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1 On the Study of Natural Language
• two broad approaches to the study of natural language

1.1 Language as a Byproduct
• one view, dominant outside linguistics: there’s nothing special about it

• knowledge of language will fall out from general cognitive mechanisms (eg.
learning)

• two kinds of theory-data difficulties: (1) the input data is often impover-
ished (eg. question formation), (2) the input data is often ignored (eg. the
presuppositions of the definite article)

(1) a. The man is happy
→ Is the man happy?

b. The man who is tall is happy
→ Is the man who is tall happy?
→ *Is the man who tall is happy?

∗Thanks to Ash Asudeh, Asaf Bachrach, Johan van Benthem, Emmanuel Chemla, Noam
Chomsky, Kai von Fintel, Danny Fox, Irene Heim, Larry Horn, Ivona Kucerova, Jacopo Romoli,
Philippe Schlenker, and Bob Stalnaker, for many helpful comments.
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• if the child is only presented with questions like in (a), no evidence to choose
between different rules in (b) (roughly, ‘move the structurally most promi-
nent auxiliary’ versus ‘move the (linearly) first auxiliary’)

• the second rule would seem to be simpler, yet it’s not selected

• children also seem to not make errors of the kind put forth by the second
rule, etc.

• thus, they must not be entertaining rules of the second kind, i.e. it’s not
the data that push them to the first rule, but an innate specification that bars
rules of the second kind as being a part of natural language grammars1

(2) The king of France is bald

• the definite article carries a presupposition of existence and uniqueness

• however, a corpus study has found that most uses of the definite article are
made in contexts where the presupposition is not met (Spenader (2002))

• nevertheless, the presuppositional requirement can always be detected, which
means that when children learn the meaning of the, they ignore the appar-
ent optionality found in their input data, and encode the presupposition as a
necessary requirement

• a good data-sensitive learner would surely account for the apparent option-
ality (as with other optional mechanisms, eg. verbs that allow both an NP
and S complement)

• but there is no optionality with the presuppositional requirement

• in fact, Spenader (2002) points out that the only cases where the requirement
can be cancelled are artificially constructed cases put forth in the linguistics
literature, cases which never show up in actual usage

1This general argument was first put forth in Chomsky (1968). The ban on verb raising from
subject relative clauses is a specific case of a more general constraint banning movement from
such a position.
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1.2 Universal Grammar
• partly in response to the above difficulties, an entirely different approach to

the study of language takes language on its own terms

• the task of the linguist is to discover what is essential to human language,
i.e. to discover properties of Universal Grammar

• UG is taken to delimit the space of possible human languages

• characterizations of UG are hypotheses about what is essential to the lan-
guage faculty

• our project aims to provide a characterization of one subcomponent of the
language faculty, namely, its inventory of logical operators

• it begins from the objection that all previous approaches to logicality in
natural language fall short of providing the desired characterization

2 Logical Semantics
• out of the lexical inventory, there is a distinguished subset composed of

logical operators, eg. some, all, or, and, not, if (as opposed to eg. cat, dog,
rain, walk)

• classical logic (and various enrichments): meanings in terms of contribution
to truth-conditions

2.1 Classical Logic
• define a space of possible truth-functional connectives

and 0 1
0 0 0
1 0 1

or 0 1
0 0 1
1 1 1
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xor 0 1
0 0 1
1 1 0

nor 0 1
0 1 0
1 0 0

nand 0 1
0 1 1
1 1 0

• this basic format allows you to derive eleven other two-place connectives

• the contribution of quantificational elements, eg. some, all, given in terms
of truth of substitution instances

• Some A B is true iff there is an x which as A, and which is B

• All A B is true iff for every x which is A, x is also B

• No A B is true iff there is no x which is both A and B

• can define many many others

• eg. Allnon A B is true iff for every x which is not A, x is also B

• eg. Nall A B is true iff there is an x which is A, but is not also B

• etc.

• could just be an accident of English that such operators are not realized

2.2 Some Enrichments
2.2.1 Modal Operators

• qualified statements via use of qualifying operators (eg. can, must, possible,
necessary, might, believe, know)

• eg. might A is true in a world w iff there is an accessible world, w′, such
that A is true in w′
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2.2.2 Generalized Quantifier Theory

• some operators (eg. most) not classically definable – was one motivation
for generalized quantifier theory (Barwise and Cooper (1981))

• eg. Most A B is true iff |A ∩B| > |A ∩ B̄|

• Some A B is true iff A ∩B 6= ∅

• All A B is true iff A ⊆ B

• No A B is true iff A ∩B = ∅

• Allnon A B is true iff Ā ⊆ B

• Nall A B is true iff A ∩ B̄ 6= ∅

2.2.3 Three-Valued Logic

• it has been argued (eg. Peters (1979), Beaver and Krahmer (2001), Fox (Fall
2007), George (2008), Fox (To Appear)) that a three-valued logic would be
appropriate for capturing presuppositions in natural language

(3) The king of France is bald

• is the sentence true, false, or neither, given that there is no king of France?

