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ABSTRACT
This paper presents a geometrical approach to the dynamical reduction of a class of constrained mechanical

systems. The mechanical systems considered are with affine nonholonomic constraints plus a symmetry group.
The dynamical equations are formulated in a Hamiltonian formalism using the Hamilton-d’Alembert equation, and
constraint forces determine an affine distribution on the configuration manifold. The proposed reduction approach
consists of three main steps: 1) restricting to the constrained submanifold of the phase space, 2) quotienting the
constrained submanifold, and 3) identifying the quotient manifold with a cotangent bundle. Finally as a case study,
the dynamical reduction of a two-wheeled rover on a rotating disk is detailed. The symmetry group for this example
is the relative configuration manifold of the rover with respect to the inertial space.

The proposed approach in this paper unifies the existing reduction procedures for symmetric Hamiltonian sys-
tems with conserved momentum, and for Chaplygin systems, which are normally treated separately in the literature.
Another characteristic of this approach is that although it tracks the structure of the equations in each reduction
step, it does not insist on preserving the properties of the system. For example, the resulting dynamical equations
may no longer correspond to a Hamiltonian system. As a result, the invariance condition of the Hamiltonian under
a group action that lies at the heart of almost every reduction procedure is relaxed.

Nomenclature
Ad Adjoint operator for a Lie group
ad adjoint operator for a Lie algebra
[·, ·] Lie bracket of two Lie algebra elements
T f Tangent map of the map f
T ∗ f Cotangent map of the map f
T Q Tangent bundle of the manifold Q
T ∗Q Cotangent bundle of the manifold Q
Lie(G) Lie algebra of the Lie group G
Lie∗(G) Dual of the Lie algebra of the Lie group G
〈·, ·〉 Pairing between members of tangent and cotangent spaces
LX Lie derivative by the vector field X
ξQ Induced vector field by the infinitesimal action of ξ ∈ Lie(G)
ιX ω Interior product of the differential form ω with the vector field X
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Ω1(Q) Space of all 1-forms on Q
Ω2(Q) Space of all 2-forms on Q
X(Q) Space of all vector fields on Q
dω Exterior derivative of the differential form ω

Q/G Quotient space corresponding to an action of G on Q

1 Introduction
Reduction of dynamical systems has been proven helpful in studying their inherent behaviour [1, 2, 3, 4], as well as for

designing controllers for such systems [3, 5, 6, 7, 8]. Usually, reduction is performed in the presence of a symmetry group
of the system. For unconstrained Hamiltonian systems, the group action preserves both the Hamiltonian and the symplectic
2-form defined on the phase space of the system. For nonholonomic Hamiltonian systems, the nonholonomic distribution is
also invariant under the group action.

Although constraints could be generally nonlinear, usually nonholonomic constraints that are considered in the literature
form a linear sub-bundle of the tangent bundle of the configuration manifold. An example of an affine constraint is treated
in [9], and in [10] the tracking control of nonholonomic mechanical systems with affine constraints is considered. In a more
recent article, conservation of energy and momentum corresponding to lifted actions is studied for systems with affine con-
straints [11]. In [2], affine constraints are mentioned in the geometric treatment of nonholonomic mechanical systems with
symmetry. However, in the literature there does not exist a systematic approach for the reduction of dynamical equations of
mechanical systems with affine constraints. The purpose of this paper is to provide such an approach, which unifies the sym-
plectic reduction of unconstrained systems with conserved momentum and the reduction of nonholonomically constrained
systems.

1.1 Reductions Theories
In the following, the reduction methods investigated in the literature for both unconstrained Hamiltonian systems and

nonholonomic systems with symmetry are presented.

1.1.1 Hamiltonian Systems with Symmetry
Emmy Noether in her famous paper [12] showed that any symmetry of the action functional in Hamilton’s principle cor-

responds to a conserved quantity, which is called momentum. In the study of Hamiltonian systems, momentum is unchanged
along the flow of a Hamiltonian vector field, if the Hamiltonian and the symplectic 2-form representing the dynamics are in-
variant under the symmetry [1]. The symplectic reduction theorem [13] provides a construction for expressing the dynamics
on a reduced phase space with a symplectic structure. This theorem by Marsden and Weinstein made a huge impact on uni-
fying the reduction methods that were previously developed for Lagrangian and Hamiltonian systems, such as the classical
Routh method and the reduction of Lagrangian systems by cyclic parameters [14, 15]. In this theorem the momentum map
is assumed Ad∗-equivariant, the 2-form on the phase space is symplectic, and the reduction is at a regular level set of the
momentum map. These assumptions were relaxed in later works by, e.g., Planas-Bielsa [16] and Marsden et al. [17].

For a mechanical system, the phase space is the cotangent bundle T ∗Q of the configuration manifold; it admits a canon-
ical symplectic 2-form. The Hamiltonian of the mechanical system comes from the kinetic energy metric and a potential
energy function on Q. Let G be a Lie group acting on the configuration manifold Q. The cotangent lifted action on the phase
space is symplectic [1]. In this case, if the Hamiltonian of the system is also invariant under the cotangent lift of the G-action,
the group G is called a symmetry group of the mechanical system, and the system is called a Hamiltonian mechanical system
with symmetry [1, 15]. Open-chain multibody systems are examples of Hamiltonian mechanical systems with symmetry
whose dynamical reduction is detailed in [18].

The phase space T ∗Q of a mechanical system also admits a canonical Poisson bracket. Suppose that the symmetry group
G acts freely and properly on Q, and hence on T ∗Q. The Poisson bracket is invariant under the cotangent lifted action, and it
descends to a Poisson bracket on the quotient manifold (T ∗Q)/G. This process, which has been studied in [1,3,19], is called
Poisson reduction. The major difference between Poisson reduction and symplectic reduction is the concept of a momentum
map, which is not necessary for Poisson reduction, and as a result the reduced Hamilton’s equation on the quotient phase
space evolves in a bigger space. This approach unifies the Euler-Poincaré and Lagrange-Poincaré equations for mechanical
systems with symmetry [1]. Both of the abovementioned reduction theories for mechanical systems with symmetry were
developed and extended to Lagrangian systems in the 1990s [20, 21, 22].

1.1.2 Nonholonomic Systems with Symmetry
A historic example of reducing nonholonomic systems is the work of Chaplygin [23]. In this paper he eliminated the

Lagrange multipliers in the Lagrange-d’Alembert equation and expressed the dynamical equations in a smaller phase space
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for nonholonomic Lagrangian systems with cyclic parameters. This result was extended to Lagrangian mechanical systems
with non-abelian symmetry by Koiller [24]. On the Hamiltonian side, van der Schaft and Maschke [25] eliminated the
Lagrange multipliers by expressing Hamilton’s equation on the constrained phase space. They worked with the Poisson
structure of the cotangent bundles.

A nonholonomic mechanical system with symmetry is usually defined as a mechanical system with symmetry together
with a G-invariant distribution D . This distribution is usually taken to be a linear sub-bundle of T Q, where the velocities of
the physical trajectories of the system should lie. Generally, this distribution is non-involutive, and it is the result of kinematic
nonholonomic constraints such as rolling without slipping. If D is involutive, the constraints are called holonomic. Hence,
the word “nonholonomic” stands for “not necessarily holonomic” and it does not mean “not holonomic”. Since nonholo-
nomic systems satisfy the Hamilton-d’Alembert principle [26] instead of the Hamilton principle, the reduction procedures
introduced for such systems are normally different from those of Hamiltonian systems with symmetry. A geometric approach
for dynamical reduction of nonholonomic mechanical systems with symmetry is reported in [2]; it results in the Lagrange-
d’Alembert-Poincaré equation [3,27]. This method is centred at defining a nonholonomic connection as the summation of an
Ehresmann connection and the mechanical connection, and introducing a nonholonomic momentum map. The analogue of
this approach in Poisson formalism is also explained in [3], which evolved from a paper by van der Schaft and Maschke [25].
The condition that the directions of the group action be complementary to D determines a class of nonholonomic mechanical
systems with symmetry called Chaplygin systems. Reduction of such systems are separately discussed in [2, 3, 24, 28]. An
extension of the Chaplygin reduction is also reported in [29, 30], which use an almost symplectic reduction theorem [16] to
further reduce the dynamics after the Chaplygin reduction.

On the Hamiltonian side, Bates and Śniatycki realized that the solution of the Hamilton-d’Alembert equation is a section
of the distribution T (FL(D))∩{v ∈ T (T ∗Q)|T πQ(v) ∈D } ⊆ T (T ∗Q). Here, the fibre-wise linear map FL : T Q→ T ∗Q is
the Legendre transformation, and πQ : T ∗Q→ Q is the canonical projection map of the cotangent bundle T ∗Q. Then under
the symmetry hypotheses, after restricting Hamilton’s equation to this distribution, they show that the flow of this vector field
descends to the quotient manifold FL(D)/G [31, 32, 33, 34]. Later, based on this method of reduction the Noether theorem
is extended to nonholonomic systems and accordingly a two-stage reduction procedure is introduced [35]. This method is
further extended to singular reduction of nonholonomic systems, and it is reformulated for almost Poisson manifolds in [36].

Finally, in a recent research by Gay-Balmaz and Yoshimura, the reduction theory of Dirac structures for holonomic and
nonholonomic systems on Lie groups with broken symmetry is discussed [37].

