ROBIN CHHABRA

ROBIN CHHABRA		
Mechanical and Aerospace Engineering 1125 Colonel By Drive 11(613)	n.chhabra@carleton.ca \$\(\pi\) (1)(647) 898-2471) 520-2600 (Ext. 4251) eton.ca/space-robotics	
EMPLOYMENT		
 Carleton University, Canada Canada Research Chair, Tier 2, in Autonomous Space Robotics and Mechatronics Assistant Professor, Mechanical and Aerospace Engineering Director, Autonomous Space Robotics and Mechatronics Laboratory (ASRoM-Lab) 	2018/10- 2018/01- 2018/01-	
• MacDonald, Dettwiler and Associates (MDA), Canada Engineer, Guidance, Navigation and Control - Space Robotics & Space Systems	2014/07-2017/12	
 University of Calgary, Canada Postdoctoral Fellow, Mathematics and Statistics - Geometric Mechanics Course Instructor, Mathematics and Statistics - Multivariate Calculus 	2014/01-2014/06 2014/01-2014/04	
 University of Toronto, Canada Research Assistant, Mathematics - Geometric Mechanics and Control Research Assistant, Institute for Aerospace Studies - Robotics & Mechatronics Course Instructor, Institute for Aerospace Studies - Aerospace Laboratory 1&2 	2010/01-2013/12 2007/01-2013/12 2009/09-2010/04	
EDUCATION		
• Doctor of Philosophy, Aerospace Science and Engineering - Space Robotics Minor: Mathematics - Geometric Mechanics and Control University of Toronto, Canada Advisors: M. Reza Emami & Yael Karshon	2013	
• Master of Applied Science, Aerospace Science and Engineering - Mechatronics University of Toronto, Canada Advisor: M. Reza Emami	2008	
• Bachelor of Applied Science (with Honours), Aerospace Engineering Sharif University of Technology, Iran Thesis Advisor: Fariborz Saghafi	2006	
AWARDS AND HONOURS		
• Certificate of Reviewing, Mechatronics journal (Elsevier) In recognition of the review made for Mechatronics journal	2017/12	
• Certificate of Outstanding Contribution in Reviewing, Mechatronics journal (In recognition of the contributions made to the quality of Mechatronics journal	(Elsevier) 2017/12	
• Honorary Acknowledgement of Service and Leadership, MDA In recognition of the contributions and leadership as a multibody dynamics engineer o and LSM programs	on the L&SE, ExoMars 2016/06	
• University of Toronto fellowship, University of Toronto	2007-2013	
• Departmental International Tuition Award, University of Toronto	2007-2010	
• Frank Howard Guest Bursary on Academic Achievements, University of Toro	onto 2008/04	
RESEARCH FUNDING AND GRANTS	,	
UNDER REVIEW		
• Innovation for Defence Excellence and Security (IDEaS), (Co-Investigator-\$1 Hierarchical Robust Autonomy of Cooperative Reconfigurable Multi-agent Robotic Systems (IDEaS)		
• NSERC Discovery Grant (PI-\$300,000) Resilient Space Robotics: Towards Autonomy of Next-generation Space Missions.	2019-2024	
• Ontario Research Fund (ORF). (PI-\$60,000) A Robotic Hardware-in-the-loop Test Facility for Space Technologies.	2018	
 <u>AWARDED</u> Canada Research Chair (CRC), Tier 2. (PI-\$500,000) Advanced Autonomy of Next-generation Space Missions. 	2018-2023	