• to capture the squeemishness one feels here, a third truth-value, ~, is added,
roughly ‘I don’t know whether it’s true or false’

• sometimes given the value 0.5

or 0 ~ 1
0 0 ? 0
~ ? ? ?
1 0 ? 1

• in general, there are 39 = 19,683 definable two-place connectives, 35 = 243
of which are consistent with two-valued or

• which should be the right logic?
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• different proposals provide different solutions to the so-called projection
problem for presuppositions, namely, the problem of providing an algorithm
for deciding what complex sentences presuppose based on the presupposi-
tions of their parts2

3 Problem: Gaps in Logical Inventories
• we seem forced to extend the expressive power of classical logic to account

for the existence of operators which go beyond the limits set by classical
logic

• however, each such increase in expressive power brings with it problems of
overgeneration

• for example, we saw that there are close to 20,000 binary connectives de-
finable in a three-valued logic – where are all these operators?

• English only lexicalizes three: or, and, nor

• thus, the problem arises not only for enrichments of classical logic, but for
classical logic itself (eg. it allows for 16 two-place connectives, 13 of which
are never lexicalized, and never have been, as far as we have been able to
discover)

• in GQT, for a domain of n individuals, there are 24n definable quantifiers

• English lexicalizes three: some, all, no

• etc.

• of course, this could just be an accident of English

• but these gaps seem to be systematic, i.e. cross-linguistically, we don’t find
any language lexicalizing nall, nand, xor, allnon, etc.3

2See Karttunen (1973, 1974), Stalnaker (1974), Karttunen and Peters (1979), Gazdar (1979),
Peters (1979), Heim (1982, 1983a,b), van der Sandt (1992) for some of the earlier classics. The
problem has been revived in much recent work, eg. Geurts (1999), Beaver (2001), Beaver and
Krahmer (2001), Schlenker (2007, To Appear), Chemla (2009), Fox (Fall 2007), George (2008),
Fox (To Appear), Katzir and Singh (2008).

3See Horn (1972) for extensive discussion. We will return to Horn’s account of these gaps
momentarily.
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• there have been serious attempts to come to grips with such overgeneration
problems, but (we will argue) none are satisfactory

• Barwise and Cooper (1981) discovered a set of univeral constraints which
helped narrow down the overgeneration problem

• most famously, that all quantifiers in natural language are conservative:
QAB iff QA(A ∩B), i.e. quantification is restricted to those individuals in
A

• this would work to rule out operators like Allnon

• however, space of potential operators is still very large

• conservativity reduces the space of quantifiers from 24n to 23n , significant,
but not enough to overcome the overgeneration problem4

• still allows for many operators which are unattested, eg. nall

• several other seemingly arbitrary choice points

• eg. does it follow from Every man in the next room is tall that Some man in
the next room is tall?

• yes, only if we follow Strawson (1952) and add a constraint to the effect
that QAB is defined only if A 6= ∅

• textbook logic doesn’t employ such a constraint, and there has been much
debate whether natural language quantifiers obey this constraint (so-called
‘existential import’)5

• what is important is that this seems like an arbitrary choice point

• for this talk, we will focus on one extended attempt to come to grips with
the overgeneration problem

4See van Benthem (1986) for this and other results relating universal constraints to the resulting
size of the sample space. For example, by also adding permutation invariance as a constraint
on logicality, the space of operators is reduced further to 2(n+2)(n+1)/2. Again, while this is a
significant reduction, the overgeneration problem remains essentially as it was. Moreover, since
these stipulated constraints seem unrelated to one another, one would need to articulate why natural
language chose such constraints instead of others.

5See Katzir and Singh (2008) for references.
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3.1 Horn (1972)
• begin with Aristotle’s Square of Opposition

• Horn’s observation: of the four corners, one is systematically absent in the
world’s languages

• some, all, no, *nall

• or, and, nor, *nand

• sometimes, always, never(= not sometimes), *nalways

• may, must, *nmust

• either, both, neither = (not both), *noth (= not both)

• note that there is no cognitive restriction against the fourth corner – we
often infer these meanings through scalar implicature, and can construct
them analytically

• Horn: two factors responsible for this gap: (1) Scalar Implicature,6 (2) A
specific pressure against negation

• can reason from some to ‘not all,’ or to ‘not and’ (and similarly with the
other squares), so that, in effect, the overall meaning conveyed by assertion
of some is ‘some and not all’7