1.2 Statement of Contributions
The main contributions of this paper can be listed as follows:

(a) A systematic dynamical reduction procedure for Hamiltonian mechanical systems with affine constraints is presented.
(b) The proposed reduction procedure unifies two existing reduction theories, i.e.,

(1) the symplectic reduction of Hamiltonian mechanical systems with symmetry, where the momentum is conserved,
and

(2) the Chaplygin reduction theorem for nonholonomic systems on cotangent bundles.

(c) The invariance assumption of the Hamiltonian under a Lie group action, which lies at the heart of any reduction theory
is relaxed and substituted by the conditions of Lemma 3.6.

The governing dynamical equations of a constrained Hamiltonian system are identified by the Hamiltonian, a 2-form
and a (affine) distribution. Therefore, the existing reduction methods involve reducing the Hamiltonian function, the 2-form
and the constrained phase space, separately, and the emphasis is on preserving the structure of the dynamical equations. For
example, in the symplectic or Chaplygin reduction theories the reduced system is still Hamiltonian and the reduced dynamics
is governed by Hamilton’s equation. As opposed to the existing methods, the presented reduction procedure only focuses on
the dynamical equations at each reduction step, and the reduced system may not be even Hamiltonian. That is, the resulting
structure involves a 2-form that might no longer be symplectic and the right hand side of the dynamical equation is a 1- form
that might no longer be exact (coming from a Hamiltonian function).

This proposed reduction theory not only sheds light on the connection between the symplectic and Chaplygin reduction
theories, but it also includes more cases that could not be previously treated by those theories, e.g., systems with affine
nonholonomic constraints (see the case study) or known variable momentum (orbiting satellites). This theory consists of
three main steps:

(a) Calculating the Lagrange multipliers and restriction of the dynamics to the constrained submanifold of T ∗Q,
(b) Quotienting the constrained submanifold by a symmetry group, and
(c) Identifying the quotient manifold with a cotangent bundle.

In Section 2, the concept of a constrained Hamiltonian mechanical systems with symmetry that is considered in this
paper is defined. It is then shown how this definition can cover a wide range of holonomic and nonholonomic mechanical
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systems. Section 3 reports the main results of this paper, which includes the detailed explanation of the three reduction steps.
A step-by-step application of the proposed reduction method to the dynamical equations of a two-wheeled differential drive
rover on a rotating disk is studied in Section 4. Section 5 concludes the paper.

2 Constrained Hamiltonian Mechanical Systems with Symmetry
This section contains a definition of a constrained Hamiltonian mechanical systems with symmetry. The constraints

that are considered are in the form of affine distributions, whose special cases are: (a) conservation of momentum for
holonomic systems, and (b) linear nonholonomic constraints in the velocity space. Also, some relevant geometric structures
for constrained Hamiltonian mechanical systems with symmetry are explained.

Let Q denote the configuration manifold of a mechanical system, and let T ∗Q be its cotangent bundle. The cotangent
bundle is naturally equipped with a symplectic two form ωcan ∈ Ω2(T ∗Q), called the canonical two form. The phase space
of the Hamiltonian mechanical system is the symplectic manifold (T ∗Q,ωcan). Consider the smooth function H : T ∗Q→R,
called the Hamiltonian, defined by, ∀(q, p) ∈ T ∗Q:

H(q, p) =
1
2

Kq(FL−1
q (p),FL−1

q (p))+V (q), (2.1)

where Kq : TqQ×TqQ→ R is the kinetic energy Riemannian metric, and where V : Q→ R is a smooth function, called the
potential energy function. The Legendre transformation FL : T Q→ T ∗Q is the fibre-wise linear isomorphism that is induced
by the metric K:

〈FLq(v),w〉 := Kq(v,w) ∀v,w ∈ TqQ. (2.2)

Physically, the Hamiltonian is the total energy of the mechanical system. The Hamiltonian mechanical system may
be represented by the triple (T ∗Q,ωcan,H). The dynamics of such a system is specified by the vector field X that satisfies
Hamilton’s equation

ιX ωcan = dH. (2.3)

Generally, constraints can be considered as restrictions on the solution curves of a dynamical system. For a mechanical
system, these restrictions may be of the form of a subset of the configuration space Q or the velocity space T Q. In this paper,
only affine constraints in T Q are considered. The space of allowed velocities of the system then forms an affine distribution
D whose rank is assumed constant. “Affine” means that there is a vector field Y and a linear distribution ∆ on Q such that
∀q ∈ Q,

∆(q) = D(q)−Y (q).

Special cases of this type of constraints are:

(a) linear nonholonomic distributions, where 0 ∈D(q) for all q ∈ Q,
(b) constant momentum, where if M denotes a momentum map, FL(D) = M−1(µ), for a value µ of the momentum,
(c) holonomic constraints: a linear involutive distribution, corresponding to a foliation of Q.

A constrained Hamiltonian mechanical system may be represented by a quadruple (T ∗Q,ωcan,H,D) as above. If αi ∈Ω1(Q)
for i = 1, ...,m := dim(T Q)− dim(D) is a set of differential 1-forms whose point-wise kernel is the distribution ∆, then
according to the Hamilton-d’Alembert Principle, the solution curves of the constrained Hamiltonian mechanical system are
those curves whose velocity vectors X satisfy the Hamilton-d’Alembert equation:

ιX ωcan = dH +
m

∑
i=1

κiT ∗πQ(αi),

〈αi,T πQ(X)〉= 〈αi,Y 〉=: γi for i = 1, ...,m. (2.4)

Here, πQ : T ∗Q→ Q is the natural cotangent bundle projection, and T ∗πQ : Ω1(Q)→ Ω1(T ∗Q) is the pullback map. The
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constraint equations on the second line of (2.4) are equivalent to the condition T πQ(X)⊂D . Note that near each point (2.4)
is the most general dynamical equation for Hamiltonian mechanical systems with linear affine constraints. In the special
cases mentioned in the previous paragraph the following conditions respectively hold:

(a) Y ≡ 0,
(b) κi ≡ 0 (proved in the reduction process),
(c) Locally ∃ fi ∈C∞(Q) such that αi = d fi (D is a linear involutive distribution).

Let G be a Lie group with the Lie algebra Lie(G). Consider a free and proper action of G on Q, and denote this action
by Φg : Q→ Q, ∀g ∈ G. This action induces an action of G on T ∗Q by the cotangent lift of Φg, which is denoted by
T ∗Φg : T ∗Q→ T ∗Q.

Lemma 2.1 For every g ∈ G, the map T ∗Φg is a symplectomorphism, i.e., it preserves ωcan [1]. �

Consider the infinitesimal action of Lie(G) on Q. For any ξ ∈ Lie(G), this action gives a vector field ξQ ∈ X(Q) such
that ∀q ∈ Q,

ξQ(q) =
∂

∂ε

∣∣∣∣
ε=0

(
Φexp(εξ)(q)

)
. (2.5)

Denote the linear maps corresponding to the infinitesimal action of Lie(G) by φq : Lie(G)→ TqQ, where φq(ξ) = ξQ(q).
Likewise, the vector field ξT ∗Q ∈ X(T ∗Q) is defined such that ∀(q, p) ∈ T ∗q Q,

ξT ∗Q(q, p) =
∂

∂ε

∣∣∣∣
ε=0

(
T ∗Φexp(−εξ)(q, p)

)
. (2.6)

Now, consider the fibre-wise linear map M : T ∗Q→ Lie∗(G), defined by M(q, p) = Mq(p), where Mq = φ∗q : T ∗q Q→
Lie∗(G). So,

〈M(q, p),ξ〉= 〈p,ξQ(q)〉. (2.7)

Lemma 2.2 The map M is an Ad∗-equivariant momentum map corresponding to the cotangent lifted action T ∗Φg, that is, it
satisfies

ιξT∗Q
ωcan = d〈M,ξ〉, ∀ξ ∈ Lie(G)

M(T ∗Φg(q, p)) = Ad∗gMq(p). �

The following definition refers to the class of systems considered in this paper. In the future, similar terminology may
be used with fewer assumptions.

Definition 2.3 A constrained Hamiltonian mechanical system with symmetry is a constrained Hamiltonian mechanical sys-
tem (T ∗Q,ωcan,H,D) together with an action of a Lie group G and a choice of a connected Lie subgroup E, such that

(a) For all q ∈ Q

TqQ = ∆(q)⊕φq(Lie(G)).

(b) The affine sub-bundle FL(D) is invariant under the cotangent lifted E-action.
(c) The conditions of Lemma 3.6 hold for the cotangent lifted E-action restricted to FL(D).

Such a system is represented by (T ∗Q,ωcan,H,D,E ⊆ G). �

Let (T ∗Q,ωcan,H,D,E ⊆G) be a constrained Hamiltonian mechanical system with symmetry. A priori, if no kinematic
constraint is defined for the system, i.e., D = T Q, the solution curves of the system satisfy Hamilton’s equation, which is
a special case of (2.4). In the following, it is shown that even in this unconstrained case the Hamilton-d’Alembert equation
may describe the dynamics of the system.

