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ABSTRACT2

Mobility analysis is crucial to fast, safe, and autonomous operation of planetary Wheeled Mobile3
Robots (WMRs). This paper reviews implemented odometry techniques on currently designed4
planetary WMRs and surveys methods for improving their mobility and traversability. The methods5
are categorized based on the employed approaches ranging from signal-based and model-based6
estimation to terramechanics-based, machine learning, and global sensing techniques. They aim7
to detect vehicle motion parameters (kinematic states and forces/torques), terrain hazards (slip8
and sinkage) and terrain parameters (soil cohesion and friction). The limitations of these methods9
and recommendations for future missions are stated.10
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1 INTRODUCTION

For more than five decades, Wheeled Mobile Robots (WMRs) have been proven essential in space12
exploration and planetary missions. Traversing a wide range of environments, maneuverability, ability to13
be directed to special features, and lower weight and power consumption with respect to other platforms14
are some reasons supporting their increasing popularity. Figure 1 depicts the well-known WMRs in the15
past, present, and future missions on different extraterrestrial bodies. For a comprehensive bibliography16
on planetary WMRs the reader is referred to (Sanguino, 2017). The operation of WMRs on planetary17
bodies requires sophisticated software and hardware solutions for Guidance, Navigation and Control18
(GNC). This is indeed because of different conditions prevailed on extraterrestrial bodies. The complex19
and unknown environments, interaction with heterogeneous soil, steep slopes, loose and multi-phase20
terrains, driving over low gravity regions, harsh lighting conditions, unavailability of GPS signals, power21
consumption constraints, and computational limitations of embedded systems are critical challenges that22
must be dealt with when developing GNC modules (Quadrelli et al., 2015). Odometry or knowledge of pose23
and orientation of the vehicle with respect to some local references is a key component of GNC algorithms.24
Due to constraints and uncertainties involved, the current planetary WMRs rely on tele-communication with25
Earth-based stations to perform odometry and plan for safe operation. This ground-in-the-loop operation26
results in reduced time a vehicle can travel per day on a specific extraterrestrial body. As a result, future27
planetary missions demand for greater level of technology for localization to enhance the autonomy of28
roving platforms. In this paper, we first review the implemented odometry solutions on planetary WMRs29
and highlight their advantages and shortcomings. Then, we proceed with reviewing the solutions that30
have been proposed to improve the traversability and mobility of the planetary WMRs and aiding the31
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traditional odometry techniques. Here, we have categorized these solutions into five different approaches32
including signal-based methods, model-based methods that rely on kinematics and estimation theory,33
terramechanics-based methods, machine learning techniques, and global sensing.34
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Figure 1. Planetary WMR platforms, date, and site of missions

2 IMPLEMENTED NAVIGATION TECHNIQUES ON PLANETARY WMRS

Odometry is central to every navigation system. It refers to estimating pose and orientation of a vehicle35
with respect to some reference coordinate frames. Odometry can be performed using proprioceptive sensing36
(e.g. IMU and encoders) or exteroceptive sensing (e.g. camera and Sun sensor). Therefore, depending37
on the sensors involved the problem is called Wheel Odometry (WO), Inertial Odometry (IO), or Visual38
Odometry (VO). The WO uses a kinematic model of the vehicle along with the rotational velocity of39
the wheels, acquired by the encoders, to estimate pose and orientation. The drift of this method on even40
and planar terrains is above %10 of the traversed distance (Azkarate Vecilla, 2022). This solution was41
implemented on Sojourner in Mars Pathfiner mission in 1997 for pose estimation (Matijevic, 1997b).42
Other Mars rovers of Jet Propulsion Laboratory (JPL) use this type of odometry in combination with other43
means. The IO uses noisy measurements of inertial sensors and a kinematic model to estimate pose and44
orientation. The noise level of accelerometers results in 5-10% drifts in estimating pose making the IO45
ineffective in translational motion. However, it has been used to accurately update the rotational states.46
Using sensor fusion through Kalman-based filters combined WO and IO was proposed in (Baumgartner47
et al., 2001; Ali et al., 2005) to ensure the accurate odometry on high-traction terrains for Spirit and48
Opportunity rovers of Mars Exploration Rover (MER) missions. This technique was also aided by a Sun49
sensor to provide absolute heading estimations. The VO processes a sequence of onboard camera images50
for motion estimation. This method is independent of wheel-terrain interactions and provides accurate51
estimates (1-5% drifts). The rover Curiosity of Mars Science Laboratory (MSL) mission and Perseverance52
rover of Mars2020 mission combine the previously stated odometry methods with VO (Gong, 2015). The53
Rosalind Franklin rover of ExoMars mission employs combined VO and IO for its localization (Bora54
et al., 2017). The VO was also implemented on the Lunar rover Yutu 2 of Chang’e 4 mission (Wan et al.,55
2014). The combined WO, IO, and VO can produce estimates with 1-2% of drift (Azkarate Vecilla, 2022).56
Although VO provides a superior performance for localization, it is computationally expensive which57
negatively affects power consumption and speed of a WMR. To resolve this problem Field-Programmable58
Gate Arrays (FPGAs) was proposed as an efficient platform for running VO (Howard et al., 2012). Table 159
summarizes the odometry techniques for planetary WMRs and compares their performance.60
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Table 1. Comparison of different odometry methods for planetary WMRs.
Method Accuracy Frequency Advantages Limitations