• Unrestricted Research Fund from OVPRI at Carleton (PI-\$50,000)	2018-2023
• Canada Foundation for Innovation (CFI), John R. Evans Leaders Fund. (PI-\$60,000 A Robotic Hardware-in-the-loop Test Facility for Space Technologies.	0) 2018
• Start-up Fund (PI-\$50,000)	2018-
• NSERC General Research Fund (GRF) (PI-\$10,000)	2018-2023
• Mitacs Accelerate International (PI-\$15,000) Rapid Operations Planning for Space Robotics Using Machine Learning.	2018/08-2018/12
$\underline{ ext{COMPLETED}}$	
• Canadian Space Agency (CSA) (Co-Investigator-\$50,000) On-orbit Calibration of SSRMS FMS. (MDA-International Space Station program)	2016/03-2017/12
• Canadian Space Agency (CSA) (Co-Investigator-\$20,000) Optimization of Point Turn Kinematics. (MDA-Mars Exploration Science Rover program	2016/03-2016/07
• Canadian Space Agency (CSA) (Co-Investigator-\$75,000) LELR Control Enhancement. (MDA-Lunar Exploration Analogue Deployment program)	2015/01-2016/01
• Canadian Space Agency (CSA) (Co-Investigator-\$300,000) SPOTS Orbital Dynamics. (MDA-International Space Station program)	2014/07-2015/12
ADMINISTRATIVE ACTIVITIES	
• Member, NSERC PhD Evaluation Committee, Carleton University	2018/09-2018/12
• Member, Curriculum Committee - Aerospace, Carleton University	2018/07-2019/06
• Member, Dynamics and Controls Strand Committee, Carleton University	2018/07-2019/06
• Member, Space Station Operation and Training Simulator Committee, MDA	2016/07-2017/12
• Project Lead, Orbital Effects on Capture and Release of Visiting Vehicles at ISS, MDA	2014/10 - 2017/12
• Representative, Graduate Student Union, University of Toronto	2008-2009
• Executive Member, Aerospace Engineering Student Union, Sharif University of Technology	logy 2002-2005
PROFESSIONAL MEMBERSHIPS	
• Member, Institute of Electrical and Electronics Engineers (IEEE) IEEE Young Professionals IEEE Robotics and Automation Society IEEE Systems Council	2016/01- 2016/01- 2016/01- 2018/01-
• Member, American Society of Mechanical Engineers (ASME)	2018/01-
• Member, American Institute of Aeronautics and Astronautics (AIAA)	2018/01-
• Panelist, Ontario Aerospace Council, Research and Technology Committee	2019/03
ORGANIZED EVENTS	
• Tour of Laboratories at Carleton University, Ontario Ministry of Economic Develation and Trade	lopment, Job Cre- 2018/08/03
ATTENDED MEETINGS	
 EU Delegation on Space Application Technologies, Carleton University, Ottawa Discussed my research on space technologies and its terrestrial applications 	2018/09/12
 Autonomous and Connected Systems Meeting, Carleton University, Ottawa Presented my research on guidance, navigation and control of space robotics 	2018/07/18
• Brown Bag Lunch, Autonomous Systems Research Centre, Carleton University, Ottawa Met with executives of companies active in autonomous and connected vehicles	2018/04/25
• 2018 Ontario Aerospace Council (OAC) Research and Technology Event, Toronto Presented Carleton University's research capabilities in aerospace sector SUPERVISORY ACTIVITIES	2018/03/07-08
PHD STUDENTS (ONGOING)	2010/01
1. Khaled Helal (Co-supervised with Prof. El Sayed), Carleton University High Fidelity Dynamic Agreelesticity Response Analysis and Active Vibration Control	2019/01-

Aero-Structures Subject to Aerodynamic Gust

High Fidelity Dynamic Aeroelasticity Response Analysis and Active Vibration Control of High Precision

2. Mahmoud Elessawy (Co-supervised with Prof. El Sayed), Carleton University Observer-based Hybrid Control of Hyper-flexible Light Space Manipulators 2018/09-

MASC STUDENTS (ONGOING)

- 1. Patrick Rousso, Carleton University 2018/09-Optimal Momentum Strategy for Angular Synchronization of Chaser-manipulator System with Noncooperative Debris
- 2. Borna Monazzah Moghaddam, Carleton University 2018/09-Optimal Trajectory Planning and Control of Space Manipulators for Proximity Operations in Space Debris Removal Missions

BASC STUDENTS (COMPLETED)

- 1. Ken Zheng Zhong (contributed to mentoring), University of Toronto 2012-2013

 Development of an integrated design and simulation environment for concurrent base-arm motion control of space manipulators
- 2. Murilo Gonçalves Quevedo (contributed to mentoring), University of Toronto 2013

 Design and development of a free-base robot including structural analysis, selection of materials and off-the-shelf parts, assembly, and testing

ENGINEERS (COMPLETED)