M.R. Emami CND-15-1456 5

Journal of Computational and Nonlinear Dynamics. Received December 25, 2015; 
Accepted manuscript posted September 16, 2016. doi:10.1115/1.4034729 
Copyright (c) 2016 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://computationalnonlinear.asmedigitalcollection.asme.org/ on 11/20/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Proposition 2.4 (Noether’s Theorem) For an unconstrained Hamiltonian mechanical system with symmetry that satisfies
ιX ωcan = dH, the momentum map M, defined in (2.7), is constant along the flow of X. That is, ∀ξ ∈ Lie(G) the condition
LX (〈M,ξ〉) = 0 holds. �

Noether’s Theorem implies that in the presence of a symmetry the solution curves of an unconstrained system may
be restricted to a submanifold of T ∗Q. This submanifold is the pre-image of a constant element of the dual of the Lie
algebra Lie∗(G) under the momentum map M. Since the G-action is free, for every µ ∈ Lie∗(G) the pre-image M−1(µ) is
a submanifold of T ∗Q. An unconstrained Hamiltonian mechanical system with symmetry generally satisfies the Hamilton-
d’Alembert equation (2.4), with

αi(q) =
〈
η
∗
i ,I−1

q ◦Mq ◦FLq
〉
,

γi(q) =
〈
η
∗
i ,I−1

q (µ)
〉
,

where {ηi ∈ Lie(G)|i = 1, · · · ,m} is a basis for the Lie algebra of G, and {η∗i ∈ Lie∗(G)|i = 1, · · · ,m} is its dual basis. In
this case, the subgroup E is taken to be Gµ :=

{
g ∈ G|Ad∗g(µ) = µ

}
, the isotropy group corresponding to µ. Here, for any

q ∈ Q the linear map Iq : Lie(G)→ Lie∗(G) is defined by

Iq := φ
∗
q ◦FLq ◦φq. (2.8)

This map is a linear isomorphism for any q ∈ Q, and it is called the locked inertia tensor. For a constrained Hamiltonian
mechanical system with symmetry this tensor relates to the kinetic energy metric by

〈
Iq(ξ),ν

〉
= Kq(ξQ(q),νQ(q)), ∀ξ,ν ∈

Lie(G).
In the following, some relevant structures induced by the G-action are introduced. Consider a constrained Hamiltonian

mechanical system with symmetry (T ∗Q,ωcan,H,D,E ⊆ G), and ∀g ∈ G the action map is denoted by Φg : Q→ Q. The
quotient manifold Q := Q/G gives rise to the principal bundle π : Q→ Q with the base space Q, and the fibres of the
bundle can be identified with the group G. A principal connection on the principle bundle π is a fibre-wise linear map
A : T Q → Lie(G), such that Aq(ξQ(q)) = ξ ∀ξ ∈ Lie(G) and ∀q ∈ Q, and it is Ad-equivariant, i.e., A(TqΦg(q,v)) =
AdgAq(v) ∀(q,v) ∈ TqQ. Accordingly, for any base element q ∈ Q the tangent space of Q can be written as the following
direct sum

TqQ = ker(Tqπ)⊕ker(Aq). (2.9)

V := ker(T π) = {ξQ(q) = φq(ξ)
∣∣ξ ∈ Lie(G), q ∈ Q} is called the vertical sub-bundle and H := ker(A) is called the hori-

zontal sub-bundle of T Q. As the result, any v ∈ TqQ can be decomposed into the horizontal and vertical components such
that v = horq(v)+verq(v), where verq(v) := φq ◦Aq(v) and horq(v) := v−verq(v).

For any q ∈ Q and q := π(q) ∈ Q the restriction of the tangent map Tqπ : TqQ→ TqQ to the horizontal subspace H q of
TqQ is a linear isomorphism between and TqQ. Therefore, for any q ∈ Q the horizontal lift map takes v ∈ TqQ to

hlq(v) := (Tqπ
∣∣
H q

)−1(v). (2.10)

For a constrained Hamiltonian mechanical system with symmetry of the type considered in Definition 2.3, with the
constraints given by 1-forms αis as in (2.4), the principal connection A is taken to be

A :=
m

∑
i=1

αiηi. (2.11)

Thus in this case, ∆ = H .

3 Reduction of Constrained Hamiltonian Mechanical Systems with Symmetry
From a geometric point of view, the dynamical equations of a constrained Hamiltonian mechanical system with symme-

try are given by the subset of T (T ∗Q) that is cut out by the Hamilton-d’Alembert equation (2.4). The reduction process of
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such systems consists of three major steps:

(a) Noting that the Hamilton-d’Alembert equation restricts to the constrained submanifold of the phase space T ∗Q,
(b) Quotienting the constrained submanifold by a symmetry group E ⊆ G and transferring the Hamilton-d’Alembert equa-

tion to the quotient manifold,
(c) Identifying the quotient manifold with a submanifold of a cotangent bundle.

3.1 Step 1: Restriction to the Constrained Phase Space

In this section, the Hamilton-d’Alembert equation for constrained Hamiltonian mechanical systems with symmetry is
formally restricted to the submanifold

M := FL(D)⊆ T ∗Q.

The constrained phase space M is an affine sub-bundle since the Legendre transformation is a fibre-wise linear isomorphism
for such systems. Throughout this section only Assumption (a) in Definition 2.3 is needed; Assumptions (b) and (c) play a
role in the later two steps of the reduction process.

To simplify the notation, the 1-form βi := T ∗πQ(αi) is introduced. The Hamilton-d’Alembert equation (2.4) then takes
the form

ιX ωcan = dH +
m

∑
i=1

κiβi

〈βi,X〉= γi for i = 1, · · · ,m. (3.12)

Recall that {ηs ∈ Lie(G)|s = 1, · · · ,m} is a basis for Lie(G). The Lagrange multipliers κi are first determined in the following
through pairing both sides of the Hamilton-d’Alembert equation by the vector fields (ηs)T ∗Q. For s = 1, · · · ,m,

〈ιX ωcan,(ηs)T ∗Q〉= L(ηs)T∗Q
(H)+

m

∑
i=1

κi 〈βi,(ηs)T ∗Q〉 ,

−〈d 〈M,ηs〉 ,X〉= L(ηs)T∗Q
(H)+

m

∑
i=1

κi 〈αi,(ηs)Q〉 ,

κs =−LX 〈M,ηs〉−L(ηs)T∗Q
(H).

In the above calculation, the anti-symmetry of the canonical 2-form plus the definition of βi and the momentum map are
used in the second line. The last line is true because of the choice of αi such that 〈αi,(ηs)Q〉= δs

i , where δs
i is the Kronecker

delta function. To further simplify the notation, let Mi := 〈M,ηi〉 and Hi := L(ηi)T∗Q
(H). Thus, the Hamilton-d’Alembert

equation (3.12) becomes

ιX ωcan = dH−
m

∑
i=1

[(ιX dMi +Hi)βi] .

〈βi,X〉= γi (i = 1, · · · ,m) (3.13)

If a tangent vector X ∈ T (T ∗Q) satisfies (3.13), it also satisfies the equations below along with the constraints 〈βi,X〉 = γi,
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where A and B are described further below.

ιX

(
ωcan +

m

∑
i=1

(dMi∧βi)

)
= dH−

m

∑
i=1

(γidMi +Hiβi) ,

ιX

(
ωcan +

m

∑
i=1

d (Miβi)−Midβi)

)
=

= dH−
m

∑
i=1

(γidMi +Hiβi) ,

ιX (ωcan +d 〈M,A〉−〈M,dA〉) = dH−
m

∑
i=1

(γidMi +Hiβi) ,

ιX (ωcan +d 〈M,A〉−〈M,B〉−〈M, [A ,A ]〉) =

= dH−
m

∑
i=1

(γidMi +Hiβi) ,

ιX (ωcan +d 〈M,A〉−〈M,B〉) =

= dH−
m

∑
i=1

(γidMi +Hiβi− γi 〈M,adηi A〉) . (3.14)

The first equation is valid since X should satisfy the constraints, i.e., αi(T πQ(X)) = γi for every i = 1, · · · ,m. The third
equation is the consequence of the definition (2.11) of the principal connection A . And the fourth equation uses the Cartan
Structure Equation for principal connections [17], i.e., dA =B+[A ,A ]. The 2-form B is the curvature of A , which is defined
by Bq(u,v) := (dA)q(hor(u),hor(v)) for every u,v ∈ TqQ. Plus, the 2-form [A ,A ] acts in the following way [A ,A ]q(u,v) :=
[Aq(u),Aq(v)]. The Lie bracket in this formula is the Lie bracket of the Lie algebra Lie(G). The same symbols A and B are
used to denote these Lie(G)-valued 1-form and 2-form on Q and their pullbacks to T ∗Q. In the last equation, the fact that
A(T πQ(X)) = ∑

m
i=1 γiηi is used. Considering the special cases mentioned in the previous section,

(a) for linear nonholonomic constraints γi ≡ 0 in (3.14),
(b) for conservative holonomic systems, the Mis are constant and the Lie derivatives Hi of H in the group directions vanish,

and
(c) for holonomic constraints dA = 0 and hence the 2-form on the left hand side of (3.14) is closed.

Defining the 2-form ωnh ∈Ω2(T ∗Q) and the 1-form λ ∈Ω1(T ∗Q) as:

ωnh := ωcan +d 〈M,A〉−〈M,B〉 , (3.15)

λ := dH−
m

∑
i=1

(
γidMi +Hiβi− γi

〈
ad∗ηi

M,A
〉)

, (3.16)

equation (3.14) gets the form of Hamilton’s equation, i.e.,

ιX ωnh = λ. (3.17)

The difference is that ωnh is not necessarily closed or non-degenerate, and λ is not necessarily exact.

