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A B S T R A C T

We address the end-effector full-pose tracking control problem in free-floating space manipulators,
experiencing constant non-zero linear and angular momentum. The aim is to develop an output-
tracking (workspace) control law free of singularities due to parameterizing the end-effector motion
and being robust against singularities of the input-output decoupling matrix (generalized Jacobian
matrix). Space manipulators are modelled as open-chain multi-body systems with single- and multi-
degree-of-freedom joints, whose kinematics and dynamics are formulated on the Special Euclidean
group SE(3). Such systems exhibit conserved (not necessarily zero) total momentum when operating
in the free-floating regime, which we use to systematically reduce their dynamical equations by
eliminating the base spacecraft’s motion. To avoid parameterizing the end-effector motion, we
consider its full pose as the system output and develop a novel feedback linearization technique
on the matrix Lie group SE(3) in the reduced phase space of the space manipulator. We then propose
an intrinsic feedforward, feedback proportional-integral-derivative workspace controller involving a
coordinate-free pose error function on SE(3) and velocity error on its Lie algebra. Using a Lyapunov
candidate, this controller is proven to stabilize the end-effector pose to a feasible desired trajectory.
The input-output decoupling matrix in the proposed control law can lose rank at some regions of
the configuration space; hence, we implement a singularity-robust inverse, derived from the damped
least squares method, to avoid impractical joint torques in these regions. The developed controller
is implemented on a 7-degree-of-freedom manipulator onboard a spacecraft and its efficacy and
robustness are demonstrated trough series of simulations.

1. Introduction
As society’s dependence on space infrastructures con-

tinues its increasing trend, extending satellites’ lifespans,
technological capabilities, and commercial accessibility be-
come increasingly important. Space manipulators that are
deployed in On-Orbit Servicing (OOS) missions play a vital
role in addressing the key problems (e.g., premature satellite
failure and orbital debris) faced by the space industry
[20, 19, 10, 37]. To reduce fuel consumption and perform
safe contact operations during servicing missions, space
manipulators may operate in their free-floating regime,
where the base spacecraft freely rotates and translates [27].
Further, to maximize precision in the robotic operations,
as well as improve their versatility and adaptability, plan-
ning and tracking workspace trajectories are favourable.
Therefore, effective workspace Guidance, Navigation, and
Control (GNC) of free-floating space manipulators is crucial
to enhancing their functionality during the pre-capture phase
and safe and successful capture and post-capture manoeu-
vres.

Research on the control of space manipulator systems
in free-floating regime has been a highly attractive and
motivated topic in space robotics. Operating in this regime
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comes with the complexities associated with the GNC
design of underactuated systems [42, 16]. In this case,
the coupled dynamics between the spacecraft and manip-
ulator motion and the mitigation of the uncontrolled base
motion are the key considerations [12, 15, 27]. Common
control strategies consider reducing the coupled base motion
during manipulator operation [3, 12]. For example, Wang
develops a stable generalized parameter adaptive controller
based on a dynamics regressor to investigate the adaptive
inverse dynamics of free-floating space manipulators with
parameter uncertainties [49]. Ulrich and Sasiadek demon-
strate the efficacy of introducing feedforward parameters
in an adaptive control structure on space manipulators with
model uncertainties [43]. There is a category of free-floating
space manipulator control strategies, predicated on the Vir-
tual Manipulator (VM) technique introduced by Vafa and
Dubowsky [46]. The VM method interprets free-floating
space manipulators by a dynamically equivalent fixed-based
manipulator system, provided no external disturbances and
zero momentum. Therefore, controllers can be developed
that are associated with the more trivial dynamics of a fixed-
base robot [14, 47]. Parlaktuna et al. use the notion of the
VM to develop a dynamically equivalent model of a free-
floating space manipulator to perform adaptive control in
the system’s joint space [35, 33]. Furthermore, Torres and
Dubowsky study path planning and control structures based
on the VM approach [40, 13, 41]. A separate foundational
approach for controlling free-floating space manipulators is
introduced by Yoshida and Umetani in [44], using the notion
of the Generalized Jacobian Matrix (GJM) [45]. This notion
allowed for Nenchev and Yoshida to introduce the bias
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momentum approach in [51] which considers impedance
control and the minimization of changes in the base’s
orientation during the pre-capture of a tumbling target. The
Reaction Null-Space (RNS) is developed using the GJM
method to identify the motions in the manipulator’s joint
space which impart the lowest disturbance to the base [50].

The GJM approach allows for the implementation of
workspace control techniques in space manipulators. In
[4, 2], the authors feedback linearize space manipulators
on ℝ𝑛 to perform end-effector position and base attitude
control during pre- and post-capture maneuvers. A track-
ing controller in the presence of angular momentum is
formulated in [32]. In the resulting linearized input-output
relation, various types of strategies, including traditional lin-
ear Proportional-Derivative (PD) and Proportional-Integral-
Derivative (PID) control, can be applied to follow a desired
trajectory. Chhabra et. al formally study space manipulators
with constant non-zero momentum and reduce their phase
space in a Hamiltonian formalism [8]. Accordingly, they
develop a feedback transformation on an output space with
a Lie group structure that linearizes the closed loop system
in the presence of non-zero momentum [9]. They employ
a widely versatile PD control law on Lie groups, proposed
by Bullo and Murray, to follow a desired end-effector pose
in a stable manner [5]. To guarantee better performance
and robustness, intrinsic PID control laws that have been
developed on Lie groups can be also used at the output
level [25, 53]. On the Lie group SE(3), these intrinsic
PID methods have been combined with the error function
proposed in [17] to design robust controllers for aerospace
vehicles [18, 1].

Prior to analyzing and developing appropriate GNC
strategies for free-floating space manipulators, their kine-
matics and dynamics models must be established. This
paper considers free-floating space manipulators as open-
chain multi-body systems. For general rigid multi-body
systems, [30] and [34] have taken a geometric approach by
developing kinematics and dynamics formulations of multi-
body systems on Lie groups. The relationship between Lie
groups and screw theory is analyzed in [39], where screws
are presented as elements of Lie algebras, allowing for a
geometric interpretation of rigid body motions. Provided the
connection between screw motions and Lie group theory,
kinematic mappings from the joint space to the task space
(a subset of SE(3)) of a serial chain manipulator can be
formulated [36, 28, 7]. In establishing a space manipu-
lator’s equations of motion, Hamiltonian and Lagrangian
approaches prove beneficial due to their accommodation
to Lie group formulations [7, 8, 38]. Note that due to
the low-gravity orbital environment, space manipulators
are often considered to possess negligible potential energy.
The presence of external disturbances are often additionally
presumed to be insignificant during the small time period
in which space manipulators perform servicing operations,
thus implying an assumption of conserved momentum in the
system [27].

In this paper, we study the kinematics and dynamics
of a free-floating space manipulator with multi-Degree-Of-
Freedom (DOF) joints on Lie groups. Taking advantage
of their conservation of momentum, we develop a control
law that can control the full pose of the system’s end-
effector. The controller is predicated on coordinate-free pose
and velocity error functions to achieve Lyapunov stable
trajectory following. The main contributions of the paper
can be summarized in the following.

1. We systematically extend the product of exponen-
tials formula for fixed-base manipulators with single-
Degree-Of-Freedom (DOF) joints to capture the kine-
matics and dynamics of free-floating space manipula-
tors with multi-DOF joints on Lie groups.

2. We rigorously reduce the equations of motion of
free-floating space manipulators with non-zero mo-
mentum. Accordingly, we propose a novel feedback
transformation on the Lie algebra 𝔰𝔢(3) that input-
output linearizes the system.

3. A coordinate-free feedforward, feedback PID control
law on SE(3) is developed to achieve Lyapunov stable
trajectory following of the end-effector pose of the
robot.

4. The developed output-tracking control structure im-
plements a singularity-robust inverse method to ac-
comodate kinematic and dynamic singularities of the
space manipulator system.

The rest of this paper is organized as follows: Section 3
formulates the kinematics of space manipulators with multi-
DOF joints. In Section 4, we study the dynamics of space
manipulators and subsequently present its reduction under
the conservation of momentum assumption in Sections 5
and 6. Section 7 performs feedback linearization on the
end-effector motion to then develop a full-pose workspace
controller in Section 8 with a singularity-robust feature out-
lined in Section 9. Section 10 provides a series of numerical
studies. Some concluding remarks are included in Section
11.

2. Preliminaries
In this section, we review the Lie group SE(3) as the

configuration space of a single rigid body moving in the
3-dimensional Euclidean. Members of the SE(3) describe
the pose of a rigid body in the form of 4 × 4 homogeneous
transformation matrices,

𝒈 =
[

𝑹 𝒑
𝟎1×3 1

]

. (1)

Here, 𝑹 ∈ SO(3) ⊂ ℝ3×3 is a 3 × 3 rotation matrix
defining the body’s orientation, where SO(3) is the Special
Orthogonal group, and 𝒑 ∈ ℝ3 is the body’s position. Using
the exponential map of SO(3), any rotation 𝑹 about an axis
𝒘 ∈ 𝕊2 ⊂ ℝ3 on the unit 2-sphere with a rotation angle
Φ can be described by 𝑹 = 𝑒𝒘̃Φ ∈ SO(3). The tilde
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operator indicates the vector space isomorphism between
𝔰𝔬(3), the Lie algebra of SO(3), and ℝ3, mapping a vector
𝒖 = [𝑢1 𝑢2 𝑢3]𝑇 ∈ ℝ3 to the skew-symmetric matrix

𝒖̃ =
⎡

⎢

⎢

⎣

0 −𝑢3 𝑢2
𝑢3 0 −𝑢1
−𝑢2 𝑢1 0

⎤

⎥

⎥

⎦

∈ 𝔰𝔬(3). (2)

The exponential map of SO(3) can be calculated in closed
form using the Rodgrigues formula:

𝑒𝒘̃Φ = 𝟏3×3 + 𝒘̃ sinΦ + 𝒘̃2(1 − cosΦ). ‖𝒘‖ = 1 (3)

Analogous to the exponential map for rotations in
SO(3), the exponential map of SE(3) can be defined for
the members of its Lie algebra, denoted 𝔰𝔢(3). Members of
𝔰𝔢(3) are referred to as twists, and take the following form:

𝝃 =
[

𝒘̃ 𝒗
𝟎1×3 0

]

∈ 𝔰𝔢(3), (4)

where 𝝃 = [𝒗𝑇 𝒘𝑇 ]𝑇 ∈ ℝ6, and the hat operator is defined
to be the vector space isomorphism between ℝ6 and 𝔰𝔢(3).
The exponential map of SE(3) for a twist 𝝃 ∈ 𝔰𝔢(3) with
‖𝒘‖ = 1 and twist angle Φ is then calculated by

𝑒𝝃Φ =
[

𝑒𝒘̃Φ (𝟏3×3 − 𝑒𝒘̃Φ)(𝒘̃𝒗) +𝒘𝒘𝑇 𝒗Φ
𝟎1×3 1

]

. (5)

The resulting homogeneous transformation is the transfor-
mation obtained after performing a screw motion about the
screw axis 𝝃 for the angle Φ. For a purely translational rigid
body motion, i.e., 𝒘 = 0, the exponential is simply

𝑒𝝃Φ =
[

𝟏3×3 𝒗Φ
𝟎1×3 1

]

, (6)

where for this case Φ refers to the amount of translational
motion associated with the twist. For more general rigid
body motions let 𝒈𝑠𝑏(𝑡) ∈ SE(3) indicate a trajectory of
a body coordinate frame’s pose with respect to the spatial
frame. The matrices 𝒈̇𝑠𝑏𝒈−1𝑠𝑏 and 𝒈−1𝑠𝑏 𝒈̇𝑠𝑏 belong to the Lie
algebra 𝔰𝔢(3), and they respectively define the rigid body’s
instantaneous spatial velocity 𝑽 𝑠

𝑠𝑏 ∈ ℝ6 and body velocity
𝑽 𝑏
𝑠𝑏 ∈ ℝ6 vectors with respect to the spatial frame. The

spatial velocity in twist coordinates reads

𝑽 𝑠
𝑠𝑏 = 𝒈̇𝑠𝑏𝒈−1𝑠𝑏 =

[

𝒗𝑠𝑠𝑏
𝝎𝑠𝑠𝑏

]∧
∈ 𝔰𝔢(3). (7)

The first three components of the spatial velocity vector
𝒗𝑠𝑠𝑏 ∈ ℝ3 correspond to the linear velocity with respect to
the spatial coordinate frame. Physically speaking, this linear
velocity represents the velocity of a particle in the rigid
body which travels through the origin of the spatial frame
at the given moment in time. Furthermore, the last three
components of the spatial velocity 𝝎𝑠𝑠𝑏 ∈ ℝ3 specify the
spatial angular velocity of the body. This angular velocity

simply represents the rigid body’s rate of rotation from the
perspective of the spatial frame. Moreover the body velocity
in twist coordinates is defined by

𝑽 𝑏
𝑠𝑏 = 𝒈−1𝑠𝑏 𝒈̇𝑠𝑏 =

[

𝒗𝑏𝑠𝑏
𝝎𝑏𝑠𝑏

]∧

∈ 𝔰𝔢(3). (8)

Here, the linear component of the body velocity 𝒗𝑏𝑠𝑏 ∈
ℝ3 is physically interpreted as the relative velocity between
the origins of the body and spatial coordinate frames viewed
from the perspective of the body frame. The angular velocity
𝝎𝑏𝑠𝑏 ∈ ℝ3 again represents the rotational velocity of the rigid
body as viewed in the body frame.

Relating the spatial and body velocity vectors requires
some form of a transformation between the two coordinate
frames. The Adjoint operator is a linear automorphism of
the Lie algebra 𝔰𝔢(3) which converts the expression of a
twist from one coordinate frame to another. Provided a rel-
ative homogeneous transformation between two coordinate
frames 𝒈 ∈ SE(3) with a rotation 𝑹 ∈ SO(3) and a position
𝒑 ∈ ℝ3, the associated Adjoint mapping denoted 𝐀𝐝𝒈 is
defined by the following 6 × 6 matrix,

𝐀𝐝𝒈 =
[

𝑹 𝒑̃𝑹
𝟎3×3 𝑹

]

. (9)

Further, for all 𝝃 ∈ 𝔰𝔢(3), the Lie bracket on 𝔰𝔢(3) intro-
duces a linear mapping 𝐚𝐝𝝃 , coined as the adjoint operator,
between elements of 𝔰𝔢(3):

𝐚𝐝𝝃 =
[

𝒘̃1 𝒗̃1
𝟎3×3 𝒘̃1

]

. (10)

3. Kinematics of Space Manipulators Systems
This paper considers free-floating space manipulator

systems consisting of an 𝑁-link manipulator attached to a
6-DOF base spacecraft. All manipulator links are intercon-
nected through either single or multi-DOF joints. The space
manipulator is modelled as a serial-link open-chain rigid
multi-body system with 𝑁 + 1 bodies. All body coordinate
frames are attached to the bodies’ centers of masses. We
number the bodies by 𝑘 = 0,⋯ , 𝑁 , where body 0 refers
to the base, and we label joints by the number of their
succeeding body. By𝑁𝐷 = 𝑁𝐷𝑀 +6 we denote the number

of degrees of freedom in the system, where𝑁𝐷𝑀 =
∑𝑁
𝑘=1 𝑙𝑘

indicates those included in the manipulator. Here, 𝑙𝑘 is the
number of degrees of freedom of Joint 𝑘.