- 1. Alex Jacob, MASc (supervised in a research study), MDA

 An alternative dynamics formulation to address SPOTS limitations for DSXR application, a study of geometry of elastic multi-bodies
- 2. Tomohisa Oki, PhD (supervised in a research study), MDA 2017
 An alternative dynamics formulation to address SPOTS limitations for DSXR application, a study of geometry of elastic multi-bodies

INTERNS AND JUNIOR ENGINEERS (COMPLETED)

- 1. Phoenix Roy (mentored), MDA Contact dynamics in SPOTS
- 2. Angelica Hassan (mentored), MDA
 Payload insertion into Dragon trunk using SSRMS in FMA mode
- 3. Mohammed Kagalwala (mentored), MDA Spacecraft dynamics and control

2016

2017

2016

RESEARCH INTERESTS

Dynamical reduction and nonlinear control of underactuated space systems; Nonlinear and affine nonholonomic constraints; Nonholonomically constrained systems with symmetry; Path planning and control of constrained space robotic systems at singularity; Lie Groupoids for kinematics; Nonlinear modal analysis of elastic space robotic systems; Orbital perturbations for elastic multibody systems; Robust and adaptive geometric control of planetary exploration rovers; Higher order Lagrangian systems with symmetry; Geometric modeling of multiphysics systems; Multi-objective optimization; Fuzzy-based concurrent design; Hardware-in-the-loop simulation.

RESEARCH CONTRIBUTIONS

PUBLICATIONS

Journal Papers in Preparation

- 1. R. Chhabra, "Robust Control of Uncertain Hamiltonian Systems with Constraints," To be submitted to International Journal of Robust and Nonlinear Control, 2018.
- 2. R. Chhabra, M. R. Emami and Y. Karshon, "Lie Groupoids for General Kinematic Chains," To be submitted to Arnold Mathematical Journal, 2018.

Refereed Journal Papers

- 3. R. Chhabra, M. R. Emami and Y. Karshon, "Reduction of Hamiltonian Mechanical Systems with Affine Constraints: A Geometric Unification," ASME Journal of Computational and Nonlinear Dynamics, doi:10.1115/1.4034729, 2016.
- 4. L. M. Bates, R. Chhabra and J. Śniatycki, "Elastica as a Dynamical System," Journal of Geometry and Physics, vol. 110, pp. 348-381, 2016.

- 5. R. Chhabra and M. R. Emami, "Symplectic Reduction of Holonomic Open-chain Multi-body Systems with Constant Momentum," Journal of Geometry and Physics, vol. 89, pp. 82-110, 2015.
- 6. R. Chhabra and M. R. Emami, "A Unified Approach to Input-output Linearization and Concurrent Control of Underactuated Open-chain Multi-body Systems with Holonomic and Nonholonomic Constraints," Journal of Dynamical and Control Systems, vol. 22(1), pp. 129-168, 2016.
- R. Chhabra and M. R. Emami, "Nonholonomic Dynamical Reduction of Open-chain Multi-body Systems: A Geometric Approach," Mechanism and Machine Theory, vol. 82, pp. 231-255, 2014.
- 8. R. Chhabra and M. R. Emami, "A Linguistic Approach to Concurrent Design," Journal of Intelligent and Fuzzy Systems, vol. 28, no. 5, pp. 1985-2001, 2015.
- 9. R. Chhabra and M. R. Emami, "A Holistic Approach to Concurrent Engineering and Its Application to Robotics," Concurrent Engineering: Research and Applications, vol. 22, no. 1, pp. 48-61, 2014.
- 10. R. Chhabra and M. R. Emami, "A Generalized Exponential Formula for Forward and Differential Kinematics of Open-chain Multi-body Systems," Mechanism and Machine Theory, vol. 73, pp. 61-75, 2014.
- 11. R. Chhabra and M. R. Emami, "A Holistic Concurrent Design Approach to Robotics using Hardware-in-the-loop Simulation," Mechatronics, vol. 23, no. 3, pp. 335-345, April 2013.
- 12. R. Chhabra and M. R. Emami, "Holistic System Modeling in Mechatronics," Mechatronics, vol. 21, no. 1, pp. 166-175, February 2011.