Lemma 3.1 The interior product of the 2-form ωnh ∈ Ω2(T ∗Q) with any vector in the 2m-dimensional sub-bundle Y :=
Y1⊕T ∗Q Y2 ⊂ T T ∗Q vanishes, where

Y1(q, p) :=
{

ξT ∗Q(q, p) ∈ T(q,p)(T
∗Q)|ξ ∈ Lie(G)

}
Y2(q, p) :=

{
w ∈ T(q,p)(T

∗Q)
∣∣∣ιwωcan ∈ span{βi}i=1,··· ,m

}
.
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In other words, ι(Y )ωnh = {0}.

Proof. It is first shown that ∀ξ ∈ Lie(G), ιξT∗Q
ωnh = 0. By the definition of ωnh, this becomes

ιξT∗Q
ωcan + ιξT∗Q

d 〈M,A〉− ιξT∗Q
〈M,B〉= 0,

By the definition of the momentum map, ιξT∗Q
ωcan = d 〈M,ξ〉. Further, Cartan’s formula gives ιξT∗Q

d 〈M,A〉=LξT∗Q
〈M,A〉−

d 〈M,ξ〉. Finally, the definition of the curvature 2-form leads to

ιξT∗Q
〈M,B〉= 〈M,dA(hor(ξQ),hor(·))〉= 0,

since the horizontal component of a vertical vector field is zero. It remains to show that LξT∗Q
〈M,A〉 = 0, or equivalently

prove the invariance of 〈M,A〉 under the G-action. For every g ∈ G

T ∗(T ∗Φg)〈M,A〉=
〈
M◦T ∗Φg,A ◦T Φg−1

〉
=
〈
Ad∗gM,Adg−1 A

〉
= 〈M,A〉 ,

which is a consequence of the Ad-equivariance of A and M. This completes the proof that ι(Y1)ωnh = {0}.
Secondly, it should be shown that ιW ωnh = 0, ∀W ∈X(T ∗Q) where ιW ωcan = ∑

m
i=1 fiβi for smooth functions fi. That is,

it should be shown that for such W

ιW ωcan + ιW d 〈M,A〉− ιW 〈M,B〉= 0.

Since the interior product of W with any basic differential form with respect to the canonical projection map πQ vanishes,
the relation ιW 〈M,B〉= 0 holds. Therefore, it only remains to show that ιW d 〈M,A〉=−ιW ωcan:

ιW d 〈M,A〉= ιW

m

∑
i=1

d (Miβi) = ιW

m

∑
i=1

(dMi∧βi +Mi(dβi))

=
m

∑
i=1

(ιW dMi)βi =
m

∑
i=1

(−〈ιW ωcan,(ηi)T ∗Q〉)βi

=−
m

∑
j=1

m

∑
i=1

(
f j
〈
β j,(ηi)T ∗Q

〉)
βi

=−
m

∑
j=1

m

∑
i=1

(
f j
〈
α j,(ηi)Q

〉)
βi

=−
m

∑
i=1

fiβi =−ιW ωcan.

In the above calculation, the first equality follows from (2.11). The third equality is the result of the relations ιW dβi = 0 and
〈βi,W 〉 = 0. The definition of the momentum map leads to the forth equality, and the fifth and sixth equations follow from
the properties of W and βi. This completes the proof that ι(Y2)ωnh = {0}.

Note that the dimensions of Y1 and Y2 are both equal to m, since the vector fields { (ηi)T ∗Q| i = 1, · · · ,m} (spanning Y1)
and the 1-forms {βi| i = 1, · · · ,m} (forming Y2) are linearly independent at each point of T ∗Q.

Lemma 3.2 The 1-form λ ∈Ω1(T ∗Q) vanishes in the directions of the infinitesimal G-action, i.e., ι(Y1)λ = {0}.

Proof. Based on the definition of λ, to prove this lemma it is enough to show that the following equations hold ∀ξ ∈ Lie(G):

(a) LξT∗Q
H = ∑

m
i=1 Hi 〈βi,ξT ∗Q〉 ,

(b) LξT∗Q
Mi =

〈
ad∗ηi

M,A(ξQ)
〉
.
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(a): Let ξ = ∑
m
i=1 ξiηi be the coordinate expression of ξ in the chosen basis for Lie(G). The proof of this equation is a

consequence of the linearity of the infinitesimal group action and the relation 〈βi,ξT ∗Q〉= 〈αi,ξQ〉= ξi:

LξT∗Q
H =

m

∑
i=1

ξiL(ηi)T∗Q
(H) =

m

∑
i=1

ξiHi =
m

∑
i=1

Hi 〈βi,ξT ∗Q〉 .

(b): The second equation is the result of the following computation:

LξT∗Q
Mi = LξT∗Q

〈M,ηi〉=
∂

∂ε

∣∣∣∣
ε=0

〈
M◦T ∗Φexp(−εξ),ηi

〉
=

∂

∂ε

∣∣∣∣
ε=0

〈
Ad∗exp(−εξ)M,ηi

〉
=
〈

ad∗−ξ
M,ηi

〉
= 〈M, [ηi,ξ]〉=

〈
ad∗ηi

M,ξ
〉
=
〈
ad∗ηi

M,A(ξQ)
〉
. (3.18)

Corollary 3.3 The solution curves of the equation (3.17) are always in the submanifold M = FL(D)⊆ T ∗Q.

Proof. This corollary is a consequence of ι(Y2)ωnh = {0}. Let W be a vector field in Y2, with ιW ωcan = ∑
m
i=1 fiβi for

fi ∈C∞(T ∗Q). Contracting both sides of (3.17) with W leads to the equation 〈λ,W 〉 = 0. Let V be the Hamiltonian vector
field, i.e., ιV ωcan = dH. Based on the definition of λ and the fact that the contraction of W with any basic form (with respect
to the projection map πQ) vanishes:

0 = 〈dH,W 〉−
m

∑
i=1

γi 〈dMi,W 〉= 〈ιV ωcan,W 〉+
m

∑
i=1

γi fi

= 〈−ιW ωcan,V 〉+
m

∑
i=1

γi fi

=
m

∑
i=1

fi (−〈βi,V 〉+ γi) =
m

∑
i=1

fi (−〈αi,T πQ(V )〉+ γi) .

Since for every element (q, p) of the cotangent bundle T πQ(V )(q, p) = FL−1
q (p) and since the functions fis are arbitrary, the

above equation hold if and only if

〈
αi(q),FL−1

q (p)
〉
= γi(q),

for every i = 1, · · · ,m. Thus, (q, p) ∈ FL(D) = M . Therefore, any solution curve of the equation (3.17) must be in M .

Thus, the Hamilton-d’Alembert equation (3.17) does not have a solution outside of the constrained submanifold M .
In fact, there exists a unique vector field on M whose elements satisfy (3.17). Let IM : M ↪→ T ∗Q denote the canonical
inclusion map. The equation (3.17) can now be pulled back by IM to give the Hamilton-d’Alembert equation on M :

ιX̃ ω̃nh = λ̃, (3.19)

where ω̃nh = T ∗IM (ωnh), λ̃ = T ∗IM (λ), and TIM (X̃) = X ◦IM .

Note that Lemmas 3.1 and 3.2 state that the left and right terms in the equation (3.19) trivially vanish in the verti-
cal directions, i.e., the directions of the infinitesimal G-action. Both ω̃nh and λ̃ can be restricted to a horizontal vector
sub-bundle. Without loss of generality, assume that the vector field Y is always in the vertical sub-bundle of T Q cor-
responding to the G-action, i.e., Y ⊂ V . Therefore, both sides of (3.19) can be restricted to the horizontal sub-bundle
T ∆M :=

{
w̃ ∈ T M | T πQ|M (w̃) ∈ ∆

}
with the canonical inclusion map I∆ : T ∆M ↪→ T M . The tangent vector X satisfies
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(3.17) if and only if it satisfies

ιX̃ ω̃nh|T ∆M = λ̃

∣∣∣
T ∆M

. (3.20)

ω̃nh|T ∆M is a non-degenerate 2-form on the sub-bundle T ∆M .

3.2 Step 2: Quotienting the Constrained Phase Space
In this section under some conditions, the constrained phase space M with the Hamilton-d’Alembert equation (3.19)

on M are quotiented by a Lie group action. Let E be a Lie subgroup of G whose infinitesimal action on T ∗Q is tangent to
M . That is, M is invariant under the restricted E-action (to M ), which is denoted by Ψe : M →M for every e ∈ E. The
dimension of E is denoted by l and without loss of generality it is assumed that {ηi ∈ Lie(G)|i = 1, · · · , l ≤ m} is a basis for
Lie(E)⊆ Lie(G).

Corollary 3.4 The 2-form ω̃nh ∈Ω2(M ) and the 1-form λ̃ ∈Ω1(M ) vanish in the directions of the infinitesimal E-action.

Proof. This is the immediate consequence of Lemmas 3.1 and 3.2.

Lemma 3.5 The 2-form ω̃nh ∈Ω2(M ) is invariant under the action of E.