We use the exponential map to parameterize single-
DOF prismatic and revolute joints [30], and we extend this
parameterization to a product of exponentials for a class of
multi-DOF joints. Six common types of lower pair joints are
considered in this paper, as listed in Table 1. The configu-
ration space of a joint in this list can be parameterized by a
product of exponentials corresponding to the joint’s axes of
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Table 1
Lower pair joints

Dim. Configuration space in SE(3)

3 SE(2)
planar

SO(3)
ball (spherical)

2 SO(2) ×ℝ
cylindrical

SO(2) × SO(2)
universal

1 SO(2)
revolute

ℝ
prismatic

motion. Lower pair joints include single-DOF revolute and
prismatic joints, along with the multi-DOF universal, planar,
cylindrical, and spherical joints.

For a revolute joint connecting Body 𝑘 − 1 and Body 𝑘,
the joint twist is defined such that the unit vector 𝒘 ∈ ℝ3

is the axis of rotation for the relative rigid body motion with
respect to the preceding body, and 𝒗 = −𝒘̃𝒓, with 𝒓 ∈ ℝ3

being a point along the axis of rotation. For a prismatic
joint, the joint twist is defined such that 𝒘 = 0 and the
unit vector 𝒗 ∈ ℝ3 is the axis of translation relative to
the preceding rigid body. Therefore given Joint 𝑘 with the
joint twist 𝝃′𝑘 (observed from Body 𝑘 − 1 at its initial pose),
the relative homogeneous transformation between the two
bodies is parameterized using the joint parameter Φ𝑘 ∈ ℝ
as

𝒈(𝑘−1)𝑘(Φ𝑘) = 𝑒𝝃
′
𝑘Φ𝑘𝒈(𝑘−1)𝑘(0). (11)

Here, 𝒈(𝑘−1)𝑘(0) is the initial relative pose between the
two bodies. Starting with the single-DOF joints located at
the bottom row of Table 1, the revolute and prismatic joints
refer to pure rotational and translational screw motions,
respectively. Revolute joints are described by the one-
parameter subgroups of SE(3), denoted by SO(2), which
specifies rotation about a single axis, and prismatic joints
are described by ℝ which indicates translation in a single
direction. The helical joint contains a single independent
motion, represented by the subgroup 𝐻𝑝, to express a
complete screw motion with a non-zero and finite pitch
value. Cylindrical joints combine individual revolute and
prismatic motions SO(2) × ℝ, to both rotate and translate
an attached rigid body. The planar and spherical joints
in the lower pair group both impart motions with three
degrees of freedom. Planar joints posses full planar motion
(i.e., translation and rotation in two-dimensional space),
combining ℝ2 and SO(2) to define the Special Euclidean
space for two dimensional motion, SE(2). A spherical joint
allows for complete rotational motion, described by rotation
matrices belonging to SO(3). We may also include the free
six-DOF joint to describe unconstrained motion in SE(3).
This six-DOF joint proves necessary when describing the
uncontrolled base motion of a space manipulator in its free-
floating regime.

As mentioned, the motion of the more trivial single-
DOF joints are represented in a geometric context by a
screw motion (helical joint motion) with either infinite

pitch (prismatic joint motion) or zero pitch (revolute joint
motion). Subsequently, provided the twist 𝝃 associated with
the single-DOF joint motion, the relative motion between
a rigid body’s initial configuration and its configuration
following the joint motion is obtained through the expo-
nential mapping exp(𝝃Φ). With regards to the multi-DOF
joints, this paper expresses their motion as an amalgamation
of individual screw motions, each representing a single
degree of freedom in the joint’s motion. For example, the
full rotational motion of a spherical joint is effectively
defined by the combination of three revolute joints placed
along each of the primary axes. For a body 𝑘 with an
initial configuration 𝒈𝑠𝑘(0), and whose motion is defined
by a spherical joint, its resulting configuration following the
spherical motion 𝒈𝑠𝑘(Φ𝑧,Φ𝑦,Φ𝑥) is defined as follows,

𝒈𝑠𝑘(Φ𝑧,Φ𝑦,Φ𝑥) = 𝑒𝝃𝑧Φ𝑧𝑒𝝃𝑦Φ𝑦𝑒𝝃𝑥Φ𝑥𝒈𝑠𝑘(0). (12)

The representation of the spherical joint above signifies
an Euler angle representation of the joint’s motion. The
rotation angles Φ𝑧,Φ𝑦, and Φ𝑥 refer to the yaw, pitch, and
roll of the joint, and 𝝃𝑧, 𝝃𝑦, and 𝝃𝑥 refer to twists along
the 𝑧, 𝑦, and 𝑥 axes. Note that for a planar joint (with
motion in SE(2)), the same combination of exponential
mappings in equation (12) is used, however with the last
two exponentials referring to translational motions along
the 𝑦 and 𝑥 axes. The principle of combining individual
revolute and prismatic motions to represent higher DOF
joints provides the following general representation of joint
motions on Lie groups for a joint 𝑚 with 𝑙𝑚 degrees of
freedom,

𝒈𝑚(Φ1,… ,Φ𝑙𝑚 ) = 𝑒𝝃1Φ1 … 𝑒𝝃𝑙𝑚Φ𝑙𝑚𝒈𝑚(0). (13)

The exponential mapping exp(𝝃𝑖Φ𝑖) may represent ei-
ther a pure rotational or translational motion. Based on the
Lie group parameterization of the six lower pair joints in
Table 1, and the defined motion for single and multi-DOF
joints, the system’s forward kinematics can be formed. The
following subsection describes the method for combining
consecutive joint motions to define the forward kinematics
mapping from the system configuration to the end-effector
pose in SE(3).

Note that the joint twists capturing the base motion are
denoted by 𝝃1,⋯ , 𝝃6, while the twists of the manipulator
joints are denoted by 𝝃7,⋯ , 𝝃𝑁𝐷

. The definition of joint
twists throughout the system will be discussed in the next
section. Let 𝜽 ∈ ℝ6 be the collection of the parameters
describing the base spacecraft’s motion, and 𝒒 ∈ ℝ𝑁𝐷𝑀

be the collection of the joint parameters for the manipulator.
The vector of generalized coordinates for a space manipu-
lator system is thus the combination of 𝜽 and 𝒒, denoted by
𝚽 = [𝜽𝑇 𝒒𝑇 ]𝑇 ∈ ℝ𝑁𝐷 .

3.1. Forward Kinematics
As mentioned, the primary objective of the forward

kinematics of a space manipulator system is to determine
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the position and orientation of end-effector 𝒈𝑠𝑁 provided the
joint configurations in the system. More generally, the for-
ward kinematics model provides a function for computing
the configuration of any body 𝑘 in the system given the joint
configurations preceding Body 𝑘. The region of allowable
joint values is referred to as the system’s joint space, and the
region of achievable end-effector configurations is referred
to as either the system’s task space or workspace. Following
a right-handed coordinate system, a counterclockwise rota-
tion defines the positive direction of rotational motions if
viewed along the axis of rotation. For translational motion,
the displacement is measured positive in the direction of the
corresponding screw axis.

Starting with the homogeneous transformation from the
spatial frame to the coordinate frame following the first
joint’s motion 𝒈𝑠0, the forward kinematics map sequentially
merges individual joint transformations until reaching the
end-effector. That is, for a general robotic manipulator with
𝑁 bodies, and where Body 𝑘 is attached to a joint with 𝑙𝑚𝑘
degrees of freedom, the forward kinematics mapping to the
end-effector is defined as,

𝒈𝑠𝑁 (𝚽) = 𝒈𝑠0(Φ1,… ,Φ𝑙0 )𝒈01(Φ𝑙0+1,… ,Φ𝑙1 )

… 𝒈(𝑁−1)𝑁 (Φ𝑙𝑁−1+1,… ,Φ𝑙𝑁 )𝒈𝑠𝑁 (0). (14)

Here, 𝑙𝑘 =
∑𝑘
𝑖=0 𝑙𝑚𝑖 defines the number of degrees of

freedom in the system preceding Body 𝑘. For example, the
spacecraft’s base has six degrees of freedom, thus defining
𝑙0 = 6. The full forward kinematics mapping to the end-
effector above can be easily generalized to any body 𝑘 in
the system by simply ending the product of joint transforma-
tions at Body 𝑘. This implies that the combination of joint
transformations in equation (14) ends at 𝒈(𝑘−1)𝑘 as opposed
to 𝒈(𝑁−1)𝑁 . Note that the homogeneous transformation
between two connected bodies is defined by equation (13)
with 𝑙𝑚 = 𝑙𝑚𝑘 . Implementing equation (13) into equation
(14) demonstrates the general forward kinematic mapping
in terms of each individual prismatic or revolute motion
included in the system. The notion of compounding in-
dividual motions (corresponding to either single or multi-
DOF joints) using the exponential joint parameterization in
the forward kinematics model is known as the product of
exponentials formula. The forward kinematics mapping for
Body 𝑘 can thus be expressed by the product of exponentials
formula as follows,

𝒈𝑠𝑘(𝚽) = 𝑒𝝃1Φ1 ⋯ 𝑒𝝃𝑙𝑘Φ𝑙𝑘𝒈𝑠𝑘(0). 𝑘 = 0,⋯ , 𝑁 (15)

The product of exponentials formula above signifies the
transformation of the 𝑘𝑡ℎ Body’s initial configuration into
its updated pose based on the current configuration of the
space manipulator system.

3.2. Differential Kinematics
Differentiating the forward kinematics map provides a

linear mapping, known as the system’s Jacobian 𝑱 (𝚽) ∈

ℝ6×𝑁𝐷 , from the system’s joint velocities to the velocity
vector of a body 𝑘. This Jacobian matrix can be expressed in
either the spatial frame 𝑱 𝑠(𝚽) or the body frame 𝑱 𝑏(𝚽) to
map velocity vectors in the respective frames of reference.
For example, the spatial velocity of Body 𝑘, denoted 𝑽 𝑠

𝑘 ,
requires Body 𝑘’s spatial Jacobian 𝑱 𝑠𝑘 (𝚽) and the system’s
joint velocities 𝚽̇,

𝑽 𝑠
𝑘 = 𝑱 𝑠𝑘 (𝚽)𝚽̇ ∈ 𝔰𝔢(3). (16)

As indicated by the nomenclature, the system Jacobian is
a function of the generalized coordinates 𝚽 due to its de-
pendency on the forward kinematics mapping. Recalling the
definition of the spatial velocity in equation (7), we expand
the time derivative of the homogeneous transformation 𝒈𝑠𝑘,

𝒈̇𝑠𝑘(𝚽) =
𝑁𝐷
∑

𝑖=1

𝜕𝒈𝑠𝑘(𝚽)
𝜕Φ𝑖

Φ̇𝑖. (17)

Based on the definition of the spatial velocity,

𝑽 𝑠
𝑘 =

𝑁𝐷
∑

𝑖=1

(

𝜕𝒈𝑠𝑘(𝚽)
𝜕Φ𝑖

Φ̇𝑖

)

𝒈−1𝑠𝑘 (𝚽) =
𝑁𝐷
∑

𝑖=1

(

𝜕𝒈𝑠𝑘(𝚽)
𝜕Φ𝑖

𝒈−1𝑠𝑘 (𝚽)
)

Φ̇𝑖.

(18)

Appendix A provides the derivation of the partial derivative
of a homogeneous transformation with respect to a general-
ized coordinate Φ. The result of this differentiation signifies
that the argument of the summation above can be replaced
by applying the Adjoint of the product of exponentials up to
Φ𝑖−1 to the 𝑖𝑡ℎ twist 𝝃𝑖. That is,

(

𝜕𝒈𝑠𝑘
𝜕Φ𝑖

𝒈−1𝑠𝑘

)∨
= Ad(𝑒𝝃1𝜃1 … 𝑒𝝃𝑖−1𝜃𝑖−1 )𝝃𝑖. (19)

Therefore, the spatial Jacobian matrix is defined by ex-
pressing the summation component of equation (18) in its
matrix form, making use of the result in (19). This yields
the following definition of 𝑱 𝑠𝑘 ,

𝑱 𝑠𝑘 =
[

𝜼′1 ⋯ 𝜼′𝑙𝑘 𝟎6×(𝑁𝐷−𝑙𝑘)

]

∈ ℝ6×𝑁𝐷 (20)

𝜼′𝑖 = (𝐀𝐝𝑖−11 )′𝝃𝑖. 𝑖 = 1,⋯ , 𝑙𝑘, (21)

where,

(𝐀𝐝𝑖−11 )′ ∶= 𝐀𝐝(𝑒𝝃1𝜃1 … 𝑒𝝃𝑖−1𝜃𝑖−1 ). (22)

From this matrix definition, the 𝑖𝑡ℎ column of the spatial
Jacobian represents the transformation from the 𝑖𝑡ℎ twist in
the initial configuration to its updated location, given the
multi-body system’s current configuration, with respect to
the spatial coordinate frame. This transformation is based
on all preceding 𝑖 − 1 joint angles, and defined by the

P. Rousso and R. Chhabra: Preprint submitted to Elsevier Page 5 of 23



Singularity-Robust Full-Pose Workspace Control of Space Manipulators

Adjoint matrix in equation (22). Consequently, the spatial
velocity of Body 𝑘 only relies on the preceding joint angles
and is independent of the succeeding joint parameters. This
is expressed in the Jacobian matrix by all 𝑙𝑘 + 1,⋯ , 𝑁𝐷
columns being zero.

Similarly, the body Jacobian associated with the 𝑘𝑡ℎ
Body provides the linear mapping from the joint velocities
to Body 𝑘’s body velocity,

𝑽 𝑏
𝑘 = 𝑱 𝑏𝑘 (𝚽)𝚽̇. (23)

Based on the definition of 𝑽 𝑏
𝑘 in equation (8) and the

time derivative of 𝒈𝑠𝑘, the body Jacobian can be formed pro-
vided the following general definition of its matrix columns,

𝑱 𝑏𝑘 = [𝜼1 ⋯ 𝜼𝑙𝑘 𝟎6×(𝑁𝐷−𝑙𝑘)] ∈ ℝ6×𝑁𝐷 (24)

𝜼𝑖 = Ad𝒈−1𝑠𝑘 (0)
Ad𝑙𝑘𝑖 𝝃𝑖, 𝑖 = 1,⋯ , 𝑙𝑘 (25)

where for 𝑙 > 𝑖,

Ad𝑙𝑖 ∶= Ad(𝑒−𝝃𝑙Φ𝑙 … 𝑒−𝝃𝑖Φ𝑖 ). (26)

In this body frame representation of the Jacobian matrix,
the 𝑖𝑡ℎ column expresses the updated 𝑖𝑡ℎ twist with respect
to the coordinate frame attached to Body 𝑘. Again, the trans-
formation updating the twist to the current configuration is
predicated on the joint configurations preceding Body 𝑘, as
expressed by the Adjoint multiplication in equation (26).
Analogous to the connection between the spatial and body
velocities, the spatial and body manipulator Jacobians can
also be related through the Adjoint operator associated with
the relating homogeneous transformation 𝒈𝑠𝑘,

𝑱 𝑠𝑘 = 𝐀𝐝𝒈𝑠𝑘𝑱
𝑏
𝑘 . (27)

The following section makes use of the differential
kinematics mapping in forming the kinetic energy of a space
manipulator system. Consequently, the system’s Jacobian
matrix forms the foundation for deriving the dynamical
equations of space manipulators in the context of Lie
groups.