Refereed Conference Proceedings

- 13. R. Chhabra, "Dynamical Reduction and Output-tracking Control of the Lunar Exploration Light Rover (LELR)," IEEE Aerospace Conference, Big Sky, Montana, USA, March 5-12, 2016.
- R. Chhabra, M.R. Emami, "A Mechatronic Approach to Robot Manipulator Design using Hardware-inthe-loop Simulation," RSI/ISM International Conference on Robotics and Mechatronics (ICRoM2013), Tehran, Iran, February 13-15, 2013.
- R. Chhabra and M. R. Emami, "Concurrent Synthesis of Robot Manipulators using Hardware-in-the-loop Simulation," IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12-17, 2009.
- 16. R. Chhabra and M. R. Emami, "Linguistic Mechatronics," IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Xian, China, July 2-5, 2008.

Book Chapters

17. M. R. Emami and R. Chhabra, "Concurrent Engineering of Robot Manipulators," In: Robot Manipulators New Achievements, A. Lazinica and h. Kawai (Ed.), ISBN: 978-953-307-090-2, InTech, pp. 211-240, April 2010.

Dissertations

- 18. R. Chhabra, "A Unified Geometric Framework for Kinematics, Dynamics and Concurrent Control of Free-base, Open-chain Multi-body Systems with Holonomic and Nonholonomic Constraints," PhD Thesis, University of Toronto Institute for Aerospace Studies, Canada, December 2013.
- 19. R. Chhabra, "Concurrent Design of Reconfigurable Robots using a Robotic Hardware-in-the-loop Simulation," MASc Thesis, University of Toronto Institute for Aerospace Studies, Canada, September 2008.
- R. Chhabra, "A Fuzzy Control Strategy for Tail-sitters," BASc Thesis, Sharif University of Technology, Iran, June 2006.

INVITED TALKS

- 1. Resilient Space Robotics: Towards Autonomy of Space Missions, MDA, Brampton, ON, Canada. 2018/10/24
- Feedback Linearization and Output Control of LELR Based on Dynamical Reduction of Nonholonomic Systems, MDA, Brampton, ON, Canada.

 2015/02/13.
- 3. From Geometric Modelling and Control to Concurrent Design of Mechatronic Multi-bodies, Maplesoft Company, Waterloo, ON, Canada. 2014/04/25
- 4. Dynamical Reduction and Control of Holonomic and Nonholonomic Open-chain Multi-body Systems, in the 8^{th} International Young Researchers Workshop on Geometry, Mechanics and Control, Barcelona, Spain. 2013/12/11

5. A Three-step Dynamical Reduction of Nonholonomic Open-chain Multi-body Systems, in the Symplectic Seminar, Department of Mathematics, University of Toronto, Toronto, ON, Canada. 2013/11/25

INTERNAL REPORTS

Orbital mechanics toolbox and capture/release missions

- R. Chhabra, "Effect of altitude in the release of visiting vehicles at ISS¹," MDA internal report, L&SE², June 2017.
- 2. R. Chhabra, "HTV3 FFC4 Loads Analysis," MDA internal report, L&SE, August 2016.
- 3. R. Chhabra, "An Investigation on Relative Rates of GF⁵ with Respect to LEE⁶ in Dual-Berthed Release," MDA internal report, L&SE, April 2016.
- 4. R. Chhabra, "Sensitivity Analysis for Dual Berthed HTV Release Iteration 2," MDA internal report, L&SE, March 2016.
- 5. R. Chhabra, "Sensitivity Analysis for Dual Berthed Cygnus Release Iteration 2," MDA internal report, L&SE, March 2016.
- 6. R. Chhabra, "Refined Missed Capture Analysis Quasi-static and Dynamic Methodologies," MDA internal report, L&SE, March 2016.
- 7. R. Chhabra, "Orbital Mechanics in the SPOTS⁷," MDA internal Report, L&SE, November 2015.
- 8. R. Chhabra, "Dragon FFC Loads Analysis with the New Capture Point," MDA internal report, L&SE, November 2015.
- 9. R. Chhabra, "SPOTS Orbital Dynamics Correlation with NASA TRICK (Phase 3)," MDA internal report, L&SE, October 2015.
- 10. R. Chhabra, "SPOTS Orbital Dynamics Correlation with NASA TRICK (Phase 2)," MDA internal report, L&SE, May 2015.
- 11. R. Chhabra, "SPOTS Orbital Dynamics Correlation with NASA TRICK (Phase 1)," MDA internal report, L&SE, February 2015.
- 12. R. Chhabra, "Nonlinear Modal Analysis of Flexible Robot Arms," MDA internal report, $\mathrm{GN\&C^8}$, October 2014.