Proof. It suffices to show that ωnh ∈ Ω2(T ∗Q) is invariant under the G-action. Then, this lemma follows immediately,
considering the fact that M is invariant under the E-action.

Invariance of ωnh under the G-action is a consequence of the invariance of each of its terms: (a) The 2-form ωcan is
invariant under any cotangent lifted group action [1]; (b) Ad-equivariance of A and M results in the G-invariance of the
1-form 〈M,A〉 and hence its exterior derivative d 〈M,A〉; (c) Ad-equivariance of B and M results in the G-invariance of the
1-form 〈M,B〉.

To simplify the notation, let H̃i := Hi ◦IM , H̃i j := L(η j)M
(H̃i), γi j := L(η j)M

(γi), M̃i := Mi ◦IM and likewise M̃ :=
M◦IM for i = 1, · · · ,m and j = 1, · · · , l. The notation used for the pullback of βi, γi and A is the same as the corresponding
notation in the original phase space.

Lemma 3.6 The 1-form λ̃ ∈Ω1(M ) is invariant under the E-action if and only if the following relations hold:

dH̃ j =
m

∑
i=1

[
γi j

(
dM̃i−

〈
M̃,adηi A

〉)
+ H̃i jβi + H̃i

〈
η
∗
i ,adη j A

〉
−γi

(〈
M̃,ad[ηi,η j ]A

〉
−d
〈

M̃, [ηi,η j]
〉)]

. ( j = 1, · · · l) (3.21)

Proof. The proof is a straight forward calculation of the Lie derivative of the 1-form λ̃ in the directions of the infinitesimal
E-action. ∀ζ ∈ Lie(E),

ιζM
λ̃ = ιζM

[T ∗IM (λ)] = T ∗IM

[
ιζT∗Q

λ

]
= 0,

by Lemma 3.2. Hence,

LζM
λ̃ = ιζM

(dλ̃)+d
(

ιζM
λ̃

)
= ιζM

(dλ̃)

= T ∗IM

(
ιζT∗Q

(dλ)
)
.

By (3.16),

dλ =−
m

∑
i=1

[dγi∧ (dMi−〈M,adηi A〉)+dHi∧βi +Hidβi

−γid 〈M,adηi A〉] .
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Expressing ζ = ∑
l
j=1 ζ jη j in the chosen basis for Lie(E), the interior product of dλ with ζT ∗Q is calculated as:

ιζT∗Q
(dλ) =−

l

∑
j=1

ζ j

m

∑
i=1

[γi j (dMi−〈M,adηi A〉)

−
(

L(η j)T∗Q
Mi−

〈
M, [ηi,η j]

〉)
dγi

+Hi jβi−δ
j
i dHi +Hiι(η j)T∗Q

(dβi)

− γiι(η j)T∗Q
(d 〈M,adηi A〉)].

By (3.18) with ξ replaced by η j, the coefficient of dγi is zero for all i. Also,

ι(η j)T∗Q
(dβi) = L(η j)T∗Q

(βi)−d
(

ι(η j)T∗Q
(βi)
)
= L(η j)T∗Q

(βi)

=
∂

∂ε

∣∣∣∣
ε=0

〈
η
∗
i ,A ◦T Φexp(εη j)

〉
=
〈
η
∗
i ,adη j A

〉
,

by the Ad-equivariance of A . Further, due to the Ad-equivariance of A and M:

ι(η j)T∗Q
(d 〈M,adηi A〉) = L(η j)T∗Q

(〈M,adηi A〉)

−d
〈
M, [ηi,η j]

〉
=

∂

∂ε

∣∣∣∣
ε=0

〈
M◦T ∗Φexp(−εη j),adηi A ◦T Φexp(εη j)

〉
−d
〈
M, [ηi,η j]

〉
=

∂

∂ε

∣∣∣∣
ε=0

〈
Ad∗exp(−εη j)

M,adηiAdexp(εη j)A
〉

−d
〈
M, [ηi,η j]

〉
=
〈

M,ad[ηi,η j ]A
〉
−d
〈
M, [ηi,η j]

〉
.

Using the above calculations,

ιζT∗Q
(dλ) =−

l

∑
j=1

ζ j(−dH j +
m

∑
i=1

[γi j (dMi−〈M,adηi A〉)

+Hi jβi +Hi
〈
η
∗
i ,adη j A

〉
− γi

(〈
M,ad[ηi,η j ]A

〉
−d
〈
M, [ηi,η j]

〉)
]).

λ̃ is invariant under the E-action if and only if LζM
λ̃ = 0 for all ζ ∈ Lie(E). By Lemma 3.2 this holds if and only if

ιζT∗Q
dλ = 0, which is equivalent to the condition (3.21).

Corollary 3.7 In the following special cases the condition (3.21) is satisfied:

(a) For a Chaplygin system, where the distribution is linear (γi = 0), the Lie group E is all of G, and the Hamiltonian is
G-invariant,

(b) For a Hamiltonian mechanical system with symmetry, where the Hamiltonian is G-invariant, the constrained submani-
fold M is M−1(µ) for some constant µ ∈ Lie∗(G), and the Lie subgroup E is the isotropy group Gµ, and

(c) For a Hamiltonian mechanical system with holonomic constraints, where αi = d fi for fi ∈C∞(Q) and dH̃ j =∑
m
i=1 γi jdM̃i+

H̃i jT ∗πQ(d fi).

Based on Corollary 3.4 and under the condition (3.21), both sides of the Hamilton-d’Alembert equation (3.19) can be
expressed in the quotient manifold M /E, with the projection map π : M →M /E.
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Theorem 3.8 Under the assumptions (a), (b) and (c) stated in Definition 2.3, a constrained Hamiltonian mechanical system
with symmetry (T ∗Q,ωcan,H,D,E ⊆ G) can be reduced to a system whose dynamics is represented by (M /E, ω̂nh, λ̂), with
the Hamilton-d’Alembert equation

ιX̆ ω̆nh = λ̆, (3.22)

where T ∗π(ω̆nh) := ω̃nh, T ∗π(λ̆) := λ̃, and X̆ := T π(X̃).

Note that if l 6= m, the 2-form ω̆nh is still degenerate, and in the vertical directions the above equation trivially vanishes. In
order to remove the degeneracy, both sides of (3.22) could be restricted to T π(T ∆M ), the image of the horizontal distribution
under the quotient map.

3.3 Step 3: Identifying the Quotient Manifold M /E
In this section, a map is constructed from the quotient manifold M /E to a sub-bundle of the cotangent bundle of the

quotiented configuration space Q̂ := Q/E . The roadmap is to find an E-equivariant diffeomorphism from M to M−1(0) and
use the theory of cotangent bundle reduction at zero momentum.

Define the fibre-wise linear map P : T ∗Q→ T ∗Q by

Pq(p) := p−A∗q ◦Mq(p),

for all (q, p) ∈ T ∗q Q. The image of this map is the submanifold M−1(0)⊂ T ∗Q, since

Mq(p−A∗q ◦Mq(p)) = Mq(p)−φ
∗
q ◦A∗q ◦Mq(p)

= Mq(p)− (A ◦φ)∗q ◦Mq(p)

= Mq(p)−Mq(p) = 0.

This uses the definition of the momentum map and the relation Aq ◦ φq = IdLie(E). The map P is a projection map whose
restriction to the affine sub-bundle M is a diffeomorphism, denoted ρ := P ◦ IM : M →M−1(0). Indeed, this map is a
shear transformation along the span of αis (i = 1, · · · ,m), which is everywhere orthogonal to M with respect to the induced
metric on T ∗Q by K. In addition, the span of the αis is always transverse to M−1(0), since the αis were chosen such that
〈αi,(ηi)Q〉 =

〈
φ∗q(αi),ηi

〉
=
〈
Mq(αi),ηi

〉
= 1 for all i = 1, · · · ,m. Considering the fact that dim(M ) = dim(M−1(0)) and

the preceding argument, it follows that ρ is a diffeomorphism.
It is assumed that M is E-invariant, also M−1(0) is invariant under the cotangent lifted G-action (and hence, E-action).

Hence, the map ρ is E-equivariant due to the Ad-equivariance of M and A : ∀(q, p) ∈M and e ∈ E,

ρ(Ψe(q, p)) = Ψe(q, p)−A∗q ◦M(Ψe(q, p))

= Ψe(q, p)−A∗q ◦Ad∗e ◦Mq(p)

= Ψe(q, p)−Ψe ◦A∗q ◦Mq(p) = Ψe(ρ(q, p)).

As a result, this map descends to ρ̂ : M /E →M−1(0)/E, which is defined by the relation π0 ◦ρ = ρ̂ ◦π, where π0 is the
canonical projection map for the E-action on M−1(0). In the following, some notions and maps from the theory of cotangent
bundle reduction are briefly introduced. A comprehensive discussion can be found in [17] and the references therein.