4. Space Manipulator System Dynamics
In this section, the equations of motion for a free-

floating space manipulator system are derived based on an
Euler-Lagrangian approach. This method is known to be
computationally inefficient in comparison to the Newton-
Euler process; however its use is necessary for developing
model-based control schemes. The equations of motion
dictate the acceleration of a rigid multi-body system under
actuation forces and torques applied to the joints. Using a
Lagrangian approach requires definitions of the system’s

kinetic and potential energies to define the system’s La-
grangian 𝑳. In the case of a space manipulator system in or-
bit, the system’s potential energy can be neglected due to the
low-gravity environment. Consequently, the Lagrangian of a
space manipulator is simply equal to the system’s kinetic
energy 𝑲 . Differentiating the Lagrangian with respect to
the generalized coordinates and their velocities establishes
a relationship between the generalized accelerations 𝚽̈ and
the generalized forces and moments 𝑻 . To start, we may
express the equation of motion for a single generalized
coordinate as follows,

𝑑
𝑑𝑡
𝜕𝑳
𝜕Φ̇𝑖

− 𝜕𝑳
𝜕Φ𝑖

= 𝑇𝑖. (28)

Given the definition of the Lagrangian for space manip-
ulator systems 𝑳 = 𝑲 previously mentioned, we begin by
defining the kinetic energy associated with the 𝑘𝑡ℎ Body,

𝑲𝑘(𝚽, 𝚽̇) = 1
2
(𝑽 𝑏
𝑘 )
𝑇𝑫𝑘𝑽 𝑏

𝑘 , (29)

where 𝑫𝑘 denotes Body 𝑘’s constant 6×6 inertia matrix with
respect to its body frame. Again, this paper considers body-
fixed coordinate frames to be located at the body’s center
of mass and aligned in the direction of the body’s principal
axes, resulting in the mass matrix to take the following
general form (assuming a uniform mass distribution),

𝑫𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚𝑘 0 0 0 0 0
0 𝑚𝑘 0 0 0 0
0 0 𝑚𝑘 0 0 0
0 0 0 𝐼𝑥𝑘 0 0
0 0 0 0 𝐼𝑦𝑘 0
0 0 0 0 0 𝐼𝑧𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (30)

Here, 𝑚𝑘 refers to the mass of Body 𝑘, and 𝐼𝑥𝑘, 𝐼𝑦𝑘, and 𝐼𝑧𝑘
refer to Body 𝑘’s principal moments of inertia about the 𝑥,
𝑦, and 𝑧 axes respectively. The kinetic energy’s dependency
on 𝚽 and 𝚽̇ becomes apparent when expressing the body
velocity vectors in equation (29) in terms of their differential
kinematics mappings,

𝑲𝑘(𝚽, 𝚽̇) = 1
2
(𝑱 𝑏𝑘 (𝚽)𝚽̇)𝑇𝑫𝑘𝑱 𝑏𝑘 (𝚽)𝚽̇, (31)

which is rewritten as,

𝑲𝑘(𝚽, 𝚽̇) = 1
2
𝚽̇𝑇 (𝑱 𝑏𝑘 (𝚽))𝑇𝑫𝑘𝑱 𝑏𝑘 (𝚽)𝚽̇. (32)

The resulting expression above signifies a dependency
on Body 𝑘’s inertia matrix and body Jacobian in describing
its kinetic energy. Combining the kinetic energies of each
body yields the system’s total kinetic energy,

𝑲(𝚽, 𝚽̇) =
𝑁
∑

𝑘=0
𝑲𝑘(𝚽, 𝚽̇), (33)
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which thus depends on the matrix products of the body
Jacobians and body inertia matrices. This summation can be
simplified by introducing the system inertia matrix 𝑴̄(𝚽) ∈
ℝ𝑁𝐷×𝑁𝐷 defined as

𝑴̄(𝚽) ∶=
𝑁
∑

𝑘=1
(𝑱 𝑏𝑘 (𝚽))𝑇𝑫𝑘𝑱 𝑏𝑘 (𝚽), (34)

such that,

𝑲(𝚽, 𝚽̇) = 1
2
𝚽̇𝑇 𝑴̄(𝚽)𝚽̇. (35)

To efficiently formulate 𝑴̄(𝚽), the summation in equa-
tion (34) can be expressed in terms of a single matrix
multiplication. In doing so, we define a 6𝑁𝐷 × 𝑁𝐷 matrix
𝑱 which contains the body Jacobian matrices for each body
in the system,

𝑱 (𝚽) ∶=

⎡

⎢

⎢

⎢

⎣

𝑱 𝑏0 (𝚽)
𝑱 𝑏1 (𝚽)

⋮
𝑱 𝑏𝑁 (𝚽)

⎤

⎥

⎥

⎥

⎦

, (36)

and a 6𝑁𝐷 × 6𝑁𝐷 block diagonal matrix collecting the
individual body inertia matrices,

𝑫 ∶=

⎡

⎢

⎢

⎢

⎣

𝑫0 0 … 0
0 𝑫1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑫𝑁

⎤

⎥

⎥

⎥

⎦

. (37)

Based on the definition of the matrices 𝑱 and 𝑫, the system
inertia matrix is expressed as follows,

𝑴̄(𝚽) = 𝑱 𝑇 (𝚽)𝑫𝑱 (𝚽). (38)

The inertia matrix can be partitioned by rows and
columns to define four sub-matrices. These sub-matrices
separate the inertial contributions to the system dynamics
from the spacecraft base and the manipulator,

𝑴̄(𝚽) =
[

𝑯𝑜 𝑯𝑜𝑚
𝑯𝑇
𝑜𝑚 𝑯𝑚

]

. (39)

Here, 𝑯𝑜 is the 6 × 6 matrix of the base contribution to
the system’s momentum represented in the base parameteri-
zation, 𝑯𝑜𝑚 is the 6×𝑁 matrix of the manipulator contribu-
tion to the system’s momentum (similarly expressed in the
base parameterization), and 𝑯𝑚 is the 𝑁 ×𝑁 matrix of the
manipulator’s inertia.

Given the total system kinetic energy expressed in
equation (35), the resulting equations of motion of a space
manipulator are found using the Euler-Lagrangian equation
in (28). Since the system inertia matrix is only dependent on

the generalized coordinates 𝚽, the partial derivative of the
Lagrangian with respect to the generalized velocities is

𝜕𝑳(𝚽, 𝚽̇)
𝜕𝚽̇

= 𝑴̄(𝚽)𝚽̇. (40)

Taking the time derivative of this equation defines the first
term in the Euler-Lagrange equation:

𝑑
𝑑𝑡
𝜕𝑳(𝚽, 𝚽̇)

𝜕𝚽̇
= 𝑴̄(𝚽)𝚽̈ + ̇̄𝑴(𝚽)𝚽̇, (41)

where the time derivative of the system inertia matrix is
calculated as follows,

̇̄𝑴(𝚽) =
𝑁𝐷
∑

𝑖=1

𝜕𝑴̄(𝚽)
𝜕Φ𝑖

Φ̇𝑖. (42)

As the inertia matrix’s dependency on the general-
ized coordinates stems from the body Jacobian, the partial
derivative of 𝑴̄(𝚽) with respect to Φ𝑖 can be expressed in
terms of equivalent partial derivatives of the Jacobian matrix
by way of the chain rule,

𝜕𝑴̄(𝚽)
𝜕Φ𝑖

=
(

𝜕𝑱 (𝚽)
𝜕Φ𝑖

)𝑇
𝑫𝑱 (𝚽) + 𝑱 𝑇 (𝚽)𝑫 𝜕𝑱 (𝚽)

𝜕Φ𝑖
. (43)

𝑖 = 1,⋯ , 𝑁𝐷

Given the form of the 𝑗𝑡ℎ column of Body 𝑘’s body
Jacobian in equation (25), only the Adjoint operator 𝐀𝐝𝑙𝑘𝑖
is dependent on the system’s configuration 𝚽. Note that
the Adjoint of all twists, and the initial pose 𝒈𝑠𝑘(0) are
independent of the system’s configuration. Consequently,
the derivative of the 𝑗𝑡ℎ column of Body 𝑘’s body Jacobian
with respect to Φ𝑖 becomes

𝜕𝑱 𝑏𝑘,𝑗
𝜕Φ𝑖

= 𝐀𝐝𝒈−1𝑠𝑘 (0)
𝜕𝐀𝐝𝑙𝑘𝑗
𝜕Φ𝑖

𝝃𝑗 . (44)

The expression for the partial derivative of the Adjoint
operator is presented below, resulting from the complete
derivation provided in Appendix B,

𝜕𝐀𝐝𝑙𝑘𝑗
𝜕Φ𝑖

= −𝐀𝐝𝑙𝑘𝑖+1𝐚𝐝𝝃𝑖𝐀𝐝
𝑖
𝑗 . (45)

Implementing the derivative of the Adjoint operator into
equation (44), the partial derivative of the 𝑗𝑡ℎ column of the
body Jacobian is written as,

𝜕𝑱 𝑏𝑘,𝑗
𝜕Φ𝑖

= −𝐀𝐝𝒈−1𝑠𝑘 (0)Ad𝑙𝑘𝑖+1𝐚𝐝𝝃𝑖𝐀𝐝
𝑖
𝑗𝝃𝑗 . 𝑖 ≤ 𝑗 (46)
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For 𝑖 > 𝑗 this partial derivative is identically equal to
zero. The equations of motion can now be demonstrated
in matrix form provided the expression for the partial
derivative of the inertia matrix,

𝑴̄(𝚽)𝚽̈ + ̇̄𝑴(𝚽)𝚽̇ − 1
2
𝚽̇𝑇 𝜕𝑴̄(𝚽)

𝜕𝚽
𝚽̇ = 𝝉 . (47)

The vector 𝝉 ∈ ℝ𝑁𝐷 contains the forces and torques
collocated with the generalized coordinates in a space
manipulator system. Due to the free-floating nature of the
spacecraft’s base, the first 6 elements of 𝝉 (corresponding to
the base motion) are equal to zero. That is, 𝝉 = [𝟎1×6 𝝉𝑇𝑚 ]

𝑇 ,
where 𝝉𝑚 ∈ ℝ𝑁 is the vector of torques applied to the
manipulator joints. The system’s generalized velocities 𝚽̇
can additionally be factored out from the second and third
terms in equation (47) to yield

𝑴̄(𝚽)𝚽̈ +

⎛

⎜

⎜

⎜

⎝

𝑁𝐷
∑

𝑖=1

𝜕𝑴̄(𝚽)
𝜕Φ𝑖

Φ̇𝑖 −
1
2

⎡

⎢

⎢

⎢

⎣

𝚽̇𝑇 𝜕𝑴̄(𝚽)
𝜕Φ1
⋮

𝚽̇𝑇 𝜕𝑴̄(𝚽)
𝜕Φ𝑁𝐷

.

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

𝚽̇ = 𝝉 . (48)

The resulting term multiplying 𝚽̇ represents the system
Coriolis matrix, denoted by 𝑪̄(𝚽, 𝚽̇) ∈ ℝ𝑁𝐷×𝑁𝐷 . This
matrix contains the space manipulator’s Coriolis and cen-
trifugal effects, i.e.,

𝑪̄(𝚽, 𝚽̇) =
𝑁𝐷
∑

𝑖=1

𝜕𝑴̄(𝚽)
𝜕Φ𝑖

Φ̇𝑖 −
1
2

⎡

⎢

⎢

⎢

⎣

𝚽̇𝑇 𝜕𝑴̄(𝚽)
𝜕Φ1
⋮

𝚽̇𝑇 𝜕𝑴̄(𝚽)
𝜕Φ𝑁𝐷

.

⎤

⎥

⎥

⎥

⎦

. (49)

In a similar fashion to the inertia matrix partitioning,
the system Coriolis matrix can likewise be broken down
into its matrix elements. In this case, these sub-matrices
demonstrate the Coriolis and centrifugal effects stemming
from the motion of the base and that of the manipulator,

𝑪̄(𝚽, 𝚽̇) =
[

𝑪𝑜 𝑪𝑜𝑚
𝑪𝑚𝑜 𝑪𝑚

]

. (50)

The 6 × 6 and 6 × 𝑁 matrices 𝑪𝑜 and 𝑪𝑜𝑚 represent
the contribution of the Coriolis forces on the total system
momentum expressed in the parameterization of the base,
resulting from base and manipulator motions, respectively.
Additionally, 𝑪𝑚𝑜 and 𝑪𝑚 are 𝑁 × 6 and 𝑁 × 𝑁 matrices
summarizing those contributions in the Coriolis forces on
the manipulator. Making use of the system inertia and
Coriolis matrices, the equations of motion for a free-floating
space manipulator system are written in matrix form as
follows,

𝑴̄(𝚽)𝚽̈ + 𝑪̄(𝚽, 𝚽̇)𝚽̇ = 𝝉 , (51)

[

𝑯𝑜 𝑯𝑜𝑚
𝑯𝑇
𝑜𝑚 𝑯𝑚

] [

𝜽̈
𝒒̈

]

+
[

𝑪𝑜 𝑪𝑜𝑚
𝑪𝑚𝑜 𝑪𝑚

] [

𝜽̇
𝒒̇

]

=
[

𝟎6×1
𝝉𝑚

]

. (52)

Given these matrix partitionings, the dynamics of a
free-floating space manipulator system can be divided into
the equations of motion pertaining to the base (i.e., the
first six rows of equation (51)) and and those concerning
the manipulator (i.e., the last 𝑁 rows of equation (51))
separately,

𝑯𝑜𝜽̈ +𝑯𝑜𝑚𝒒̈ + 𝑪𝑜𝜽̇ + 𝑪𝑜𝑚𝒒̇ = 𝟎6×1 (53)

𝑯𝑇
𝑜𝑚𝜽̈ +𝑯𝑚𝒒̈ + 𝑪𝑚𝑜𝜽̇ + 𝑪𝑚𝒒̇ = 𝝉𝑚. (54)

Separating the equations of motion demonstrates the
coupling between the spacecraft base and the manipulator.
Equation (54) emphasizes the dynamic influence that an
actuation torque applied to the manipulator joints imposes
on the base motion. Due to the application of 𝝉𝑚, the
spacecraft base’s acceleration is proportional to the cou-
pling inertia sub-matrix 𝑯𝑇

𝑜𝑚 and its velocity related by
the coupling component of the Coriolis matrix 𝑪𝑚𝑜. Thus,
having no control of the spacecraft base in the free-floating
regime imposes difficulties in controlling the entire space
manipulator system due to the coupled motion between the
base and the manipulator.