(% traversed distance ) (Hz)

WO 10 10-100 -simple structure
-not computationally demanding

-high drifts for uneven
and deformable terrains

IO 5-10 10-100 -self contained
-not computationally demanding

-error accumulation
of accelerometers

VO 1-5 0.5
-immune to error accumulation

-independent of terrain
-computationally demanding

-low-speed operation

Combined 1-2 10 -enhanced accuracy -complex structure
-low-speed operation

3 MOBILITY AND TRAVERSABILITY ENHANCEMENT

To increase the operation time, future planetary WMRs require a higher degree of autonomy to perform61
navigation tasks without relying on high-latency tele-communication with Earth-based stations. However,62
operation on extraterrestrial bodies is not analogous to Earth operations and involves challenging problems.63
For instance, driving on soft deformable and non-homogeneous soil, steep slopes, few distinguishable64
visual features, permanent shaded areas, and processing power constraints on embedded systems are some65
of these challenges. These problems demand for design of specific algorithms that are capable of predicting66
traversability for planning safe autonomous operations and improving mobility and odometry on unknown67
rough terrains. This section surveys dozens of these methodologies.68

3.1 Direct Signal-based Approaches69

These approaches use output signals of some sensors to detect abnormal conditions and correct odometry.70
Hardware redundancy, use of special sensors, frequency analysis, and logic reasoning are some methods in71
this category. Fuzzy logic and expert rule-based techniques were used in (Ojeda et al., 2004) to compare72
data from redundant encoders with each other, gyros, and motor currents to detect slip and correct odometry73
for a six-wheel robot with a rocker-boogie suspension system. However, this technique does not estimate74
the degree of wheel slip. (Ojeda et al., 2006) proposed a slip estimator for odometry correction in the75
direction of motion that requires accurate current measurements and some specific terrain parameters.76
They argue that the terrain parameters can be estimated online either using absolute positions provided by77
GPS or induced slip in a single wheel for a WMR with at least four driven wheels. The slip detection in78
Mars rover Curiosity, is done based on motor currents and visual sensors (Arvidson et al., 2017). When79
abnormal currents are detected the vision system is activated to aid the navigation system with VO. In case80
features are not unique in the scene, using wheel tracks (Maimone et al., 2007) or steering mast cameras81
are proposed (Strader et al., 2020). Visual odometry correction on deformable terrains were also proposed82
in (Reina et al., 2010) using fuzzy reasoning and in (Nagatani et al., 2010) using special telecentric lens.83
These techniques, however, require high computational cost on embedded processors of planetary WMRs.84
Thermal cameras are another form of special sensors that were used in (Cunningham et al., 2015) to develop85
a non-geometrical method for predicting traversability of a terrain through analysing its thermal inertia86
from infrared imagery. However, long observation periods are required to obtain a good prediction.87