In this theory, a map τ0 : M−1(0)→ T ∗Q̂ is defined by

〈
τ0(q, p),Tqπ̂(v)

〉
= 〈p,v〉 , (3.23)

for all (q, p) ∈M−1(0) and v ∈ TqQ, where Q̂ = Q/E and π̂ : Q→ Q̂ is the projection map. Further, a symplectic embedding
τ̂0 : M−1(0)/E→ T ∗Q̂ is determined by the relation τ̂0 ◦π0 = τ0, where T ∗τ̂0ω̂can =ω0 with ω̂can being the canonical 2-form
on T ∗Q̂ and ω0 the reduced symplectic 2-form that satisfies the relation T ∗I0ωcan = T ∗π0ω0. Here the map I0 : M−1(0) ↪→
T ∗Q is the inclusion map. The image of this embedding is the vector sub-bundle [T π̂(V )]0 ⊆ T ∗Q̂. Here, 0 indicates the
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annihilator with respect to the natural pairing of the tangent and cotangent bundle, and V = {ξQ ∈ X(Q)|ξ ∈ Lie(G)} ⊆ T Q
is the vertical bundle corresponding to the G-action. Composing with ρ̂ gives an embedding χ := τ̂0 ◦ ρ̂ : M /E → T ∗Q̂,
summarized in the following commuting diagram.

T ∗Q P // M−1(0) �
� I0 //

π0

��

τ0

$$

T ∗Q

M
?�

IM

OO

ρ

==

π

��

M−1(0)/E
τ̂0

// [T π̂(V )]0 ⊆ T ∗Q̂

M /E

ρ̂

==

χ

55

(3.24)

Lemma 3.9 The following relation holds:

T ∗(χ◦π)(ω̂can) = T ∗IM (ωcan +d 〈M,A〉). (3.25)

Proof. The above commuting diagram and the equality T ∗I0(ωcan) = T ∗π0(ω0) give the following relation:

T ∗(χ◦π)(ω̂can) = T ∗(̂τ0 ◦π0 ◦ρ)(ω̂can) = T ∗(π0 ◦ρ)(ω0)

= T ∗(I0 ◦ρ)(ωcan) = T ∗(I0 ◦P◦IM )(ωcan)

= T ∗IM T ∗(I0 ◦P)(ωcan)

= T ∗IM (ωcan +d 〈M,A〉).

The last equality is true because of the definition of the map P, which implies that T ∗(I0 ◦P)θcan = T ∗IM (θcan−〈M,A〉),
where θcan is the tautological 1-form with ωcan = dθcan.

Define a horizontal lift map hlM : [T π̂(V )]0→M to the affine sub-bundle M by

hlMq (p̂) = ρ
−1
q ◦ τ

−1
0 (q̂, p̂),

where (q̂, p̂) ∈ [T π̂(V )]0 and π̂(q) = q̂. Note that, by (3.23) τ
−1
0 (q̂, p̂) = T ∗q π̂(p̂).

Lemma 3.10 The map hlM is E-equivariant.

Proof. It suffices to show that ∀e ∈ E and ∀q ∈ Q,

hlM
Φe(q) = T ∗Φe−1 ◦hlMq .

The definition of hlM and the E-equivariance of ρ give

hlM
Φe(q) = ρ

−1
Φe(q)

◦T ∗
Φe(q)π̂ = ρ

−1
Φe(q)

◦T ∗Φe−1 ◦T ∗q π̂

= (T ∗Φe ◦ρΦe(q))
−1 ◦T ∗q π̂ = (ρq ◦T ∗Φe)

−1 ◦T ∗q π̂

= T ∗Φe−1 ◦ρ
−1
q ◦T ∗q π̂ = T ∗Φe−1 ◦hlMq .
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Fig. 1. A rover on a rotating disk with angular velocity Σ

Based on this lemma and the Ad-equivariance of the maps A and M, a 2-form Ξ̂ on [T π̂(V )]0 is then defined by

Ξ̂ =
〈

M◦IM ◦hlM ,B(hl(·),hl(·))
〉
, (3.26)

where hlq = (Tqπ̂
∣∣
Ĥq
)−1 is the horizontal lift map of the quotient map π̂ corresponding to the E-action, and Ĥ is its horizontal

bundle. Also, there exists a unique 1-form λ̂ ∈Ω1([T π̂(V )]0) that is the pullback of λ̃ by hlM :

λ̂ = T ∗hlM (̃λ).

Theorem 3.11 The dynamics of the reduced constrained Hamiltonian mechanical system with symmetry (M /E, ω̆nh, λ̆) can
be presented in the sub-bundle [T π̂(V )]0 ⊆ T ∗Q̂ through the Hamilton-d’Alembert equation

ιX̂ ω̂nh = λ̂, (3.27)

where ω̂nh := ω̂can− Ξ̂, λ̂ := T ∗hlM (̃λ), and X̂ := T χ(X̆).

4 Case Study
In this section the dynamics of a symmetric Hamiltonian mechanical system with affine nonholonomic constraints is

studied. The geometric approach introduced in this paper is used to systematically reduce the dynamical equations of a
two-wheeled, differential drive rover on a rotating disk (with infinite radius). The top view of the system is shown in Fig. 1.
To maintain the stability, a roller caster is needed in front of the system mass center; its dynamics is disregarded in this
case study. The configuration manifold Q of this system is of dimension five and it is diffeomorphic to the Lie group
SE(2)×SO(2)×SO(2). In a parametrization, any element of Q can be represented by q = (x,y,θ,ϑ1,ϑ2), where

(a) (x,y) specifies the position of the point C with respect to the inertial coordinate frame,
(b) θ is the heading angle of the rover with respect to the X0-axis, and
(c) ϑ1 and ϑ2 are the rotation angles of the wheels.

The coordinate frame X0Y0Z0 is an inertial frame at the center of the rotating disk. The Z0-axis is perpendicular to the plane
of motion. The constant angular velocity of the disk about Z0 is denoted by Σ.

The momenta conjugate to the states of the system are then denoted by the vector p = [px, py, pθ, pϑ1 , pϑ2 ]
T ; hence,

(q, p) is in the cotangent bundle T ∗Q. Here, [px, py]
T is the total linear momentum of the system with respect to X0Y0Z0 and

pθ is the total angular momentum of the system about the point C. In this section the proposed reduction theory is formulated
step-by-step. Throughout this section, the relations are presented as matrix equations, wherever this is convenient. However,
for calculating exterior and Lie derivatives of forms, the language of differential forms is used. Then, the final results are
presented in matrix form.
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Based on the kinetic energy of the system, the Legendre transformation FL : T Q→ T ∗Q is calculated in the local
coordinates by the fibre-wise linear map:

FLq =


M 0 −Ml0 sin(θ) 0 0
0 M Ml0 cos(θ) 0 0

−Ml0 sin(θ) Ml0 cos(θ) Jr 0 0
0 0 0 Jw 0
0 0 0 0 Jw

 ,

where M is the total mass of the rover, l0 is the distance of the centre of mass from the point C, Jr is the moment of inertia
of the system about C, and Jw is the wheels moment of inertia about their axle. The Hamiltonian is the total energy of the
system:

H(q, p) =
1
2

pTFL−1
q p

=
p2

ϑ1
+ p2

ϑ2

2Jw
+

1
2(Jr−Ml2

0)
((Jr−Ml2

0 cos2(θ))
p2

x

M

+(Jr−Ml2
0 sin2(θ))

p2
y

M
− l2

0 px py sin(2θ)+ p2
θ

+2l0 pθ(px sin(θ)− py cos(θ)))

The rover is experiencing nonholonomic constraints corresponding to the no-slip conditions at the wheels. The three linearly
independent 1-forms describing these constraints are

− sin(θ)dx+ cos(θ)dy,

cos(θ)dx+ sin(θ)dy−bdθ− rwdϑ1,

cos(θ)dx+ sin(θ)dy+bdθ− rwdϑ2.

Here, b denotes the distance from the point C to each wheel and rw is the radius of the wheels. In this case study, the vector
field Y that defines the affine nonholonomic distribution is determined as

Y (q) = Σ

(
−y

∂

∂x
+ x

∂

∂y
+

∂

∂θ

)
.

This vector field specifies the linear and angular velocity of a coordinate frame attached to the point C induced by the rotating
disk. The linear distribution ∆ can then be written as the point-wise span of the following smooth vector fields:

∆(q) = span
{

∂

∂ϑ1
+

rw

2

(
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y
− 1

b
∂

∂θ

)
,

∂

∂ϑ2
+

rw

2

(
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y
+

1
b

∂

∂θ

)}
.

When the angular velocity of the disk is zero, these vector fields summarize the relationship between the speed of the wheels
and the speed of the rover in the plane of motion. The affine distribution is then D = ∆+Y . Let the Lie group G be SE(2),
in this case study, with an action on Q defined by the left translation on the relative configuration manifold of the rover with
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respect to the inertial coordinate frame X0Y0Z0. That is, ∀g = (x0,y0,θ0) ∈ SE(2)

Φg(q) = (xcos(θ0)− ysin(θ0)+ x0,xsin(θ0)+ ycos(θ0)+ y0,

θ+θ0,ϑ1,ϑ2).

In the matrix representation, the following elements of se(2) are considered as the basis for the Lie algebra:

η1 =

0 0 1
0 0 0
0 0 0

 ,η2 =

0 0 0
0 0 1
0 0 0

 ,η3 =

0 −1 0
1 0 0
0 0 0

 ,
which correspond to the linear motion in the X and Y directions and angular motion about the Z axis, respectively. Then in
this basis, the infinitesimal action of se(2) can be represented by the fibre-wise linear map:

φq =

 1 0 0 0 0
0 1 0 0 0
−y x 1 0 0

T

,

and the momentum map is determined through Mq = φT
q , such that

Mq(p) =
[
px py −ypx + xpy + pθ

]T
.