5. Conservation of Momentum
The conservation of linear and angular momentum is

considered as an affine nonholonomic constraint to free-
floating space manipulator systems. Consequently, defining
an expression for the system’s conserved momentum allows
for a relationship which demonstrates the coupled motion
between the base and manipulator. We start by defining
the generalized system momentum of space manipulators
to be the matrix product of the systems’ inertia and their
associated generalized coordinate velocities,

𝑷 ∶= 𝑴̄(𝚽)𝚽̇. (55)

which can be rewritten in terms of the matrices 𝑫 and 𝑱 as,

𝑷 = 𝑱 𝑇𝑫𝑱 𝚽̇. (56)

Expanding the matrices in the generalized system mo-
mentum above allows for the momentum associated with
each body to be explicitly shown (with reference to its
associated body Jacobian and individual inertia matrix),

𝑷 = [(𝑱 𝑏
0 )
𝑇 (𝑱 𝑏

1 )
𝑇 … (𝑱 𝑏

𝑁 )
𝑇 ]

⎡

⎢

⎢

⎢

⎣

𝑫0 0 … 0
0 𝑫1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑫𝑁

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑱 𝑏
0

𝑱 𝑏
1
⋮
𝑱 𝑏
𝑁

⎤

⎥

⎥

⎥

⎦

𝚽̇,

(57)

which is simplified to
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𝑷 =
[

(𝑱 𝑏0 )
𝑇 … (𝑱 𝑏𝑁 )𝑇

]

⎡

⎢

⎢

⎢

⎣

𝑫0𝑱 𝑏0 𝚽̇
𝑫1𝑱 𝑏1 𝚽̇

⋮
𝑫𝑁𝑱 𝑏𝑁𝚽̇

⎤

⎥

⎥

⎥

⎦

=
[

(𝑱 𝑏0 )
𝑇 … (𝑱 𝑏𝑁 )𝑇

]

⎡

⎢

⎢

⎢

⎣

𝑫0𝑽 𝑏
0

𝑫1𝑽 𝑏
1

⋮
𝑫𝑁𝑽 𝑏

𝑁

⎤

⎥

⎥

⎥

⎦

. (58)

The vector 𝑫𝑘𝑽 𝑏
𝑘 ∈ ℝ6 represents the body momentum

of the 𝑘𝑡ℎ Body, denoted by 𝑷 𝑏
𝑘 , about Body 𝑘’s center of

mass, expressed in the body coordinate frame. The total
momentum of the space manipulator system is simply the
summation of the momenta. However, this summation is
only valid provided that the individual momenta are ex-
pressed with respect to the spatial coordinate frame. That
is,

𝑷 𝑠 =
𝑁
∑

𝑘=0
𝑷 𝑠
𝑘 (59)

indicates the total spatial momentum of the system 𝑷 𝑠,
when the body momenta expressed in equation (58) are
transformed to the spatial coordinate frame. For Body 𝑘 this
spatial momentum is denoted by 𝑷 𝑠

𝑘 and it is related to the
body momentum by

𝑷 𝑠
𝑘 = 𝐀𝐝−𝑇𝑔𝑠𝑘𝑷

𝑏
𝑘 . (60)

As previously discussed in Section 4, the first 6 rows
of the inertia matrix correspond to the contributions of the
base and manipulator motions on the system momentum
expressed in the parameterization of the base. As this
section aims to develop a relationship between the base
and manipulator motions, only the first 6 rows of the
inertia matrix are of concern in the calculation of the total
momentum. Based on the inertia matrix definition, the first
6 rows of 𝑴̄ correspond to the first 6 rows of the 𝑱 𝑇 matrix,
and thus the first 6 columns of 𝑱 𝑏0 (i.e. the first 6 rows of
(𝑱 𝑏0 )

𝑇 ). Note that the first 6 columns of 𝑱 𝑏0 are the only non-
zero elements in the base’s Jacobian since the base’s motion
is defined by six degrees of freedom (𝑙0 = 6). We denote
the collection of the nonzero columns of the base’s body
Jacobian by the matrix 𝑱 𝑏0 . That is,

𝑱 𝑏0 = Ad𝒈−1𝑠0 (0)
[Ad6

1𝝃1 Ad6
2𝝃2 … Ad6

6𝝃6] ∈ ℝ6×6. (61)

Factoring out the Adjoint operator for the product of expo-
nentials going from the first generalized coordinate to the
sixth, i.e. Ad6

1, and recalling the definition of the spatial
Jacobian in (20),

𝑱 𝑏0 = Ad𝒈−1𝑠0 (0)
Ad6

1[𝝃1 Ad𝑒𝜉1𝜃𝑙 𝝃2 … Ad𝑒𝜉1𝜃𝑙 … 𝑒𝜉5𝜃5 𝝃6]

=∶ Ad𝒈−1𝑠0
𝑱 𝑠0 ∈ ℝ6×6. (62)

Here, 𝑱 𝑠0 is comprised of the first 6 columns of the
spacecraft base’s spatial Jacobian. Since the first 6 columns
of every body’s body Jacobian matrix corresponds to the
same screw motions (however with respect to the coordinate
frame attached to the respective Body 𝑘) the truncated
Jacobian,

𝑱 𝑏𝑘 ∶= Ad𝒈−1𝑠𝑘
𝑱 𝑠0 ∈ ℝ6×6, 𝑘 = 1,⋯ , 𝑁 (63)

forms the first 6 columns of 𝑱 𝑏𝑘 . Hence, the first 6 rows of
equation (58) read,

𝑷 ∶ =
[

(𝑱 𝑠0 )
𝑇Ad𝑇

𝒈−1𝑠0
(𝑱 𝑠0 )

𝑇Ad𝑇
𝒈−1𝑠1

… (𝑱 𝑠0 )
𝑇Ad𝑇

𝒈−1𝑠𝑁

]

⎡

⎢

⎢

⎢

⎣

𝑷 𝑏
0

𝑷 𝑏
1
⋮
𝑷 𝑏
𝑁

⎤

⎥

⎥

⎥

⎦

= (𝑱 𝑠0 )
𝑇 (Ad𝑇

𝒈−1𝑠0
𝑷 𝑏
0 + Ad𝑇

𝒈−1𝑠1
𝑷 𝑏
1 +…+ Ad𝑇

𝒈−1𝑠𝑁
𝑷 𝑏
𝑁 )

= (𝑱 𝑠0 )
𝑇

𝑁
∑

𝑘=0
𝑷 𝑠
𝑘

= (𝑱 𝑠0 )
𝑇𝑷 𝑠. (64)

Referring back to the partitioning of the inertia matrix
𝑴̄(𝚽) in equation (39), the total spatial momentum of the
system is obtained by,

𝑷 𝑠(𝚽, 𝚽̇) = (𝑱 𝑠0 )
−𝑇𝑷 = (𝑱 𝑠0 )

−𝑇 [𝑯𝑜 𝑯𝑜𝑚]
[

𝜽̇
𝒒̇

]

. (65)

Under the aforementioned assumption that the space
manipulator system is in an undisturbed environment, the
total momentum of the system in the spatial coordinate
frame is assumed constant and equal to 𝝁 ∈ ℝ6. Therefore,
the conservation of momentum equation yields

𝑯𝑜𝜽̇ +𝑯𝑜𝑚𝒒̇ = (𝑱 𝑠0 )
𝑇𝝁. (66)

This equation may be considered as an affine non-
holonomic constraint on the space manipulator motion.
We denote the submanifold of the tangent bundle of the
configuration manifold that is defined via this equation by

 ∶= (𝑷 𝑠)−1(𝝁). (67)

This defines all possible states of the system in which
the system can evolve in when the total momentum of the
system is conserved and equal to 𝝁. Note that the case of
𝝁 = 0 has been extensively studied in the literature [45].
However, the system may not be in rest (either deliberately
or non-deliberately) when beginning the capture process of
a target object; thus signifying the importance of studying
control scenarios involving systems with conserved non-
zero momentum.
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6. Dynamic Reduction
Free-floating space manipulators are inherently under-

actuated with available control only in the joint space of
the manipulator. Taking advantage of the conserved quan-
tities (the total system momentum), a systematic procedure
is developed to reduce the system dynamics at a non-
zero momentum by restricting to the space of allowable
velocities. This implies developing dynamical equations
which are independent of the uncontrolled base motion, and
exclusively consider the manipulator torque and the motion
of the manipulator joints (i.e., the space of control actions
and controlled states). The following dynamic reduction is
predicated on the assumption of an undisturbed environ-
ment, signifying that the system momentum is constant,
however not necessarily zero. We begin the reduction pro-
cess by using the conserved linear and angular momentum
presented in Section 5 to restrict the system velocities. From
this conserved quantity, a non-linear relationship between
the base and manipulator motions arises. Recalling the con-
servation of total momentum in equation (66), this relation
is obtained by isolating for the base velocity as follows,

𝜽̇ = 𝑯−1
𝑜 (𝑱 𝑠0 )

𝑇𝝁 −𝑯−1
𝑜 𝑯𝑜𝑚𝒒̇

= 𝑩 − 𝑺𝒒̇, (68)

where we define:

𝑺(𝚽) ∶= 𝑯−1
𝑜 𝑯𝑜𝑚, (69)

𝑩(𝚽;𝝁) ∶= 𝑯−1
𝑜 (𝑱 𝑠0 )

𝑇𝝁. (70)

With the objective of the dynamic reduction being to
remove all dependency on the base motion in the dynamic
equations, the base acceleration (appearing in equation (54))
must also be expressed in terms of the manipulator joint
accelerations. This implies taking the time derivative of the
relationship between the base and manipulator joint veloci-
ties in equation (68) to yield the following relationship,

𝜽̈ = 𝑩̇ − 𝑺̇𝒒̇ − 𝑺𝒒̈, (71)

where the time derivatives 𝑺̇ and 𝑩̇ are defined as,

𝑺̇(𝚽, 𝚽̇) = 𝑯−1
𝑜 𝑯̇𝑜𝑚 −𝑯−1

𝑜 𝑯̇𝒐𝑯−1
𝑜 𝑯𝑜𝑚, (72)

𝑩̇(𝚽, 𝚽̇;𝝁) = −𝑯−1
𝑜 𝑯̇𝑜𝑯−1

𝑜 (𝑱 𝑠0 )
𝑇𝝁 +𝑯−1

𝑜 ( ̇̄𝑱 𝑠0 )
𝑇𝝁. (73)

Similar to the partitioning introduced in equation (39),
the time derivative of the inertia matrix components 𝑯̇𝑜𝑚
and 𝑯̇𝑜 are defined by partitioning the time derivative of the
system inertia matrix ̇̄𝑴(𝚽, 𝚽̇),

̇̄𝑴(𝚽, 𝚽̇) =
[

𝑯̇𝑜 𝑯̇𝑜𝑚
𝑯̇𝑇
𝑜𝑚 𝑯̇𝑚

]

. (74)

The matrix ̇̄𝑴(𝚽, 𝚽̇) is calculated based on equation
(42), as detailed in Section 4. Referring to the matrix 𝑩̇,
the time derivative of the truncated spatial Jacobian for the
base must be determined. A similar computation presented
in equation (46) is required to calculate ̇̄𝑱 𝑠0 , however for a
Jacobian matrix in the spatial frame. Based on the definition
of the spatial Jacobian in equation (20), the partial derivative
of the 𝑗𝑡ℎ column of 𝑱 𝑠0 with respect to the 𝑖𝑡ℎ generalized
coordinate Φ𝑖 is calculated by the following,

𝜕𝑱 𝑠0,𝑗
𝜕Φ𝑖

=
𝜕(𝐀𝐝𝑗−11 )′

𝜕Φ𝑖
𝝃𝑗 , (75)

where,

𝜕(𝐀𝐝𝑗−11 )′

𝜕Φ𝑖
= (𝐀𝐝𝑖1)

′𝐚𝐝𝝃𝑖 (𝐀𝐝
𝑗−1
𝑖+1 )

′. 1 ≤ 𝑖 ≤ (𝑗 − 1) (76)

Appendix B provides the full derivation for the partial
derivative of the Adjoint operator (𝐀𝐝𝑗−11 )′ in equation (76)
above. For any 𝑖 > (𝑗 − 1) this derivative is identically
equal to zero. Consequently, the expression for the partial
derivative of the column 𝑱 𝑠0,𝑗 with respect to Φ𝑖 becomes,

𝜕𝑱 𝑠0,𝑗
𝜕Φ𝑖

= (𝐀𝐝𝑖1)
′ad𝝃𝑖 ((Ad𝑗−1𝑖+1 )

′𝝃𝑗). (77)

Since the first column of the spatial Jacobian expresses
the unchanged twist 𝝃1, and the spacecraft base contains 6
degrees of freedom, equation (77) applies to all columns
2 ≤ 𝑗 ≤ 6. Consequently, the time derivative ̇̄𝑱 𝑠0 is computed
as follows,

̇̄𝑱 𝑠0 (𝚽, 𝚽̇) =
6
∑

𝑖=2

𝜕𝑱 𝑠0
𝜕Φ𝑖

Φ̇𝑖. (78)

Based on the matrices ̇̄𝑴(𝚽, 𝚽̇) and ̇̄𝑱 𝑠0 (𝚽, 𝚽̇), a depen-
dency on the base velocities is introduced in the relationship
between the base and manipulator accelerations. Such de-
pendency on 𝜽̇ is removed through restricting to  by im-
plementing equation (68) to express the base velocity with
that of the manipulator in 𝚽̇. The same dependency on 𝜽̇ in
the system Coriolis matrix can analogously be removed by
restricting to . That is, we define the following matrices
to be independent of the base velocity,

𝕊(𝚽, 𝒒̇;𝜇) ∶= 𝑺̇(𝚽, [(𝑩 − 𝑺𝒒̇)𝑇 𝒒̇𝑇 ]𝑇 ), (79)

𝔹(𝚽, 𝒒̇;𝜇) ∶= 𝑩̇(𝚽, [(𝑩 − 𝑺𝒒̇)𝑇 𝒒̇𝑇 ]𝑇 ), (80)

ℂ(𝚽, 𝒒̇;𝜇) ∶= 𝑪̄(𝚽, [(𝑩 − 𝑺𝒒̇)𝑇 𝒒̇𝑇 ]𝑇 ), (81)

where the matrix ℂ(𝚽, 𝒒̇;𝜇) is partitioned as follows,
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ℂ(𝚽, 𝒒̇;𝜇) =
[

ℂ𝑜 ℂ𝑜𝑚
ℂ𝑚𝑜 ℂ𝑚

]

. (82)

Note that the equations of motion pertaining to the base
in equation (53) are equivalent to the derived relationship
between the base and manipulator accelerations stemming
from the conservation of momentum. Hence by restricting
the dynamics to , we can omit these equations from the
set of dynamical equations of the space manipulator. The
equations of motion governing the motion of the manipu-
lator can then be obtained by restricting equation (54) to
. Substituting the relationships from the conservation of
momentum in equations (68) and (71) into equation (54)
yields the following reduced set of dynamical equations
independent of the base motion:

𝑴𝒒̈ + 𝑪𝒒̇ + 𝑬 = 𝝉𝑚, (83)

where,

𝑴(𝚽) ∶= 𝑯𝑚 −𝑯𝑇
𝑜𝑚𝑺, (84)

𝑪(𝚽, 𝒒̇;𝜇) ∶= ℂ𝑚 −𝑯𝑇
𝑜𝑚𝕊 − ℂ𝑚𝑜𝑺, (85)

𝑬(𝚽, 𝒒̇;𝜇) ∶= 𝑯𝑇
𝑜𝑚𝔹 + ℂ𝑚𝑜𝑩. (86)

The reduced equations of motion in equation (83) ex-
press the relationship between internal torques applied to
the manipulator’s joints and the resulting joint motions
considering the contributions of the base motion. As men-
tioned, the resulting equations are independent of the base
motion (i.e., 𝜽̇ and 𝜽̈), however still depend on the base
configuration 𝜽. The base configuration is a measurable
quantity of a space manipulator system and therefore does
not need to be expressed in terms of the position of the
manipulator joints. The following section develops a input-
output feedback linearization law for free-floating manipu-
lators, using the reduced dynamical equations to derive an
appropriate control action (in the manipulator joint space)
which linearizes the end-effector’s motion in SE(3).