• at the same time, by the same logic of implicature computation, assertion of
nall would lead to the implicature that ‘not no,’ i.e. some

• thus, the overall meaning conveyed by assertion of nall is ‘some and not
all’8

6Very roughly, a scalar implicature is a pragmatic inference that strengthens the meaning of a
sentence. From use of sentence S, the hearer reasons as follows: The speaker could have used
a stronger sentence, T . This would have been more informative, hence ‘better.’ Assuming that
T is relevant, and that the speaker is knowledgeable about T ’s truth-value, and is cooperative,
they would have said T had it been true. Since they didn’t, it must be false. Thus, S can be
strengthened to ‘S and not T.’ For example, some is strengthened by implicature to ‘some and
not all,’ or is strengthened to exclusive or, etc. See Grice (1967) and Horn (1972) for the earliest
formulations.

7Note that this reasoning works only if we follow Strawson (1952) and adopt existential import.
8Eg. Not all the boys came to the party has an implicature that some of them did come to the

party.
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• a lexical inventory including some and nall would seem to be wasting re-
sources, using up two lexical items whose contribution to communication is
essentially identical

• ideally, then, natural languages would make use of either the three-membered
inventory < ∃,∀,¬∃ > (some, all, no) or the three-membered inventory
< ∀,¬∀,¬∃ > (all, nall, no)

• while Horn doesn’t provide a formal constraint to capture this, he seems to
have in mind something like the following

• let S(Op) be a sentence containing operator Op

Constraint on Lexicalization 1 (Scalar Implicature) If assertion of S(Op1) con-
veys the same information as assertion of S(Op2) (i.e. meaning plus scalar impli-
catures), then don’t lexicalize both of Op1, Op2.

• we have two inventories that would satisfy the above constraint

• only one is ever attested

• why?

• Horn: note that the second inventory contains two instances of negation,
while the first one contains only one9

• a specific pressure against negation determines that the first inventory ‘wins’
over the second

Constraint on Lexicalization 2 (Minimize Negation) If I1, I2, . . . , Ik are lexi-
cal inventories containing the same number of operators, the inventory Ij with
the least instances of negation wins.

3.2 Negation and Duality
• for Horn’s result to go through, he has to ignore the duality of ∀ and ∃

• since the two are interdefinable, i.e. ∃ = ¬∀¬, ∀ = ¬∃¬, we only need one
basic operator, and derive the rest by inner and outer negation

9Note that this result does not depend on whether we represent no as ¬∃ or as ∀¬.
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• shape of the square: Op,¬Op,Op¬,¬Op¬

• once we take duality into account, the argument fails

• eg. consider the attested inventory, some, all, no

• if ∃ is basic, then we have: {∃,¬∃¬,¬∃}

• if ∀ is basic, then we have: {¬∀¬,∀,∀¬}

• now consider the unattested inventory, but allowed by the scalar implicature
constraint: all, no, nall

• if ∃ is basic, then we have: {¬∃¬,¬∃,∃¬}

• if ∀ is basic, then we have: {∀,∀¬,¬∀}

• these four inventories are allowed by the SI constraint

• hence, we simply count negations to determine the optimal inventory, and
now, it turns out that the unattested inventory with ∀ as basic wins

• the only way to avoid this, then, is to stipulate that ∃ is the basic operator

4 Orders and Min-Max
• Horn’s constraints only make sense once we stipulate a certain space to

begin with

• eg. one could imagine alternative formulations that attempt to minimize the
size of the inventory entirely

• eg. in the space of two-place connectives, it is well-known that nor suffices
to derive all the other connectives, as does nand10

• in any event, as argued above, even with the stipulation, the reasoning does
not go through

10Let ‘↑’ represent nand, and let ‘↓’ represent nor. Then: ¬A ≡ A ↓ A, A ∧ B ≡ (A ↓ A) ↓
(B ↓ B). Also, ¬A ≡ A ↑ A, A ∨ B ≡ (A ↑ A) ↑ (B ↑ B). From this fact, the rest of the
connectives follow, since {¬,∧} and {¬,∨} are sufficient to derive the rest, as is standard.
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• our strategy: We will adopt Horn’s Constraints, and will attempt to come up
with a principled delimitation of the space of operators

• in general, we believe that the source of the overgeneration in all of the
above approaches to logicality rests in their focus on truth

• we propose, instead, that orderings are fundamental, and that operators in
natural language are allowed to exploit this ordering, but otherwise are not
allowed any other freedom

• very roughly, we assume that operators are given ordered sets as input, and
a constraint in UG dictates that simplex operators in natural language can
either take the max of the set, or the min11

Constraint on Lexicalization 3 (Simplex Operators) Morphologically simplex
operators in natural language are limited to selecting maxima or minima of the
ordered sets which they receive as input.