The last component of the momentum map is the total angular momentum of the rover about the Z0 axis.

Based on the definition of the infinitesimal action, the induced vector fields corresponding to the basis elements of se(2)
are determined as

(η1)Q =
∂

∂x
,(η2)Q =

∂

∂y
,(η3)Q =−y

∂

∂x
+ x

∂

∂y
+

∂

∂θ
.

The quotient manifold Q = Q/SE(2) gives rise to the principal bundle π : Q→ Q with the Ad-equivariant principal
connection A : T Q→ se(2) whose matrix representation in the chosen basis for se(2) is

Aq =
3

∑
i=1

αiηi

:=

1 0 y − rw
2

(
cos(θ)− y

b

)
− rw

2

(
cos(θ)+ y

b

)
0 1 −x − rw

2

(
sin(θ)+ x

b

)
− rw

2

(
sin(θ)− x

b

)
0 0 1 rw

2b − rw
2b

 ,
where the relation

〈
αi,(η j)Q

〉
= δ

j
i holds for every i, j = 1,2,3. In this case study, the functions γi are then calculated through

γ1(q) = 〈α1,Y 〉= 0,γ2(q) = 〈α2,Y 〉= 0,γ3(q) = 〈α3,Y 〉= Σ.

The quotient manifold Q is the shape space of the system whose elements correspond to the internal degrees of freedom of the
rover, i.e., the wheel angles. Further, the principal connection is used to define the vertical projection map by verq = φqAq.
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Therefore, the horizontal projection corresponding to this connection is

horq = 15×5−φqAq =


0 0 0 rw cos(θ)

2
rw cos(θ)

2
0 0 0 rw sin(θ)

2
rw sin(θ)

2
0 0 0 − rw

2b
rw
2b

0 0 0 1 0
0 0 0 0 1

 .

At each q, this transformation maps a velocity of the system to its corresponding velocity in the distribution ∆.

Let dot denote the time derivative. Then the vector field X = [q̇, ṗ]T satisfies the Hamilton-d’Alembert equation (2.4):

[
05×5 −15×5
15×5 05×5

][
q̇
ṗ

]
=

[
∂H/∂q
∂H/∂p

]
+κ1




1
0
y

− rw
2 (cos(θ)− y

b )
− rw

2 (cos(θ)+ y
b )


05×1



+κ2




0
1
−x

− rw
2 (sin(θ)+ x

b )
− rw

2 (sin(θ)− x
b )


05×1

+κ3




0
0
1
rw
2b
− rw

2b


05×1

 , (4.28)

with the constraint equation Aqq̇ = [0 0 Σ]T . As expected, the right hand side of this constraint equation is non-zero.

As the result of eliminating the Lagrange multipliers and restricting the dynamical equations to the constrained phase
space of the system, the two form ωnh and the 1- form λ are determined in the following.

The components of the 2-form ωnh =ωcan+d 〈M,A〉−〈M,B〉 are then calculated, and later they are presented in matrix
form for the chosen local coordinates.

ωcan =−d px∧dx−d py∧dy−d pθ∧dθ

−d pϑ1 ∧dϑ1−d pϑ2 ∧dϑ2,

d 〈M,A〉= d px∧dx+d py∧dy+d pθ∧dθ

− rw

2

[
d
(

px cos(θ)+ py sin(θ)− pθ

b

)
∧dϑ1

+d
(

px cos(θ)+ py sin(θ)+
pθ

b

)
∧dϑ2

]
.

In order to determine 〈M,B〉= 〈M,dA(hor(·),hor(·))〉, first the 2-form 〈M,dA〉 is calculated, then 〈M,B〉 is formed in the
matrix form.

〈M,dA〉= px

[
dy∧dθ− rw

2
d
(

cos(θ)− y
b

)
∧dϑ1

− rw

2
d
(

cos(θ)+
y
b

)
∧dϑ2

]
+ py [−dx∧dθ

− rw

2
d
(

sin(θ)+
x
b

)
∧dϑ1−

rw

2
d
(

sin(θ)− x
b

)
∧dϑ2

]
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Hence, as a 2-form on Q

〈M,B〉= horT
q


0 0 py

pyrw
2b − pyrw

2b
0 0 −px − pxrw

2b
pxrw
2b

−py px 0 − p0rw
2 − p0rw

2
− pyrw

2b
pxrw
2b

p0rw
2 0 0

pyrw
2b − pxrw

2b
p0rw

2 0 0

horq

=

03×3 03×2

02×3

[
0 r2

w p0
2b

− r2
w p0
2b 0

] ,
where p0 = px sin(θ)− py cos(θ). As the result, in matrix form the 2-form ωnh is given by

ωnh =


[

02×2 02×3
03×2 U

] [
03×3 03×2

K −12×2

]
[

03×3 −KT

02×3 12×2

]
05×5

 ,

where

U =
rw p0

2

0 −1 −1
1 0 − rw

b
1 rw

b 0

 , K =− rw

2

[
cos(θ) sin(θ) − 1

b
cos(θ) sin(θ) 1

b

]
.

As expected, the point-wise kernel of the nonholonomic 2-form ωnh is:

span
{

ω
−1
can(βi),(ηi)T ∗Q

∣∣ i = 1,2,3
}
,

where

(η1)T ∗Q =
∂

∂x
,(η2)T ∗Q =

∂

∂y
,

(η3)T ∗Q =−y
∂

∂x
+ x

∂

∂y
+

∂

∂θ
− py

∂

∂px
+ px

∂

∂py

are the induced vector fields on the phase space of the system (T ∗Q), due to the G-action.

The 1-form λ can be calculated through (3.16). Note that this equation can be simplified knowing the fact that the
functions γ1 = γ2 = H1 = H2 = H3 ≡ 0. The non-zero terms of this equation in matrix form are calculated as:

dH =



02×1
l2
0 sin(2θ)(p2

x−p2
y)−2l0 px py cos(2θ)+2l0 pθ(px cos(θ)+py sin(θ))

2(Jr−Ml2
0 )

02×1
2(Jr−Ml2

0 cos2(θ))px−Ml2
0 py sin(2θ)+2Ml0 pθ sin(θ)

2M(Jr−Ml2
0 )

2(Jr−Ml2
0 sin2(θ))py−Ml2

0 px sin(2θ)−2Ml0 pθ cos(θ)
2M(Jr−Ml2

0 )
pθ+l0(px sin(θ)−py cos(θ))

Jr−Ml2
0pϑ1

Jwpϑ2
Jw


,
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γ3(
〈
ad∗η3

M,A
〉
−dM3) = Σ



02×1
xpx + ypy

rw
2

(
p0 +

xpx+ypy
b

)
rw
2

(
p0−

xpx+ypy
b

)
y
−x
−1

02×1


;

hence, λ = dH + γ3(
〈
ad∗η3

M,A
〉
−dM3), and (4.28) could be rewritten in the following form:

ωnh

[
q̇
ṗ

]
= λ. (4.29)

In this case study, λ contains not only the derivative of the Hamiltonian but also the rotational velocity of the disk. This
1-form, unlike in Hamilton’s equation, fails to be exact, and it vanishes in the directions of the infinitesimal action of se(2)
on T ∗Q.

Let the vector [pϑ1 pϑ2 ]
T be denoted by p̃. The constrained submanifold M = FL(D) can then be parametrized using

(q, p̃) with the inclusion map:

IM (q, p̃) = Aq p̃+Bq :=

Mrw
2Jw

(
cos(θ)+ l0

b sin(θ)
)

Mrw
2Jw

(
cos(θ)− l0

b sin(θ)
)

Mrw
2Jw

(
sin(θ)− l0

b cos(θ)
)

Mrw
2Jw

(
sin(θ)+ l0

b cos(θ)
)

− Jrrw
2bJw

Jrrw
2bJw

1 0
0 1

 p̃

+Σ


M(−y− l0 sin(θ))
M(x+ l0 cos(θ))

Ml0(ysin(θ)+ xcos(θ))+ Jr
02×1

 .

Note that M is an affine vector sub-bundle of T ∗Q, and the inclusion map IM is the identity map on Q. The associated
tangent map TIM : T M → T (T ∗Q) is then given by:

TIM =

[
15×5 05×5

∂Aq
∂q p̃+ ∂Bq

∂q Aq

]
,
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where

∂Aq

∂q
p̃ =

Mrw

2Jw


02×5−sin(θ)(pϑ1 + pϑ2)+

l0
b cos(θ)(pϑ1 − pϑ2)

cos(θ)(pϑ1 + pϑ2)+
l0
b sin(θ)(pϑ1 − pϑ2)

03×1

T

02×5


T

,

∂Bq

∂q
=

ΣM


 0 −1 −l0 cos(θ)

1 0 −l0 sin(θ)
l0 cos(θ) l0 sin(θ) l0(ycos(θ)− xsin(θ))

 03×2

02×3 02×2

 .