7. Input-Output Feedback Linearization
Let us define the output of the system to be the pose

of the end-effector 𝒈𝑠𝑁 and consider free-floating space
manipulator systems with constant non-zero momentum.
The objective of feedback linearization in this instance is
to first obtain an input-output relationship (restricted to
) between the manipulator torque 𝝉𝑚 and the motion of
the output in SE(3). A linearization law is subsequently
derived such that all non-linearities are removed in the
end-effector’s motion. This process leads to the following
control problem addressed in this paper:

Problem 1. Consider the free-floating space manipulator
dynamics in (53) and (54), and the position and orientation
of the end-effector, i.e., 𝒈𝑠𝑁 defined in (14), as the output of

the system. Given a twice differentiable desired trajectory
𝒈̄𝑠𝑁 (𝑡) ∈ SE(3) for the output, find 𝝉𝑚 to make the desired
output trajectory exponentially stable.

We begin deriving the relationship between the manip-
ulator torques and end-effector motion by establishing the
body velocity of the end-effector based on the system’s body
Jacobian matrix, as shown in equation (23). The Jacobian
matrix 𝑱 𝑏𝑁 may be partitioned by columns to explicitly
distinguish the contributions on the end-effector’s linear and
angular velocity from the spacecraft base and manipulator
configurations. Consequently, the body Jacobian matrix is
expanded to incorporate a 6 × 6 sub-matrix including all
columns pertaining to the base denoted 𝑱 𝑏𝑜 , and a 6 × 𝑁𝐷𝑀
sub-matrix including the remaining columns corresponding
to the manipulator denoted 𝑱 𝑏𝑚,

𝑽 𝑏
𝑁 = [𝑱 𝑏𝑜 𝑱 𝑏𝑚]

[

𝜽̇
𝒒̇

]

∈ ℝ6. (87)

To express the end-effector’s linear velocity in terms of
only the controlled states, we restrict the system velocity
vector to  and remove the dependency on the base motion,

𝑽 𝑏
𝑁 = [𝑱 𝑏𝑜 𝑱 𝑏𝑚]

[

𝑩 − 𝑺𝒒̇
𝒒̇

]

. (88)

Performing the matrix multiplication above explicitly
expresses the 6 ×𝑁𝐷𝑀 Generalized Jacobian Matrix (GJM)
denoted 𝑱 ∗,

𝑽 𝑏
𝑁 = 𝑱 ∗𝒒̇ + 𝑱 𝑏𝑜𝑩, (89)

𝑱 ∗ = 𝑱 𝑏𝑚 − 𝑱 𝑏𝑜𝑺 ∈ ℝ6×𝑁𝐷𝑀 , (90)

which provides a mapping from the manipulator’s joint
space in ℝ𝑁𝐷𝑀 to the system’s workspace in SE(3), without
parameterizing the output at any point. The GJM expressed
in equation (90) is an extension of the original GJM def-
inition in [45] which includes a general Jacobian matrix
mapping from ℝ𝑛 → ℝ𝑛. Note that the end-effector velocity
is additionally influenced by the total system momentum
through the parameter 𝑩. Taking the time derivative of the
output’s body velocity in equation (89) yields the desired
relationship between the end-effector’s motion and the joint
accelerations,

𝑽̇ 𝑏
𝑁 = 𝑱 ∗𝒒̈ + 𝕁∗𝒒̇ + 𝕁𝑜𝑩 + 𝑱𝑜𝔹, (91)

where 𝕁∗(𝚽, 𝒒̇;𝜇) and 𝕁𝑜(𝚽, 𝒒̇;𝜇) denote restrictions of
the time derivatives ̇𝑱 ∗ and 𝑱̇𝑜 to , defined in the same
manner as (79)-(81):

𝕁∗(𝚽, 𝒒̇;𝜇) ∶= ̇𝑱 ∗(𝚽, [(𝑩 − 𝑺𝒒̇)𝑇 𝒒̇𝑇 ]𝑇 ) ∈ ℝ6×𝑁𝐷𝑀 , (92)

𝕁𝑜(𝚽, 𝒒̇;𝜇) ∶= 𝑱̇𝑜(𝚽, [(𝑩 − 𝑺𝒒̇)𝑇 𝒒̇𝑇 ]𝑇 ) ∈ ℝ6×6. (93)
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Substituting 𝒒̈ from the system’s reduced dynamics in equa-
tion (83) yields the following relationship between the end-
effector’s motion and the joint torques,

𝑽̇ 𝑏
𝑁 =𝑱 ∗𝑴−1(𝝉𝑚 − 𝑪𝒒̇ − 𝑬) + 𝕁∗𝒒̇ + 𝕁𝑜𝑩 + 𝑱𝑜𝔹. (94)

Feedback linearization can now be implemented to lin-
earize the system’s output by defining an appropriate input
torque 𝝉𝑚 which cancels the non-linearities in equation (94).
Note that there is assumed to be sufficient dexterity in
the space manipulator to fully actuate the system’s output
for control in SE(3). This implies an ability to control
six independent motions of the end-effector, leading to the
following assumption:

Assumption 1. The manipulator system contains actuators
imparting at least six independent motions.

Given the relationship between 𝝉𝑚 and 𝑽̇ 𝑏
𝑁 in equation (94),

and under Assumption 1, the following feedback control
law:

𝝉𝑚 = 𝑴𝑱 ∗⋄(𝑼 − 𝕁∗𝒒̇ − 𝕁𝑜𝑩 − 𝑱𝑜𝔹) + 𝑪𝒒̇ + 𝑬, (95)

linearizes the input-output relationship between the linear
and angular end-effector motion and the output tracking
controller 𝑼 for control in SE(3),

𝑽̇ 𝑏
𝑁 = 𝑼 . (96)

Here, 𝑼 ∈ ℝ6 is the vector of control input in the
resulting closed-loop control system, outlined in the follow-
ing section. Consequently, the motion of the end-effector is
fully described by the control forces and torques imparted
by 𝑼 . Moreover the ⋄ operator signifies the Singularity-
Robust (SR) inverse of a matrix, defined for non-square
matrices. The SR-inverse is implemented as a general case
of Assumption 1, pertaining to redundant manipulator de-
signs. For a manipulator designed with actuation in exactly
six independent directions, 𝑱 ∗ becomes a 6 × 6 square
matrix and the natural matrix inverse can be performed
(i.e., equation (95) includes 𝑱 ∗−1 in place of 𝑱 ∗⋄). Details
regarding the formulation of the SR-inverse are included in
Section 9.

8. Full Pose Control Structure
In this section, a control law on the SE(3) Lie group

is proposed, stabilizing any twice differentiable feasible
trajectory 𝒈̄𝑠𝑁 (𝑡) ∈ SE(3) of a space manipulator’s end-
effector. This output tracking controller builds upon a PID
control design by implementing an additional feedforward
component to achieve Lyapunov stability. This section
additionally defines a configuration error function and a
velocity error associated with the system’s output, necessary
for developing the modified PID control structure. The
proposed control law is proven to stabilize the full end-
effector pose toward a feasible trajectory using a Lyapunov
function based on the total energy of the error dynamics.

8.1. Error Function
A positive definite error function is used to establish

the configuration difference between the desired and actual
end-effector trajectories. In this case, the error function is
thus referred to as a configuration error function. This paper
considers a quadratic error function going from SE(3) →
ℝ≥0, a positive scalar. Using group operation on the desired
and actual end-effector configurations in SE(3), the output
pose error 𝒈𝑒 is defined as follows,

𝒈𝑒 = 𝒈̄−1𝑠𝑁𝒈𝒔𝑵 ∶=
[

𝑹𝑒 𝒑𝑒
𝟎 1

]

∈ SE(3). (97)

This representation of the error expresses the relative
configuration of the actual end-effector with respect to
the desired trajectory at an instance in time. Note that in
practice, the end-effector’s actual pose is estimated using
the forward kinematics mapping presented in Section 3
provided sensor measurements of the system’s generalized
coordinates. As a member of SE(3), the pose error contains
components (𝑹𝑒,𝒑𝑒) indicating the orientation and position
errors respectively. The corresponding orientation error is
defined from group operation on the desired and actual end-
effector orientations (𝑹̄𝑠𝑁 and 𝑹𝑠𝑁 ) and the position error
is simply the Euclidean distance between the desired and
actual end-effector positions (𝒑̄𝑠𝑁 and 𝒑𝑠𝑁 ),

𝑹𝑒 = 𝑹̄𝑇
𝑠𝑁𝑹𝑠𝑁 ∈ SO(3), (98)

𝒑𝑒 = 𝑹̄𝑇
𝑠𝑁 (𝒑𝑠𝑁 − 𝒑̄𝑠𝑁 ) ∈ ℝ3. (99)

As mentioned, the configuration error function maps the
group error 𝒈𝑒 to a positive scalar. Let 𝜓 ∶ SE(3) → ℝ≥0
be the error function which considers both orientation and
position errors. We define the function 𝜓(𝒈𝑒) as

𝜓(𝒈𝑒) = 𝜓1(𝒑𝑒) + 𝜓2(𝑹𝑒), (100)

based on the two positive definite error functions 𝜓1 ∶ ℝ3 →
ℝ≥0 and 𝜓2 ∶ SO(3) → ℝ≥0 that are specified in the
following. The positive definite error function associated
with the position error is trivially defined as the quadratic
norm of 𝒑𝑒,

𝜓1(𝒑𝑒) =
1
2
||𝒑𝑒||2 =

1
2
||𝒑𝑠𝑁 − 𝒑̄𝑠𝑁 ||

2, (101)

and the positive definite error function on the orientation is
defined by Koditschek in [23] as follows,

𝜓2(𝑹𝑒) =
1
2

tr(𝟏3×3 −𝑹𝑒), (102)

where tr(𝑨) refers to the trace of a square matrix 𝑨.
Combining the position and orientation error functions in
equations (101) and (102) yields the following positive
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definite error function associated with the group element 𝒈𝑒
considered here,

𝜓(𝒈𝑒) =
1
2

tr(𝟏3×3 −𝑹𝑒) +
1
2
||𝒑𝑒||2. (103)

This configuration error becomes crucial in designing
the proportional and integral control actions in the output
tracking control structure. In the following subsection, a
compatible output velocity error is defined for the subse-
quent formation of the controller’s derivative action. Note
that for simplicity in notation, we refer to the error function
on 𝒈𝑒 as simply 𝜓 .

8.2. Velocity Error
We begin by defining the body velocity associated with

the desired trajectory 𝑽 𝑏
𝑠𝑁 . From the kinematics of the

end-effector, we define the reference body velocity of the
output as ̂̄𝑽 𝑏

𝑠𝑁 = 𝒈̄−1𝑠𝑁 ̇̄𝒈𝑠𝑁 ∈ 𝔰𝔢(3), which expresses the
desired body velocity in the coordinate frame of the desired
trajectory. In comparing this desired end-effector velocity
with the true motion of the end-effector, the quantities
𝑽 𝑏
𝑠𝑁 and 𝑽 𝑏

𝑠𝑁 must be expressed in a consistent frame of
reference to quantify the error. This introduces a transport
map in the definition of the velocity error to project the
desired body velocity into the coordinate frame attached to
the end-effector.

Recall that the Adjoint operator transforms elements
of 𝔰𝔢(3) between two coordinate frames provided their
relative homogeneous transformation. Thus, the Adjoint
operator provides the necessary transport map to convert
𝑽 𝑏
𝑠𝑁 into the frame of reference of the end-effector. Since the

group error 𝒈𝑒 represents the relative motion from the end-
effector’s frame to the desired trajectory frame, taking its
inverse defines the required transformation from the desired
trajectory to the output’s body frame. Taking the Adjoint of
𝒈−1𝑒 = 𝒈−1𝑠𝑁 𝒈̄𝑠𝑁 and pre-multiplying with 𝑽 𝑏

𝑠𝑁 now expresses
the actual and desired body velocities in a shared reference
frame. The velocity error 𝑽𝑒 compatible with the group error
𝒈𝑒 can now be defined as follows,

𝑽 𝑏
𝑒 = 𝑽 𝑏

𝑠𝑁 − 𝐀𝐝𝒈−1𝑒 𝑽 𝑏
𝑠𝑁 ∈ ℝ6. (104)

Evidently, the body velocity error is similarly expressed
with respect to the end-effector’s body coordinate frame.
With the definitions of the configuration error function in
(103) and the velocity error associated with the output
above, the following subsection introduces the output track-
ing control structure to drive 𝒈𝑒 to the identity and 𝑽 𝑏

𝑒 to
zero.

