes we can appeal to a non-redundancy
condition, as proposed by Horn (1972:ex. 2.12):16

(18) INCREMENTAL NON-REDUNDANCY: The second conjunct Q of a conjunction P&Q must
not follow from the first conjunct P

13The precise presupposition that would project in this context is a matter of some controversy. We chose to use
HWAM! to test for the weakest presupposition that could in principle project here.

14We use the term ‘discourse’ in an imprecise way. Much of what we are about to see has been argued, from Cohen
(1971) onward, to take place at local and more mechanical levels. We trust that no confusion should arise.

15See Fox and Spector (2008) for a different perspective on such sentences, though their characterization preserves
the dependence on linear order.

16See van der Sandt (1992) and Schlenker (2008b,a) for recent discussion.
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