This tangent map can be used to express a tangent vector to M (at a point) in the ambient manifold, i.e. T ∗Q. Hence, the
pullback of the nonholonomic 2-form ωnh and the 1-form λ are computed through restricting to the submanifold M and then
multiplying by TIM and its transpose:

ω̃nh = (TIM )T (ωnh ◦IM )(TIM ),

λ̃ = (TIM )T (λ◦IM ). (4.30)

The Hamilton-d’Alembert equation on M then reads:

ω̃nh

[
q̇
˙̃p

]
= λ̃. (4.31)

This equation includes 7 ordinary differential equations. Note that the 2-form ω̃nh is still degenerate. Restricting this
equation to the horizontal vector sub-bundle T ∆M would eliminate the degeneracy in the equation and it results in 4 ordinary
differential equations on the 7-dimensional phase space M . Let ˙̃q denote the vector [ϑ̇1 ϑ̇2]

T , which corresponds to the
velocities in the direction of ϑ1 and ϑ2. In the local coordinates, the vector sub-bundle T ∆M can be parametrized by (q, ˙̃q),
such that the inclusion map I∆ has the following form:

I∆(q, ˙̃q) =Cq ˙̃q :=


rw cos(θ)

2
rw cos(θ)

2
rw sin(θ)

2
rw sin(θ)

2
− rw

2b
rw
2b

1 0
0 1

 ˙̃q.

This map is the identity map on the phase space M and the portion of its tangent bundle corresponding to the momenta pϑ1
and pϑ2 . Therefore, the restriction to the horizontal vector sub-bundle T ∆M is given by:

[
CT

q 05×2
02×2 12×2

]
ω̃nh

[
Cq 05×2

02×2 12×2

][ ˙̃q
˙̃p

]
=

[
CT

q 05×2
02×2 12×2

]
λ̃.

In this case study, consider the subgroup E = SO(2) of G = SE(2). The distribution D and the Legendre transformation
FL are both invariant under the action of E. Therefore, M is invariant under the E-action. The condition (3.21) holds with
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both sides equal to zero. In the local coordinates, the projection map π̂ : Q→ Q̂ = Q/SO(2) becomes

q̂ = π̂(q) = (σ :=
√

x2 + y2,ψ := tan−1(
y
x
)−θ,ϑ1,ϑ2),

where (σ,ψ+ θ) can be interpreted as the polar coordinates for the position of the point C on the rover. That is, σ is the
distance of C from the origin of the inertial frame and ψ+θ is the angle of the position vector from the X0-axis. The induced
tangent map T π̂ is given in the local coordinates:

Tqπ̂ =


x√

x2+y2
y√

x2+y2
0 0 0

− y
x2+y2

x
x2+y2 −1 0 0

0 0 0 1 0
0 0 0 0 1

 ,

and the corresponding cotangent lifted map is the transpose of this matrix.

In order to identify the Hamilton-d’Alembert equation on the cotangent bundle of the quotient manifold Q̂, the fibre-wise
linear map P should be formed first. This map is from the original phase space T ∗Q to M−1(0), which can be expressed in
the local coordinates as:

M−1(0) = { (q, p) ∈ T ∗Q| px = py = pθ = 0} .

In matrix form, the map Pq reads,

Pq = 15×5−A∗q Mq =

 03×3 03×2

rw
2

[
cos(θ) sin(θ) − 1

b
cos(θ) sin(θ) 1

b

]
12×2

 .
This map is a projection to the submanifold M−1(0). Restricting the domain and range of Pq to the submanifolds M and
M−1(0), respectively, gives the map ρ. Since the nonholonomic distribution is affine, this map is no longer linear, and its
inverse is computed by:

ρ
−1
q (p) = (PqAq)

−1(p−PqBq) =: S−1
(p−T ),

where in local coordinates (q, p) ∈M−1(0), and

Pq =

[
rw
2

[
cos(θ) sin(θ) − 1

b
cos(θ) sin(θ) 1

b

]
12×2

]
,

S =
r2

w

4Jw

[
M+ Jr

b2 +
4Jw
r2
w

M− Jr
b2

M− Jr
b2 M+ Jr

b2 +
4Jw
r2
w

]
,

T =− rwMΣ

2

[
σsin(ψ)+ l0

b σcos(ψ)+ Jr
bM

σsin(ψ)− l0
b σcos(ψ)− Jr

bM

]
.

Let the vector p̂= [p̂σ p̂ψ p̂ϑ1 p̂ϑ2 ]
T denote the momenta conjugate to q̂=(σ,ψ,ϑ1,ϑ2), such that an element of the cotangent

bundle of the reduced configuration manifold Q̂ may be represented by (q̂, p̂). Hence, the vector sub-bundle [T π̂(V )]0 can
be parametrized through:

[T π̂(V )]0 =
{
(q̂, p̂) ∈ T ∗Q̂

∣∣∣ p̂σ = p̂ψ = 0
}
.
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Note that the maps τ0 and T ∗π̂ are fibre-wise identity maps, when they are restricted to this vector sub-bundle. Therefore,
the horizontal lift map hlMq is given by:

hlMq (p̂1) = S−1
(p̂1−T ),

where the vector p̂1 = [p̂ϑ1 p̂ϑ2 ]
T is used to parametrize the reduced phase space [T π̂(V )]0. This map relates the momenta

in the reduced phase space of the system to the feasible momenta of the system in the original phase space. Now, through
introducing the horizontal lift map hlq for the E-action that relates the corresponding velocities, the 2-form Ξ̂∈Ω2([T π̂(V )]0)
in the matrix form becomes

Ξ̂ =
r2

w p̂0

2b


02×2 02×2

02×2

[
0 1
−1 0

] 04×2

02×4 02×2

 ,

where

p̂0 =
Ml0rw

2bJw
(pϑ1 − pϑ2)−ΣM(l0 +σcos(ψ)),

and where

[
pϑ1
pϑ2

]
= hlMq (p̂1).

This 2-form corresponds to the constraint forces at the wheels due to the no-slip condition on a rotating disk.

Hence, the 2-form ωnh descends to the following 2-form on the reduced phase space [T π̂(V )]0 :

ω̂nh = ω̂can− Ξ̂ =


02×2 02×2

02×2

[
0 − r2

w p̂0
2b

r2
w p̂0
2b 0

] [ 02×2
−12×2

]
[
02×2 12×2

]
02×2

 .

Finally in order to calculate λ̂ ∈Ω1([T π̂(V )]0), the following relations are substituted in the formula (4.30) for λ̃:

x = σcos(ψ+θ), y = σsin(ψ+θ), p̃ = hlMq (p̂1).

Then the matrix Ŵ is formed, such that λ̂ = Ŵ T λ̃:

Ŵ =




cos(ψ+θ) −σsin(ψ+θ) 0 0
sin(ψ+θ) σcos(ψ+θ) 0 0

0 0 0 0
0 0 1 0
0 0 0 1

 05×2

−S−1 ∂T
∂q̂ S−1

 ,
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where

∂T
∂q̂

=

[
sin(ψ)+ l0

b cos(ψ) σcos(ψ)− l0
b σsin(ψ) 0 0

sin(ψ)− l0
b cos(ψ) σcos(ψ)+ l0

b σsin(ψ) 0 0

]
.

Although the matrix Ŵ and the 1-form λ̃ depend on variable θ, the 1-form λ̂ is independent of this variable, by Lemma 3.6.
Therefore, the Hamilton-d’Alembert equation on [T π̂(V )]0 reads:

ω̂nh

[ ˙̂q
˙̂p1

]
= λ̂,

whose first two equations for σ̇ and ψ̇ are trivially satisfied. Let ˙̂q1 = [ϑ̇1 ϑ̇2]
T . Therefore the full dynamics of the system

can be captured by the following 4 differential equations on the reduced phase space [T π̂(V )]0:

[
04×2 14×4

]
ω̂nh

[
02×4
14×4

][ ˙̂q1
˙̂p1

]
=
[
04×2 14×4

]
λ̂. (4.32)

The reconstruction equations on Q̂ are then used to determine the rest of the states of the system:

[
σ̇

ψ̇

]
=

rw

2

[
cos(ψ) cos(ψ)

− 1
σ

sin(ψ)+ 1
b − 1

σ
sin(ψ)− 1

b

][
ϑ̇1
ϑ̇2

]
. (4.33)

5 Conclusions
A geometric approach to the dynamical reduction of a class of constrained Hamiltonian mechanical systems with sym-

metry was introduced. This approach considers constraints in the form of affine nonholonomic distributions and unifies
the symplectic and Chaplygin reduction theorems for holonomic and nonholonomic systems, respectively. The proposed
reduction approach consists of three main steps:

(a) The Hamilton-d’Alembert equation is restricted to the constrained phase space M = FL(D), through calculating the
Lagrange multipliers and introducing the 2-form ωnh. Then, both sides of the restricted equations are pulled back by the
inclusion map IM : M → T ∗Q.

(b) Under the conditions of Lemma 3.6, which replace the invariance of the Hamiltonian, the dynamical equations on the
constrained phase space M are E-invariant. Hence, the dynamical equations of the mechanical system can be expressed
in the quotient manifold M /E.

(c) The quotient manifold is identified with the affine sub-bundle [T π̂(V )]0 ⊆ T ∗(Q/E).

As a case study, the abovementioned reduction method was performed for a two-wheeled rover on a rotating disk. The
dynamical equations of this system was reduced from 10 first-order differential equations with 3 constraints to 4 dynamical
equations plus 2 reconstruction equations. These equations were expressed on a sub-bundle of the cotangent bundle that
could be parametrized by the momenta conjugate to the wheel angles.
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List of Figure Captions
Fig. 1. A rover on a rotating disk with angular velocity Σ
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