8.3. Output Tracking Control Design
The developed control law is predicated on the combi-

nation of feedback terms and a feedforward term to satisfy
the stability in the output tracking control task outlined
in Problem 1. The feedback terms involve proportional,
integral, and derivative control actions which make use of

the coordinate-free error function and velocity error defi-
nitions in the previous subsections. The modified feedfor-
ward, feedback PID control law thus contains the following
actions to control the end-effector motion in SE(3),

𝑼 = 𝑼𝑝𝑖 + 𝑼𝑑 + 𝑼𝑓𝑓 . (105)

Given a 6 × 6 symmetric positive definite matrix 𝑲𝑑 ex-
pressing the derivative gain, the control action to dissipate
the velocity error to zero is defined as follows,

𝑼𝑑 = −𝑲𝑑𝑽 𝑏
𝑒 = −𝑲𝑑(𝑽 𝑏

𝑠𝑁 − 𝐀𝐝𝒈−1𝑒 𝑽 𝑏
𝑠𝑁 ). (106)

The 6 × 6 symmetric positive definite proportional and
integral gains 𝑲𝑝 and 𝑲𝑖 are applied to drive the output’s
configuration error function 𝜓 to zero, and accordingly 𝒈𝑒 to
the identity. In defining the proportional and integral control
actions, the gradient of the error function in (103) must first
be defined. This gradient ∇𝜓 becomes apparent from the
time derivative of the error function which can be computed
as follows,

𝜓̇ = (∇𝜓)𝑇𝑽 𝑏
𝑒 ∶=

[

𝒑𝑒
skew(𝑹𝑒)∨

]𝑇
𝑽 𝑏
𝑒 , (107)

where skew(𝑨) = 1
2 (𝑨 − 𝑨𝑇 ) for all 3 × 3 matrices 𝑨,

and the operator ∨ converts skew symmetric matrices to
their vector representation (i.e., ∨ : 𝔰𝔬(3) → ℝ3). The
definition of the error function’s gradient is demonstrated in
the expression for 𝜓̇ above, using the gradient definition on
Riemannian manifolds [21]. The proportional and integral
control actions are predicated on the gradient of the error
function as follows,

𝑼𝑝𝑖 = −𝑲𝑝∇𝜓 −𝑲𝑖𝑭𝑖, (108)

𝑭̇𝑖 = 𝑲𝑝∇𝜓 +𝑲𝑑𝑽 𝑏
𝑒 . (109)

As indicated by equation (109), 𝑭𝑖 refers to the integral
of the proportional and derivative actions. The feedforward
component of the output tracking control law is designed
in a manner which aids in the stability of the closed loop
system. The impact of the feedforward term will become
apparent in the proof of Theorem 1. Based on the configu-
ration and velocity error definitions previously defined, an
appropriate structure for the output tracking feedforward
action is as follows,

𝑼𝑓𝑓 = 𝐚𝐝𝑽 𝑏
𝑠𝑁
𝐀𝐝𝒈−1𝑒 𝑽 𝑏

𝑠𝑁 + 𝐀𝐝𝒈−1𝑒
̇̄𝑽 𝑏
𝑠𝑁 . (110)

The feedforward control action is necessary for perform-
ing trajectory following tasks, and defines the desired accel-
eration associated with the reference trajectory, expressed
with respect to the body coordinate frame attached to the
end-effector. Note that a stability analysis on the internal
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dynamics of the considered free-floating space manipulators
is outside the scope of this paper, leading to the following
assumption:

Assumption 2. The internal dynamics of the free-floating
space manipulator system remains bounded if the output of
the system 𝒈𝑠𝑁 is stable.

Theorem 1. Consider the dynamics of a free-floating space
manipulator’s end-effector in (96) and the position and
orientation of the end-effector, i.e., 𝒈𝑠𝑁 ∈ SE(3), in (15) as
the output of the system. Assume that the system is externally
unperturbed and its total linear and angular momentum is
conserved and equal to 𝝁 ∈ ℝ6. Let 𝒈̄𝑠𝑁 (𝑡) ∈ SE(3) be a
twice differentiable feasible trajectory of the end-effector of
the space manipulator.

Provided the modified feedforward, feedback PID con-
trol law defined in equations (106)-(110) in addition to the
feedback linearization law in (95), and under Assumptions
1 and 2, the desired trajectory 𝒈̄𝑠𝑁 (𝑡) is Lyapunov stable
provided the following Lyapunov function 𝑉𝐿 ∶ ℝ → ℝ≥0
based on the total energy of the error dynamics:

𝑉𝐿(𝑡) = 𝜓 + 1
2
||𝑽 𝑏

𝑒 ||
2
𝑲−1
𝑝

+ 1
2
||𝑭𝑖 + 𝑽 𝑏

𝑒 ||
2
𝑲−1
𝑝
, (111)

where the quadratic norm of a vector 𝑽 ∈ ℝ𝑛 subject to the
metric 𝑲 ∈ ℝ𝑛×𝑛 is defined as,

||𝑽 ||

2
𝑲 = 𝑽 𝑇𝑲𝑽 . (112)

Proof. We prove the Lyapunov stability of the proposed
output tracking control law by demonstrating that the time
derivative of the Lyapunov candidate in (111) along the
trajectories of the system is negative semidefinite. In this
process, the time derivatives of the three terms in (111) are
analyzed separately. Recall that the time derivative of the
error function has been previously established in equation
(107) to produce an expression for 𝜓̇ . Thus, we begin
the derivation process by taking the time derivative of the
second term in (111) which expresses the kinetic energy of
the error dynamics. Based on the vector norm definition in
(112) and symmetry,

𝑑
𝑑𝑡

(

1
2
||𝑽 𝑏

𝑒 ||
2
𝑲−1
𝑝

)

= (𝑉 𝑏
𝑒 )
𝑇𝑲−1

𝑝 𝑽̇ 𝑏
𝑒 . (113)

The time derivative of the velocity error makes use of
the linearized end-effector dynamics in (96), and demon-
strates the significance of the feedforward control action’s
structure. We perform the derivative of the velocity error in
(104) as follows,

𝑽̇ 𝑏
𝑒 = 𝑑

𝑑𝑡

(

𝑽 𝑏
𝑠𝑁 − 𝐀𝐝𝒈−1𝑒 𝑽 𝑏

𝑠𝑁

)

= 𝑽̇ 𝑏
𝑠𝑁 − 𝑑

𝑑𝑡

(

𝐀𝐝𝒈−1𝑒
)

𝑽 𝑏
𝑠𝑁 − 𝐀𝐝𝒈−1𝑒

̇̄𝑽 𝑏
𝑠𝑁

= (𝑼𝑓𝑓 + 𝑼𝑝𝑖 + 𝑼𝑑) − 𝐚𝐝𝑽 𝑏
𝑠𝑁
𝐀𝐝𝒈−1𝑒 𝑽 𝑏

𝑠𝑁 − 𝐀𝐝𝒈−1𝑒
̇̄𝑽 𝑏
𝑠𝑁

= 𝑼𝑝𝑖 + 𝑼𝑑 . (114)

Moreover, the time derivative of the third term in (111) is
computed by virtue of the chain rule,

𝑑
𝑑𝑡

(

1
2
||𝑭𝑖 + 𝑽 𝑏

𝑒 ||
2
𝑲−1
𝑝

)

= (𝑭𝑖 + 𝑽 𝑏
𝑒 )
𝑇𝑲−1

𝑝 (𝑭̇𝑖 + 𝑽̇ 𝑏
𝑒 ) (115)

= 𝑭 𝑇
𝑖 𝑲

−1
𝑝 𝑭̇𝑖 + 𝑭 𝑇

𝑖 𝑲
−1
𝑝

̇𝑽 𝑏
𝑒 +

(𝑽 𝑏
𝑒 )
𝑇𝑲−1

𝑝 𝑭̇𝑖 + (𝑽 𝑏
𝑒 )
𝑇𝑲−1

𝑝
̇𝑽 𝑏
𝑒 ,

which can be simplified by including the expressions for 𝑭̇𝑖
and 𝑽̇ 𝑏

𝑒 from equations (109) and (114). We analyze each of
the four terms above separately in the following:

𝑭 𝑇
𝑖 𝑲

−1
𝑝 𝑭̇𝑖 = 𝑭 𝑇

𝑖 𝑲
−1
𝑝 (𝑲𝑝∇𝜓 +𝑲𝑑𝑽 𝑏

𝑒 )

= 𝑭𝑖∇𝜓 + 𝑭 𝑇
𝑖 𝑲

−1
𝑝 𝑲𝑑𝑽 𝑏

𝑒 , (116)

𝑭 𝑇
𝑖 𝑲

−1
𝑝

̇𝑽 𝑏
𝑒 = 𝑭 𝑇

𝑖 𝑲
−1
𝑝 (𝑼𝑝𝑖 + 𝑼𝑑)

= 𝑭 𝑇
𝑖 𝑲

−1
𝑝 (−𝑲𝑝∇𝜓 −𝑲𝑖𝑭𝑖 −𝑲𝑑𝑽 𝑏

𝑒 )

= −𝑭 𝑇
𝑖 ∇𝜓 − 𝑭 𝑇

𝑖 𝑲
−1
𝑝 𝑲𝑖𝑭𝑖−

𝑭 𝑇
𝑖 𝑲

−1
𝑝 𝑲𝑑𝑽 𝑏

𝑒 , (117)

(𝑽 𝑏
𝑒 )
𝑇𝑲−1

𝑝 𝑭̇𝑖 = (𝑽 𝑏
𝑒 )
𝑇∇𝜓 + (𝑽 𝑏

𝑒 )
𝑇𝑲−1

𝑝 𝑲𝑑𝑽 𝑏
𝑒 , (118)

(𝑽 𝑏
𝑒 )
𝑇𝑲−1

𝑝
̇𝑽 𝑏
𝑒 = −(𝑽 𝑏

𝑒 )
𝑇∇𝜓 − (𝑽 𝑏

𝑒 )
𝑇𝑲−1

𝑝 𝑲𝑖𝑭𝑖−

(𝑽 𝑏
𝑒 )
𝑇𝑲−1

𝑝 𝑲𝑑𝑽 𝑏
𝑒 . (119)

Implementing the expanded interpretations above for each
term in (115) yields,

𝑑
𝑑𝑡

(

1
2
||𝑭𝑖 + 𝑽 𝑏

𝑒 ||
2
𝑲−1
𝑝

)

= −𝑭 𝑇
𝑖 𝑲

−1
𝑝 𝑲𝑖𝑭𝑖 − (𝑽 𝑏

𝑒 )
𝑇𝑲−1

𝑝 𝑲𝑖𝑭𝑖
(120)

Combining the derivatives in equations (107), (113) and
(120), we derive the expression for 𝑉̇𝐿 as follows,

𝑉̇𝐿 = (∇𝜓)𝑇𝑽 𝑏
𝑒 + (𝑽 𝑏

𝑒 )
𝑇𝑲−1

𝑝 (𝑼𝑝𝑖 + 𝑼𝑏) + (−𝑭 𝑇
𝑖 𝑲

−1
𝑝 𝑲𝑖𝑭𝑖−

(𝑽 𝑏
𝑒 )
𝑇𝑲−1

𝑝 𝑲𝑖𝑭𝑖)

= (∇𝜓)𝑇𝑽 𝑏
𝑒 + (𝑽 𝑏

𝑒 )
𝑇𝑲−1

𝑝 (−𝑲𝑝∇𝜓 −𝑲𝑖𝑭𝑖 −𝑲𝑑𝑽 𝑏
𝑒 )−

𝑭 𝑇
𝑖 𝑲

−1
𝑝 𝑲𝑖𝑭𝑖 − (𝑽 𝑏

𝑒 )
𝑇𝑲−1

𝑝 𝑲𝑖𝑭𝑖
= −(𝑽 𝑏

𝑒 )
𝑇𝑲−1

𝑝 𝑲𝑖𝑭𝑖 − (𝑽 𝑏
𝑒 )
𝑇𝑲−1

𝑝 𝑲𝑑𝑽 𝑏
𝑒 − 𝑭 𝑇

𝑖 𝑲
−1
𝑝 𝑲𝑖𝑭𝑖

− (𝑽 𝑏
𝑒 )
𝑇𝑲−1

𝑝 𝑲𝑖𝑭𝑖
= −(𝑽 𝑏

𝑒 )
𝑇𝑲−1

𝑝 𝑲𝑑𝑽 𝑏
𝑒 − 2(𝑽 𝑏

𝑒 )
𝑇𝑲−1

𝑝 𝑲𝑖𝑭𝑖 − 𝑭 𝑇
𝑖 𝑲

−1
𝑝 𝑲𝑖𝑭𝑖,

(121)

which can be written in matrix form as:
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𝑉̇𝐿 = [𝑭 𝑇
𝑖 𝑽 𝑇

𝑒 ]
[

𝑲−1
𝑝 𝑲𝑖 𝑲−1

𝑝 𝑲𝑖
𝑲−1
𝑝 𝑲𝑖 𝑲−1

𝑝 𝑲𝑑

] [

𝑭𝑖
𝑽𝑒

]

. (122)

Provided that 𝑲𝑑 > 𝑲𝑖, and due to the fact that control
gain matrices are positive definite, the time derivative of the
Lyapunov function is negative semidefinite.

9. Singularity Accommodation
Within a trajectory following task, it is possible for the

desired trajectory to force the free-floating space manipula-
tor system into a singular configuration at some point along
the requested path. This singular configuration stems from
the internal dynamics of the system and causes the system’s
Jacobian matrix to contain linear dependency and lose rank.
Referring back to the definition of the GJM in (90), the
system Jacobian losing rank in turn causes 𝑱 ∗ to become
ill conditioned. Simply taking the Moore-Penrose pseudo-
inverse of the GJM (in the case of a redundant manipulator),
denoted by 𝑱 ∗†, when in the neighbourhood of a singular
configuration would result in unattainable actuation torques
commanded by a controller, even for minimal movement
in the output (in the singular directions). Managing an
output tracking controller to operate within a safe region in
the manipulator’s joint space (i.e., a region which prevents
excessive and potentially damaging joint velocities) requires
the introduction of some method in the control design to
push the system away from singular configurations.

This paper implements the damped least-squares
method separately proposed by [31] and [48] to address
the singularity avoidance problem in the output tracking
control task. The damped-least squares method adds a
damping factor to the inverse differential kinematics which
reduces the trajectory following capabilities, however main-
tains the joints within a tolerable motion threshold. Con-
sequently, singularity accommodation through the damped
least-squares method is a constant exchange, quantified
by the damping factor, between performance and practical
control actions at the joints. First, let us explicitly define the
formulation of the pseudo-inverse in a redundant manipula-
tor’s inverse kinematics with some Jacobian matrix 𝑱 ,

𝚽̇ = 𝑱 †𝑽𝑁 = 𝑱 𝑇 (𝑱𝑱 𝑇 )−1𝑽𝑁 . (123)

The pseudo-inverse shown in equation (123) satisfies
a solution for the inverse kinematics problem which mini-
mizes the least-squares norm. That is, equation (123) satis-
fies:

min(||𝑽𝑁 − 𝑱 𝚽̇||). (124)

Evidently, the solution associated with the minimum
norm provides a set of joint velocities (where infinitely
many solutions exist for redundant manipulators) which are
most accurate in generating the end-effector velocity vector

𝑽𝑁 . As previously mentioned, strictly choosing the solution
yielding the minimum norm is troublesome when the system
is in the region of singular configurations. This solution no
longer becomes feasible in its practical implementation due
to the large joint velocities required to achieve the corre-
sponding end-effector motion in the singular direction(s).