• can think of this is a condtion that says: Don’t Tamper – Just Choose

• eg. in the domain of truth-values, {0, 1}, with the natural order 1 > 0, a
two-place connective in natural language can take one of two forms: max,
or min

min 0 1
0 0 0
1 0 1

max 0 1
0 0 1
1 1 1

• max corresponds to or, and min corresponds to and

• other operators like xor are just not definable

• what about nor?
11More formally, where µ ∈ {min,max}, simplex operators must be of the form Opµ, where

[[Opµ]]= λA ⊆ Dα.λfαβ : β ∈ Dom(µ).µ{f(x) : x ∈ A}. Note that our entry does not
reference specific types α, β. All that matters is that the input to µ be a non-empty, partially
ordered set.
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• we will extend this constraint to accommodate so-called n-words in just a
moment

• but let’s see how this works with other operators, eg. quantifiers

• eg. Op boys walk

• Op{W (b1),W (b2), . . . ,W (bk)}, where Op ∈ {min,max}

• min corresponds to all, max corresponds to some

4.1 Negation and Order
• given an order, ≤, the reverse order is always defined: ≤new= {< a, b >:<
b, a >∈≤}

• clearly, min≤ ≡ max≤new (and similarly, max≤ ≡ min≤new)

• this suggests a role for a directionality-reversing operator, as well as a sim-
ple way to state the intuitive duality of min and max

• define an operator ◦ (pronounced suhrk) that reverses ordering relations in
the way just described (that is, ◦(R) ≡ {< a, b >:< b, a >∈ R}), and use
the following entry for one of the operators, say for min

(4) [[min≤]]= λX ∈ Dom(max).max◦(≤)(X)

• of course, could also define max in terms of min

(5) [[max≤]]= λX ∈ Dom(min).min◦(≤)(X)

• with the min-max perspective, we’ve managed to avoid the overgeneration
problem of other approaches, but we’ve fallen into an undergeneration prob-
lem

• while we’ve avoided generating nall, nand, etc. we also incorrecly predict
the absence of no, nor, etc.

• so we need external negation to combine with our operators

• if min were primitive, we would predict the existence of nall, nand, etc.
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• if max were primitive, we would predict the existence of no, nor, etc.

• the attested typology seems to go the second way, so it seems we need to
stipulatemax as primitive, and allow for our inventory to expand as follows

Constraint on Lexicalization 4 (Operators, Final version) (a) Morphologically
simplex operators in natural language are either min = max(◦) or max, (b) It is
possible to lexicalize ◦max, and the result is an n-word.

• but notice that our result depends on a stipulation that max is primitive

• is there a way to eliminate this stipulation?

4.2 Back to the Missing Corner
• Attested System: some, all, no

• Unattested System: all, nall, no

(6) Attested System:
a. max as primitive: {max,max◦, ◦max}
b. min as primitive: {min◦,min, ◦min◦}

(7) Unattested System:
a. max as primitive: {max◦, ◦max◦, ◦max}
b. min as primitive: {min, ◦min, ◦min◦}

• once we move to the min-max approach, Horn’s reasoning actually succeeds
without any stipulation

• the system with the least number of negations is the one with max as prim-
itive, as in (a)

• this leads to the attested typology, and our apparent stipulation has instead
been derived by Horn’s reasoning
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4.3 Further Predictions
• derive the standard entry for the definite article (Link (1983)) as a max

operator over the domain of individuals

• derive a strict implication analyis for conditionals

• recall the many choice points that came up in relation to other approaches

• eg. there were arbitrary stipulations concerning constraints like conserva-
tivity, permutation invariance, existential import

• in three-valued logics, previous approaches have either stipulated truth-
tables (eg. Peters (1979), Beaver and Krahmer (2001)), or tried to derive
them from other principles (eg. Fox (Fall 2007), George (2008), Fox (To
Appear))

• however, none of these follow from the semantics in any way

• our min-max approach derives a solution to the projection problem, namely,
we derive the so-called Strong Kleene tables (Kleene (1952))

min 0 ~ 1
0 0 0 0
~ 0 ~ ~
1 0 ~ 1

max 0 ~ 1
0 0 ~ 1
~ ~ ~ 1
1 1 1 1

• problem: this prediction goes against over thirty-five years of work on pre-
supposition projection

• even constraints like existential import, and conservativity have been dis-
puted in the literature, and the strict implication analysis of conditionals has
been argued since Stalnaker (1968) and Lewis (1973), and much subsequent
work, to be inadequate for natural language

• task: show the predictions are right, despite appearances
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