3.2 Estimation and Kinematics88

These methods are based on kinematics models derived from the physics of WMRs and estimation theory89
tools such as Kalman-based filters. In (Dissanayake et al., 2001), nonholonomic kinematic constraints90
were used to obtain velocity measurements for aiding the IO within an Extended Kalman Filter (EKF)91
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framework. The method, however, is not applicable on low-traction and uneven terrains of extraterrestrial92
bodies as the authors modeled slip as a zero-mean noise. Other kinematics-based methods that aim to93
improve odometry performance were proposed in (Hidalgo-Carrio et al., 2014; Lou et al., 2019). A vision-94
based method was proposed in (Helmick et al., 2006) which developed a forward kinematics model of95
rocker–bogie suspension system for a Kalman filter to combine inertial and visual measurements as well as96
wheel rates and wheel steering angles for slip estimation and compensation. However, permanent shaded97
regions of Moon, featureless scenes of Mars, and power constrains of WMRs are the main limitations98
of visual techniques. In (Ward and Iagnemma, 2008) a tire traction model within an EKF framework99
was incorporated to fuse data of encoders, IMU, and GPS for detecting slip and immobilized conditions.100
However, GPS signals are not available on extraterrestrial bodies. Although, most research works rely on101
EKF for estimation, in (Sakai et al., 2009; Reina et al., 2020) two different filters were used. The former102
proposed a 6-DoF localization solution within an Unscented Kalman Filter (UKF) framework based on the103
measurements of stereo cameras, an IMU, and wheel encoders. The latter employed a Cubature Kalman104
Filter (CKF) to estimate terrain properties using vibrations. To reduce odometry error of combined IO and105
WO, (Kilic et al., 2019) employed nonholonomic constraints and the zero-velocity updates with periodic106
stops. The autonomous stopping times through estimating and monitoring wheel slip were investigated107
in (Kilic et al., 2021). However, these methods sacrifice accuracy for traverse rate. In (Malinowski et al.,108
2022) the effect of integration of predicted slip in WO and VO was investigated using an EKF architecture.109

3.3 Terramechanics and Dynamics110

Terramechanics studies soil properties and wheel-terrain interactions to find normal and shear stresses111
developed at the contact areas using, e.g., empirical Bekker-Wong models (Bekker, 1969; Wong and112
Reece, 1967) and their recent modification (Higa et al., 2015). The Mars rover Sojourner performed113
parameter estimation of Martian soil to identify cohesion and internal friction angle relying on Earth-based114
analyses (Matijevic, 1997a). However, Earth-in-the-loop procedures are time consuming and inefficient.115
Online estimation of these parameters were proposed in (Iagnemma et al., 2004) based on simplified116
terramechanic equations and a least squares technique that identifies the parameters using measurements of117
the rover configuration sensors, encoders, potentiometers, and six-axis force/torque sensors. The simplified118
terramechanics-based models were also used in (Ishigami et al., 2007) to deal with longitudinal and119
lateral slip during steering manoeuvres on deformable soil. However, the accuracy of the estimations is120
under doubt, since simplified models are not a good representation of real interactions. In (Higa et al.,121
2016), six-axis force/torque sensors and five types of custom-built contact sensors were used to obtain122
the three-dimensional stress distribution at the wheel-terrain contact area on lunar regolith simulant. The123
method, however, for a single wheel results in an error of 1-11%. Real-time estimation of terrain parameters124
was also addressed in (Li et al., 2018) using semi-empirical terramechanic equations and EKF for WMRs125
driving on deformable slopes. However, this method is not useful for untraversed areas as it requires a126
history of measurement data. To measure the terramechanic parameters ahead of the rover, (Zhang et al.,127
2022b) proposed use of an articulated wheeled bevameter equipped with force and vision sensors to predict128
the slip and sinkage of wheels. An in-situ method for estimating sinkage was given in (Guo et al., 2020)129
that defines a new reference line of wheel sinkage and simplifies terramechanics into closed-form equations130
using force/torque sensors. The method is limited to moderate and high-traction terrains.131

3.4 Machine Learning Approaches132

These approaches are mainly based on classification or regression techniques to respectively provide133
discrete or continuous estimates of the quantities of interest. A terrain classifier was trained using vibration134
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signals measured by an accelerometer, which is subject to noise and bias (Brooks and Iagnemma, 2005). The135
training process was also offline making the method inappropriate for unknown environments. To alleviate136
its shortcomings, the same authors proposed a self-supervised learning method that predicts the terrain137
properties using two distinct classifiers (Brooks and Iagnemma, 2012). The Support Vector Machine (SVM)138
proprioceptive classifier analyzes vibration signals or combination of torques and sinkage to generate139
labels for training an exteroceptive terrain classifier. The second SVM classifier uses stereo imagery to140
identify potentially hazardous terrains from a distance. However, this training method is uni-directional141
where vibration signals are only used to train the visual classifier. To improve the training procedure, (Otsu142
et al., 2016) proposed a bi-directional training technique where the two classifiers train each other. In143
the context of slip estimation, Omura and Ishigami (2017) proposed a SVM learning technique based on144
the measurements of the normal force and contact angle at the wheel-terrain interaction area to generate145
correlation labels for the slip and classify wheel slip into three levels: non-stuck, quasi-stuck, and stuck.146
(Gonzalez et al., 2018a) compared the performance of supervised (artificial neural networks and SVM) and147
unsupervised (self organizing map and k-means) classification techniques in detection of three discrete148
levels for longitudinal slip (low, moderate, and high) based on the measurements of IMU, encoders, and149
motor currents. A vision-based classification method was proposed in Endo et al. (2021) to predict wheel150
slip via estimating terrain slopes. The computational cost of image processing limits the use of visual151
approaches. Deep learning techniques were also proposed for proprioceptive terrain classification based152
on the measurements of motion states and wheel forces/torques (Vulpi et al., 2020). At best its error is153
around 8.6%. The main limitation of these methods is that slip cannot be estimated in a continuous manner154
and the outputs are only useful to avoid hazardous terrains. In (Angelova et al., 2007), continuous slip155
was predicted from a distance based on visual data and nonlinear regression models that correlates terrain156
appearance and geometry with slip. The applicability of the method is under doubt since, it uses visual157
sensors and it has some difficulties to determine the terrain types. In (Gonzalez et al., 2018b) Gaussian158
Process Regression (GPR) is used to predict continuous slip and its variance based on the measurements of159
IMU and motor torques. However, the computational effort of GPR is high as it uses the history of features160
to perform its predictions. The GPR was also employed on China’s Mars rover Zhurong to estimate the161
average of longitudinal and lateral slip using the measurements of IMU, encoders, and motor currents162
(Zhang et al., 2022a).163