The damped least-squares method alters the problem for
which the inverse kinematics is solved in order to consider
the practical feasibility of the solution as well. In addition
to considering the accuracy of the solution through the
least-squares minimum norm problem in equation (124),
the damped least-squares method additionally considers the
norm of the joint velocities. Now, the solution to the inverse
kinematics problem aims to minimize the weighted sum of
the joint velocities’ feasibility and the differential kinematic
mapping provided positive definite weighting factors 𝑾1
and 𝑾2. That is, the damped least squares solution satisfies
the following problem [31],

min(||𝑽𝑁 − 𝑱 𝚽̇||

2
𝑾1

+ ||𝚽̇||

2
𝑾2

), (125)

where the vector norms above are defined equivalently to
equation (112). As indicated by (125), the weight 𝑾1 signi-
fies the emphasis placed on the accuracy of the mapping be-
tween joint and end-effector velocities, whereas the weight
𝑾2 denotes the importance of feasible joint velocities in
the inverse kinematics solution. In [31], the authors present
the solution to the damped least squares problem in (125)
known as the Singularity Robust inverse (SR-inverse). As
mentioned in [11], a considerable amount of the literature
studies the case involving no task priority (i.e., 𝑾1 = 𝟏) and
the damping of joint velocities through setting 𝑾2 = 𝜆𝟏.
Since the weights are defined as positive definite matrices,
the damping factor 𝜆 ≥ 0. Using these weights, the SR-
inverse of 𝑱 , denoted 𝑱 ⋄, is defined as follows,

𝑱 ⋄ = 𝑱 𝑇 (𝑱𝑱 𝑇 − 𝜆𝟏)−1. (126)

Note that the SR-inverse solution above reduces to the
Moores-Penrose pseudo-inverse in the case of no damping
on the joint velocities (i.e. 𝜆 = 0). In the context of
a trajectory following task, increasing the damping factor
reduces the performance of the output’s tracking capabil-
ities. Consequently, it is most beneficial during a trajec-
tory following scenario to only implement a joint velocity
damping effect once the system’s Jacobian matrix begins
to lose rank close to a singular configuration. Outside of
this region, when the Jacobian is well defined, the Moores-
Penrose pseudo-inverse solution is preferred to achieve the
greatest performance of the output tracking control law.
Taking the determinant of the matrix 𝑱𝑱 𝑇 (i.e., the matrix
being inverted in the pseudo-inverse) provides a metric for
identifying ill conditioned systems. When det(𝑱𝑱 𝑇 ) = 0, the
system reaches a singular configuration and the matrix 𝑱𝑱 𝑇
loses rank. Using the definition of a system’s manipulability
𝑤 presented by Yoshikawa in [52] as,
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𝑤 ∶=
√

det(𝑱𝑱 𝑇 ), (127)

to quantify the proximity to a singularity, the authors in [31]
scale the damping factor based on 𝑤 and a manipulability
threshold value 𝑤𝑡. Above this threshold, the system is
deemed sufficiently well defined to strictly consider accu-
racy in the inverse kinematics solution using (123). Once
below 𝑤𝑡, the system is in the neighbourhood of a singular
configuration, thus requiring a compromise in accuracy
to provide damping to the joint velocities. Provided a
maximum damping value 𝜆0 for when the system reaches
singularity and 𝑤 = 0, the damping factor scales as follows,

𝜆 =

⎧

⎪

⎨

⎪

⎩

𝜆0
(

1 − 𝑤
𝑤𝑡

)2
, 𝑤 < 𝑤𝑡,

0, 𝑤 ≥ 𝑤𝑡.
(128)

Note that additional methods for defining the damping
factor have been studied in the literature, involving the rate
of change of the manipulatbility factor, the tracking error,
the minimum singular value of 𝑱 , and the condition number
of 𝑱𝑱 𝑇 + 𝜆𝟏, for example [22, 6, 24, 26, 11]. Based on
an empirical analysis, the manipulability threshold 𝑤𝑡 is set
to

√

10 and the maximum damping 𝜆0 is set to 200 in this
paper.

10. Simulation Analysis
The performance of the proposed output tracking con-

troller is analyzed using a free-floating space manipulator
simulation platform developed by the authors in Python
for simulating the behaviour of free-floating multi-body
systems. The simulation implements the dynamic and kine-
matic models on Lie groups presented in Sections 3 and 4
to model a space manipulator’s response to control actions
in the manipulator’s joint space. The developed controller
is implemented in this testing platform to observe its output
tracking capabilities in a simulation setting. The algorithms
associated with the dynamic and kinematic modellings have
been carefully developed for optimizing computational effi-
ciency to achieve a near real-time simulation of a controlled
free-floating space manipulator in orbit. Note that a simula-
tion timestep of 0.01 seconds is used here.

10.1. System Description
The simulation models a 2-link, 7-DOF shoulder-elbow-

wrist space manipulator system illustrated in its zero config-
uration in Fig. 1. The full space manipulator system contains
13 twists: 3 translational and 3 rotational twists for the
base motion, and 7 rotational twists to define the motion
of the manipulator. The variables Φ𝑖 appearing in Fig.
1 indicate the direction of positive rotation or translation
associated with the 𝑖𝑡ℎ degree of freedom in the system.
For simulation purposes, the two spherical joints (located at
the manipulator’s shoulder and wrist) are modeled as three

Table 2
Physical Properties of Simulated System

Body Index Dimension [m] Mass
(𝑘) (𝑙, 𝑤, ℎ) [Kg]

Base 0 (1, 1, 1) 200
Shoulder bodies 1, 2, 3 (0.05, 0.1, 0.1) 0.5

Link 1 4 (2, 0.1, 0.1) 2
Link 2 5 (2, 0.1, 0.1) 2

Wrist bodies 6, 7, 8 (0.04, 0.04, 0.04) 0.1
End-effector 9 (0.05, 0.05, 0.05) 0.5

individual revolute joints, separated by small masses. Note
that such design of spherical joints in the simulation are still
considered multi-DOF joints as they define motion in SO(3)
between two rigid bodies possessing comparatively large
masses. Provided this modelling of the spherical joints, the
simulation replicates a space manipulator system with 10
bodies (𝑁 = 9) and 13 degrees of freedom (𝑁𝐷 = 7).

Figure 1: Simulated space manipulator system

Table 2 contains the physical properties of each body
in the simulated system. Note that 𝑙, 𝑤, and ℎ refer to
the body’s length, width, and height dimensions measured
along the 𝑦, 𝑥, and 𝑧 axes of the body coordinate frames,
respectively. The moments of inertia for each body are
computed based on the geometries and masses provided
in Table 2 with the assumption of constant densities. Note
that the densities of different components in the simulated
system vary. For Body 𝑘, the corresponding inertia tensor
𝑰𝑘 is calculated as follows,

𝑰𝑘 =
⎡

⎢

⎢

⎣

𝑚𝑘
12

(

𝑙2 + ℎ2
)

0 0
0 𝑚𝑘

12

(

𝑤2 + ℎ2
)

0
0 0 𝑚𝑘

12

(

𝑙2 +𝑤2)

⎤

⎥

⎥

⎦

(129)

where 𝑚𝑘 is the mass of Body 𝑘. Additionally, the center
of masses of each body are assumed to be located at their
geometric centers, as specified by the centroids illustrated
in Fig. 1. The spatial coordinate frame is initially located at
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the center of mass of the base body, and the initial spatial
positions of the joints and end-effector in metres are as
follows:

𝒑𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 = [0.1 0.5 0.6]𝑇

𝒑𝑒𝑙𝑏𝑜𝑤 = [0.1 2.5 0.6]𝑇

𝒑𝑤𝑟𝑖𝑠𝑡 = [0.14 4.5 0.64]𝑇

𝒑𝑒𝑛𝑑−𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 = [0.14 4.55 0.64]𝑇 .

Note that 𝒑𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 and 𝒑𝑤𝑟𝑖𝑠𝑡 refer to the locations of
the first members in the shoulder and wrist clusters, corre-
sponding to the motions about the 𝑧-axes (i.e., Φ7 and Φ11,
respectively). The centers of the subsequent joint bodies
are located at a width’s distance away in the 𝑥-direction
(defining the axes of rotation for Φ8 and Φ12), followed
by an additional offset distance equal to the respective
joint bodies’ height in the 𝑧-direction (defining the axes
of rotation for Φ9 and Φ13) to complete the spherical joint
clusters. Link 1 and the end-effector are attached to the last
joint members (i.e., the revolute joints with motion about
the 𝑥-axes) in the shoulder and wrist joints, respectively.

For each independent motion in the system the asso-
ciated twist elements 𝒗 and 𝒘 are defined based on the
axes of motion portrayed in Fig. 1. For the three trans-
lational motions of the spacecraft base Φ1, Φ2, and Φ3,
the respective components 𝒗1, 𝒗2, and 𝒗3 are defined as
unit vectors in the 𝑧, 𝑦, and 𝑥 directions respectively (with
rotational components 𝒘1 = 𝒘2 = 𝒘3 = 𝟎3×1 due to the
pure translational motion). The rotational components of the
remaining revolute motions are defined along the following
axes,

𝒘4 = 𝒘7 = 𝒘11 =
[

0 0 1
]𝑇 ,

𝒘5 = 𝒘8 = 𝒘12 =
[

0 1 0
]𝑇 ,

𝒘6 = 𝒘9 = 𝒘10 = 𝒘13 =
[

1 0 0
]𝑇 .

The corresponding linear velocity component of a
purely rotational screw motion is defined as 𝒗 = −𝒘×𝑟with
𝑟 ∈ ℝ3 being a point along the associated axis of motion.
The locations of the points along each twist axis with respect
to the spatial coordinate frame are as follows,

𝒓0 =
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

,

𝒓7 =
⎡

⎢

⎢

⎣

0
0.5
0.5

⎤

⎥

⎥

⎦

𝒓8 =
⎡

⎢

⎢

⎣

0.1
0.5
0.5

⎤

⎥

⎥

⎦

𝒓9 =
⎡

⎢

⎢

⎣

0.1
0.5
0.6

⎤

⎥

⎥

⎦

,

𝒓10 =
⎡

⎢

⎢

⎣

0.1
2.5
0.6

⎤

⎥

⎥

⎦

,

𝒓11 =
⎡

⎢

⎢

⎣

0.1
4.5
0.6

⎤

⎥

⎥

⎦

𝒓12 =
⎡

⎢

⎢

⎣

0.14
4.5
0.6

⎤

⎥

⎥

⎦

𝒓13 =
⎡

⎢

⎢

⎣

0.14
4.5
0.64

⎤

⎥

⎥

⎦

,

where the coordinates are a consequence of the dimensions
provided in Table 2. The initial homogeneous transfor-
mation matrices between the spatial and body coordinate
frames 𝒈𝑠𝑘(0) make use of the spatial position vectors above,
and the assumption that all body coordinate frames are
aligned with the spatial frame. This leads to the following
general definition for 𝒈𝑠𝑘(0):

𝒈𝑠𝑘(0) =
[

𝟏3×3 𝒓𝑘
𝟎 1

]

. (130)

10.2. Simulation Results
The efficacy of the proposed output tracking controller

presented in Sections 7 and 8, with the singularity accom-
modation outlined in Section 9, are evaluated under two
trajectory following scenarios. The end-effector’s trajec-
tory following capabilities are tested for trivial trapezoidal
trajectories in both the linear and angular motions. This
desired trajectory is applied to the space manipulator system
described in Fig. 1 containing some base motion (i.e., 𝝁 ≠
0) to demonstrate the controller’s ability to dissipate an
initial motion in the output and achieve path following. In
addition, the robustness of the developed controller is also
tested by introducing uncertainties to the mass values in
the system. The second trajectory following task evaluates
the singularity accommodation component of the controller
by choosing a desired trajectory which forces the space
manipulator to pass in the proximity of a singular config-
uration. The progression of the system’s manipulability and
the damping factor in the SR-inverse method are observed
to ensure safe joint actuation while operating in the singular
region.

The following controller gains are used in the
simulation of the full pose controller to satisfy
the Lyapunov stability condition discussed in
Theorem 1: 𝑲𝑝 = diag{60, 60, 60, 60, 60, 60},
𝑲𝑑 = diag{15, 15, 15, 15, 15, 15}, 𝑲𝑖 =
diag{10, 10, 10, 10, 10, 10}. Note that the diagonal values
of the PID gains are empirically established by observing
the error response resulting from the modified feedforward,
feedback PID control law in equations (106), (108), and
(110). The output tracking testing scenario presented in the
following subsection starts with an initial configuration 𝚽𝑖𝑛𝑖
of Φ9,𝑖𝑛𝑖 = 60◦ and Φ10,𝑖𝑛𝑖 = −90◦ (all other generalized
coordinates are initialized to zero). This initial configuration
corresponds to an initial end-effector pose of:

𝒈𝑠𝑁 (0) =

⎡

⎢

⎢

⎢

⎣

1 0 0 0.14
0 0.866 0.5 3.25
0 −0.5 0.866 1.37
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (131)

where the end-effector’s position is measured in meters.
This choice of 𝚽𝑖𝑛𝑖 ensures that the space manipulator is
starting from a well defined system, away from the region
of singular configurations.
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Table 3
Mass Values used in the True Space Manipulator Model

Body True Mass Mass Variation Percent
Index (kg) (kg) Variation

0 228.91 28.91 14.45 %
1 0.442 -0.0579 11.59 %
2 0.408 -0.0921 18.41 %
3 0.443 -0.0572 11.44 %
4 2.215 0.215 10.76 %
5 2.367 0.367 18.34 %
6 0.0881 -0.0119 11.89 %
7 0.119 0.0193 19.31 %
8 0.0891 -0.0109 10.92 %
9 0.585 0.0852 17.04 %

10.2.1. Trapezoidal Trajectory Following Task
The desired linear and angular trapezoidal trajectories

initially command constant accelerations of 0.2 m/s2 and
0.09 rad/s2 respectively for 0.65 seconds. These accelera-
tions are equally applied along/about the primary coordinate
axes. The trajectory then contains smooth decelerations for
0.1 seconds to reach constant velocities. This deceleration
period avoids sharp changes in the desired velocities, in turn
requiring smoother control actions during the switch from
constant acceleration to constant velocity in the output. The
end-effector moves at constant velocity for 0.75 seconds
followed by a constant deceleration of the same magni-
tudes for 0.65 seconds to reach the target position with no
linear velocity in the output. The same smoothing period
of gradual deceleration from constant velocity to constant
deceleration is again implemented. The consequent time to
reach the target point approximately 36 cm away is 2.25
seconds, resulting in angular rotations of approximately 0.1
rad about all axes.

An initial angular motion of 0.2 rad/s is now added
about the 𝑧-axis of the spacecraft’s base (i.e., Φ̇4,𝑖𝑛𝑖 = 0.2
rad/s) to implement a conserved non-zero momentum to the
system. The initial base rotation introduces an equivalent
angular rotation to the end-effector, as viewed from the body
coordinate frame attached to the base. Consequently, the
system’s output starts the trajectory following task with a
non-zero velocity along the 𝑥-axis of the base coordinate
frame (initially coincident with spatial coordinate frame).
Note that the simulation is run for 1.2 seconds longer than
the time required for target capture to permit the tracking
and velocity errors to settle.

Uncertainties are added to the masses of each body in
the true space manipulator system (i.e., the model associated
with the plant dynamics). Consequently, the inertia and
Coriolis matrices for the actual system use masses which
have been varied by a random amount. In the simulation,
this random variation is determined by a random number
between 20 and 10 percent of the associated mass’s esti-
mated value. Such variations are randomly chosen to be
either added or subtracted to the estimated masses values.

Figure 2: Control torques for the trapezoidal trajectory
following task applied to an uncertain system with non-zero
momentum.

The physical properties included in Table 2 are consequently
treated as the estimated values, and are used in the dynamics
reduction and feedback linearization processes. Note that
the column titled "Mass Variation" refers to the mass quan-
tity added or subtracted to the body’s corresponding value
in Table 2, and the column "Percent Variation" refers to the
percentage of the estimated mass value associated with the
variation.

(a) Desired and actual end-
effector linear velocity

(b) Linear velocity error

(c) Desired and actual end-
effector linear position

(d) Linear tracking error

Figure 3: End-effector linear response to the full pose
trapezoidal trajectory applied to an uncertain non-zero mo-
mentum.

Fig. 2 shows the control torques performed in the full
pose trapezoidal trajectory following task implemented on
the space manipulator with non-zero momentum and model
uncertainties. As expected, to dissipate the initial linear
motion in the 𝑥-axis of the output, the greatest amount of
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(a) Desired and actual end-
effector angular velocity

(b) Angular velocity error

(c) Desired and actual end-
effector angular position

(d) Angular tracking error

Figure 4: End-effector angular response to the full pose
trapezoidal trajectory applied to an uncertain system with
non-zero momentum.

torque is initially required about the 𝑧-axis of the shoulder
joint (i.e., 𝑻7). The actuation about the elbow joint remains
within 1.5 Nm in magnitude as this joint induces no motion
about the 𝑥-axis of the output’s spatial position. Fig. 3a and
Fig. 4a respectively depict the resulting linear and angular
velocity responses of the end-effector in the trajectory
following task. Recall that the velocities shown in Fig. 3a
are with respect to the end-effector’s body coordinate frame,
and the linear positions in Fig. 3c express the end-effector’s
position with respect to the spatial frame. The developed
output tracking controller is shown to effectively diminish
the initial velocity in the 𝑥-axis due to the base’s rotational
velocity. Based on the linear velocity error displayed in Fig.
3b, a maximum overshoot of magnitude of 0.54 m/s along
the 𝑥-axis occurs, eventually settling after around 0.56 s
to within 2 cm/s. The initial oscillation about the desired
trajectory in the linear position along the 𝑥-axis, shown in
Fig. 3c and Fig. 3d, reaches a maximum undershoot of 1.66
cm which reduces to within 0.5 cm after approximately 0.24
s.

Initial motions of -0.1 rad/s and 0.17 rad/s about the 𝑦
and 𝑧 axes are induced by the initial motion of the base.
In dissipating such rotational motions, maximum errors of -
0.35 rad/s and -0.092 rad/s about the 𝑦 and 𝑧 axes are shown
in Fig. 4b. Such angular velocity error about the 𝑧-direction
is decreased to within 0.02 rad/s after approximately 0.63
s and to within 0.02 rad/s after 1.11 s about the 𝑦-axis.
Note that the base’s initial angular rotation about the 𝑧-axis
in turn induces an equivalent angular rotation of 0.2 rad/s
in the end-effector’s angular velocity with respect to the
spatial frame. This angular motion in the output is apparent

(a) Manipulability (b) Damping factor

(c) Control torque

Figure 5: Damped least squares parameters for SR-inverse
in the linear controller with associated control input

from the oscillations in the end-effector’s angular position
about the 𝑧-axis, as shown in Fig. 4c. The associated
angular tracking error, depicted in Fig. 4d, about the 𝑧-
axis demonstrates a maximum error of 0.0038 rad which
settles to within 0.0005 rad after 0.9 s. The controlled
system’s trajectory following capabilities exhibited in this
testing scenario highlight the developed controller’s ability
to accommodate a system with conserved non-zero momen-
tum while remaining robust to uncertainties in the system’s
inertia matrix.

10.2.2. Singularity Accommodation Task
This trajectory following task implements a desired

trajectory which requires the space manipulator to pass near
a known singular configuration to exhibit the proficiency
of the singularity accommodation feature in the developed
control structure. Starting from the following initial config-
uration (in degrees):

𝚽𝑖𝑛𝑖 = [0, 0, 0, −28, 20, 15, 90, 20, −25, −60, 0, 0, 0]𝑇

a trapezoidal trajectory (exclusively applied to the output’s
linear motion) which decelerates by a magnitude of 0.4
m/s2 for 1.25 s, travels at constant velocity for 0.25 s,
and accelerates by 0.4 m/s2 for 1.25 s along all axes is
provided. Figures 5a and 5b display the progression of
the space manipulator’s manipulability and damping factor
throughout this trajectory following task. As indicated by
the plot of manipulability, the system starts in a well-
defined configuration with sufficient manipulability, and as
the simulation progresses, the space manipulator becomes
increasingly ill-conditioned.

Figure 5a shows the system’s manipulability to fall
below the threshold value of

√

10 after about 1.2 s, con-
sequently inducing a shift from the pseudo-inverse solu-
tion to the SR-inverse in the feedback linearization law.
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(a) Desired and actual end-
effector position

(b) Tracking error

Figure 6: Output tracking performance in the presence of a
singularity

This shift is demonstrated by the introduction of a non-
zero damping factor once the system enters the region
of insufficient manipulability, as shown in Figure 5b. The
damping factor is shown to quickly increase as the system
progresses towards the singularity. At the system’s closest
proximity to the singular configuration, occurring at 1.7 s, a
manipulability of 0.5 and a maximum damping factor of 142
(where 𝜆0 = 200, as mentioned in section 9) are reached.
The increase in the damping factor is shown to effectively
limit the actuation torques to within 10 Nm at the shoulder
and elbow joints at the time of lowest manipulability, as
per Figure 5c (demonstrating the control input in time).
Figures 6a and 6b show the end-effector’s linear position
and the associated tracking error in time, respectively, to
exhibit the resulting trajectory following capabilities of the
space manipulator system with insufficient manipulability.
Highly accurate trajectory following is achieved (within 2
mm) until around 1.4 s, afterwhich the end-effector is shown
to deviate from the desired path by about 1 cm in all axes.
This tracking error continues to increase by an order of
magnitude as the damping factor similarly increases, and
less emphasis is placed on the tracking accuracy. After 1.7
s, the space manipulator is shown in Figure 5a to become
more well-conditioned, in turn causing the damping factor
to decrease. In this case, the controller attempts to regain
trajectory following in the output, consequently allowing for
larger control torques to be performed, as shown by Figure
5c. Note that the torque levels at this point (still below the
manipulability threshold) are within an acceptable range of
50 Nm at the shoulder and 10 Nm at the elbow. In trying to
re-follow the desired path, the system again falls towards
the singularity, causing the damping to increase and the
manipulator joint torques to again be effectively maintained
within a safe limit.

11. Conclusion
This paper developed an output tracking controller on

the SE(3) Lie group to control the end-effector pose of
free-floating space manipulators with conserved non-zero
momentum. Using geometric mechanics, the kinematics
and dynamics models of single-arm free-floating space
manipulators were derived. The product of exponentials
formula was formulated for space manipulators considered

as rigid multi-body systems with multi-DOF joints to form
the forward and differential kinematics mappings. For im-
plementation in the product of exponentials, multi-DOF
joints were newly modelled as the amalgamated exponential
mappings of individual screw motions along a single axis.
The dynamics of free-floating space manipulators was de-
rived using an Euler-Lagrange approach, and subsequently
decoupled into the base and manipulator motions. Using
the conserved linear and angular momentum as affine
nonholonomic constraints, the decoupled equations of mo-
tion were reduced and restricted to the manipulator’s joint
space. Input-output feedback linearization was employed
on 𝔰𝔢(3) to remove all non-linearities in the end-effector’s
motion. The proposed modified feedforward, feedback PID
controller was structured to stabilized the end-effector’s
pose along a feasible desired trajectory, in the sense of
Lyapunov. The full pose output tracking control law was
shown to act on the gradient of the coordinate free error
function applied to the pose group error, and the associated
velocity error in the body frame. Singularity accommo-
dation using the SR-inverse technique was implemented
in the feedback linearization laws to mitigate the risk of
commanding unachievable actuations at the manipulator
joints. The proposed output tracking control law was tested
in a Python simulation, demonstrating a robustness to model
uncertainties in the inertia matrix, the ability to successfully
dissipate unwanted motion in the output, due to an initial
rotation of the spacecraft base (i.e., 𝝁 ≠ 0), and achieve
output tracking for a trapezoidal trajectory. Moreover when
the space manipulator system was forced into a region of
low manipulability (i.e., below the manipulability thresh-
old), the damping factor in the SR-inverse was shown to
increase, resulting in the control actions to be held within an
acceptable boundary, at the expense of tracking accuracy.
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Appendix A Homogeneous Transformation Partial Derivative
The following provides the derivation of the partial derivative of a homogeneous transformation between the spatial

frame and a coordinate frame attached to Body 𝑘, 𝒈𝑠𝑘 ∈ SE(3), with respect to the 𝑖𝑡ℎ generalized coordinate Φ𝑖 [29]:

𝜕𝒈𝑠𝑘
𝜕Φ𝑖

= 𝑒𝝃1Φ1 … 𝑒𝝃𝑖−1Φ𝑖−1 𝜕
𝜕Φ𝑖

(

𝑒𝝃𝑖Φ𝑖
)

𝑒𝝃𝑖+1Φ𝑖+1 … 𝑒𝝃𝑘Φ𝑘𝒈𝑠𝑘(0) (132)

= 𝑒𝝃1Φ1 … 𝑒𝝃𝑖−1Φ𝑖−1
(

𝝃𝑖
)

𝑒𝝃𝑖Φ𝑖 … 𝑒𝝃𝑘Φ𝑘𝒈𝑠𝑘(0), (133)

which when multiplied with 𝒈−1𝑠𝑘 yields the following,

(

𝜕𝒈𝑠𝑘
𝜕Φ𝑖

)

𝒈−1𝑠𝑘 = 𝑒𝝃1Φ1 … 𝑒𝝃𝑖−1Φ𝑖−1
(

𝝃𝑖
)

𝑒−𝝃𝑖−1Φ𝑖−1 … 𝑒−𝝃1Φ1 . (134)

Appendix B Adjoint Operator Partial Derivatives
In the following, the derivation of the partial derivative of the Adjoint operator 𝐀𝐝𝑙𝑗 being applied to an element

𝑨̂ ∈ 𝔰𝔢(3), with respect to a generalized coordinate Φ𝑖 is provided:

𝜕𝐀𝐝𝑙𝑗𝑨
𝜕Φ𝑖

= 𝑒−𝝃𝑙Φ𝑙 … 𝑒−𝝃𝑖+1Φ𝑖+1𝑒−𝝃𝑖Φ𝑖
(

−𝝃𝑖
)

… 𝑒−𝝃𝑘Φ𝑘
(

𝑨̂
)

𝑒𝝃𝑘Φ𝑘 … 𝑒𝝃𝑙Φ𝑙

+ 𝑒−𝝃𝑙Φ𝑙 … 𝑒−𝝃𝑘Φ𝑘
(

𝑨̂
)

𝑒𝝃𝑘Φ𝑘 … 𝑒𝝃𝑖Φ𝑖
(

𝝃𝑖
)

𝑒𝝃𝑖+1Φ𝑖+1 … 𝑒𝝃𝑙Φ𝑙 (135)

= −𝑒−𝝃𝑙Φ𝑙 … 𝑒−𝝃𝑖+1Φ𝑖+1
(

𝝃𝑖
)

(

𝐀𝐝𝑖𝑗𝑨
)∧
𝑒𝝃𝑖+1Φ𝑖+1 … 𝑒𝝃𝑙Φ𝑙

+ 𝑒−𝝃𝑙Φ𝑙 … 𝑒−𝝃𝑖+1Φ𝑖+1
(

𝐀𝐝𝑖𝑗𝑨
)∧

(

𝝃𝑖
)

𝑒𝝃𝑖+1Φ𝑖+1 … 𝑒𝝃𝑙Φ𝑙 (136)

= −𝑒−𝝃𝑙Φ𝑙 … 𝑒−𝝃𝑖+1Φ𝑖+1
[

𝝃𝑖
(

𝐀𝐝𝑖𝑗𝑨
)∧

+
(

𝐀𝐝𝑖𝑗𝑨
)∧

𝝃𝑖
]

𝑒𝝃𝑙Φ𝑙 … 𝑒𝝃𝑖+1Φ𝑖+1 (137)

= −𝐀𝐝𝑙𝑖+1𝐚𝐝𝜉𝑖𝐀𝐝
𝑖
𝑗(𝑨) (138)

where between (135) and (136) we note that 𝑒𝝃𝑖Φ𝑖𝝃𝑖 = 𝝃𝑖𝑒𝝃𝑖Φ𝑖 .

We now present the derivation of the partial derivative
𝜕(𝐀𝐝𝑗−11 )′

𝜕Φ𝑖
required for equation (75). We again demonstrate the

derivation for a general twist 𝑨̂ ∈ 𝔰𝔢(3):

𝜕(𝐀𝐝𝑗−11 )′𝑨
𝜕Φ𝑖

= 𝑒𝝃1Φ1 … 𝑒𝝃𝑖Φ𝑖
(

𝝃𝑖
)

𝑒𝝃𝑖+1Φ𝑖+1 … 𝑒𝝃𝑗−1Φ𝑗−1
(

𝑨̂
)

𝑒−𝝃𝑗−1Φ𝑗−1 … 𝑒−𝝃1Φ1

− 𝑒𝝃1Φ1 … 𝑒𝝃𝑗−1Φ𝑗−1
(

𝑨̂
)

𝑒−𝝃𝑗−1Φ𝑗−1 … 𝑒−𝝃𝑖+1Φ𝑖+1𝑒−𝝃𝑖Φ𝑖
(

𝝃𝑖
)

… 𝑒−𝝃1Φ1 (139)

= 𝑒𝝃1Φ1 … 𝑒𝝃𝑖Φ𝑖
[

𝝃𝑖
(

(𝐀𝐝𝑗−1𝑖+1 )
′𝑨

)∧
−
(

(𝐀𝐝𝑗−1𝑖+1 )
′𝑨

)∧
𝝃𝑖
]

𝑒−𝝃𝑖Φ𝑖 … 𝑒𝝃1Φ1 (140)

= (𝐀𝐝𝑖1)
′𝐚𝐝𝝃𝑖 (𝐀𝐝

𝑗−1
𝑖+1 )

′(𝑨). (141)
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