3.5 Global Sensing164

Global localization solutions are incorporated to bypass limitations of the odometry and correct its165
position drifts. A tele-communication link between Mars orbiter Odyssey and MER platforms enabled the166
navigation system to obtain position accuracy of about 10 meters around three days (Guinn, 2001). Skyline167
signature matching between images captured by a WMR and a global map was proposed in (Chiodini168
et al., 2017) to initialize the vehicle position after landing on Mars. (Matthies et al., 2022) proposed an169
onboard global localization technique which involves mapping Lunar craters from orbit and then using170
stereo cameras or LiDAR for detecting the craters landmarks. The accuracy of this method depends on171
the resolution of global maps. Learning algorithms such as Siamese Neural Networks were proposed for172
global localization on Mars and moon respectively in (i Caireta, 2021) and (Wu et al., 2019).173

3.6 Summary and Potential Future Directions174

Table 2 summarizes the methodologies discussed throughout this section and indicates their potential175
applications for improving mobility and traversability of planetary WMRs. The level of feasibility of176
these solutions leaves plenty of room for improvement. One major problem is computational limitations177
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of embedded systems within these robots, and future research must be directed toward developing178
computationally efficient software solutions on available hardware. Distributed sensing, either sensor-level179
or track-level fusion, can be used in the estimation architecture to enhance its performance. To achieve180
greater level of autonomy, the prospective learning solutions should be designed based on multi-directional181
communicating training techniques. Novel terramechanics models based on updated information on182
planetary surfaces (e.g., soil composition, surface geometry) are needed to simultaneously enhance fidelity183
and efficiency of the traditional models. Fast and robust vision-based algorithms must be developed to184
detect and match features in harsh lighting conditions and featureless environments of extraterrestrial185
bodies. Another prospective solution is combining different approaches, reviewed in this section, to design186
robust systems for high-speed navigation of future planetary WMRs.187

Table 2. Summary of mobility and traversability enhancement methodologies for planetary WMRs.
Approach Potential Applications Advantages Disadvantages

Direct
signal-based

-hazard avoidance
-slip estimation

-odometry correction
-simple structure

-extra hardware cost
-requiring accurate

measurements
-no single systematic

approach

Estimation
and kinematics

-odometry correction
-slip estimation

-immobilization detection
-terrain properties estimation

-well-studied tools
-systematic solutions
-improved reliability
using sensor fusion

-errors in system
and noise models

Terramechanics
and dynamics

-soil properties estimation
-slip estimation

-stress estimation
-sinkage estimation

-applicable on
deformable and
uneven terrains

-modeling errors
-requiring special

hardware
-wheel-level tests

Machine learning

-hazard avoidance
-slip estimation

-terrain properties
estimation

-improved autonomy

-computationally demanding
-depending on

training process
-vulnerable to noise

Global sensing -odometry correction
-hazard avoidance -improved accuracy

-computationally demanding
-depending on resolution

of global maps

4 CONCLUSIONS

This paper surveyed dozens of methodologies for mobility analysis and mission planing of planetary188
WMRs. The performance of the currently implemented odometry methods was compared and potential189
solutions for improvement of these methods were discussed. Further research is still demanded to improve190
the practicality and performance of the proposed methods. Future research should be directed toward191
reducing computational burdens on embedded systems, use of distributed estimation and multi-directional192
learning techniques, developing terramechanics models for planetary interfaces, and designing fast and193
robust vision-based algorithms for high-speed operation of planetary WMRs.194
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