$LELR^9$ & $MESR^{10}$

- 13. R. Chhabra, "WP7 Optimization of Point Turn Kinematics," MDA internal report, MESR, June 2016.
- 14. R. Chhabra, "LELR Speed Controller Tuning," MDA internal report, LELR, May 2015.
- 15. R. Chhabra, "Torque Control of LELR Based on Feedback Linearization and Dynamical Reduction of Nonholonomic Systems," MDA internal report, LELR, February 2015.

$\mathbf{SSRMS}^{11} \ \mathbf{FMS}^{12}$

- 16. R. Chhabra, "A Hybrid GBT¹³ /FMS Thermal Filter," MDA internal report, L&SE, July 2017.
- 17. R. Chhabra, "SSRMS FMS Calibration Matrix Estimation," MDA internal report, L&SE, October 2016.
- 18. R. Chhabra, "SSRMS FMS Fine Characterization Plan," MDA internal report, L&SE, March 2016.

ExoMars

19. R. Chhabra, "Effect of Wheel Release on BEMA¹⁴ During Rover Deployment," MDA internal report, BEMA, March 2016.

¹International Space Station

²Logestic and Sustaining Engineering

 $^{^3\}mathrm{H}\text{-II}$ Transfer Vehicle

⁴Free-Flyer Capture

⁵Grapple Fixture

⁶Latching End Effector

⁷Space Station Operations and Training Simulator

⁸Guidance, Navigation and Control

⁹Lunar Exploration Light Rover

 $^{^{10}\}mathrm{Mars}$ Exploration Science Rover

 $^{^{11}\}mathrm{Space}$ Station Remote Manipulator System

 $^{^{12}}$ Force/Moment Sensor

¹³Gear-Box Twist

 $^{^{14}}$ Bogie Electro-Mechanical Assembly

SSRMS analyses

- 20. Chhabra, "LEE/FRGF¹⁵ Interface Separation and Stiffness at 600 lbf Rigidization Force," MDA internal report, L&SE, November 2017.
- 21. R. Chhabra, "Reducing Rigidization Force to 600 lbf for LEE GBL¹⁶ Capture of Fixed GFs with JEU3¹⁷ Disabled: Performance Study for POA¹⁸, SSRMS and SPDM¹⁹ LEEs," MDA internal report, L&SE, December 2017.
- 22. R. Chhabra, "Revisiting the JCS²⁰ Parameters for SSRMS Joints with Higher Friction in GBL Mode," MDA internal report, L&SE, October 2017.
- 23. R. Chhabra, "Insertion into Dragon Trunk with SSRMS in FMA²¹ Mode," MDA internal report, L&SE, October 2017.
- 24. R. Chhabra, "LEE POA (S/N 202) Configuration Parameters Update to Include GBL," MDA internal report, L&SE, October 2017.
- 25. R. Chhabra, "Kinematic Analysis for HTV Capture," MDA internal report, L&SE, October 2015.

SPDM analyses

- 26. R. Chhabra, "Fault Study for SPDM LEE Lubrication Operation," MDA internal report, L&SE, February 2017.
- 27. R. Chhabra, "SPDM Deployer Requirements," MDA internal report, L&SE, November 2016.
- 28. R. Chhabra, "OTCM²² Umbilical Model in SPOTS," MDA internal report, L&SE, June 2016.
- 29. R. Chhabra, "Simulation Analysis of SPDM Joint Diagnostics Based on Fast Fourier Transform," MDA internal report, L&SE, January 2016.

WORKSHOPS

- 1. 8^{th} International Young Researchers Workshop on Geometry, Mechanics and Control, Barcelona, Spain. 2013/12
- Focus Program on Geometry, Mechanics and Dynamics the Legacy of Jerry Marsden, Fields Institute, Toronto, Canada.
- 3. Topological Robotics, Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, Germany. 2010/10

ACADEMIC AND INDUSTRIAL RESEARCH ACTIVITIES

MECHANICAL AND AEROSPACE ENGINEERING (CARLETON UNIVERSITY)

- Founded Autonomous Space Robotics and Mechatronics Laboratory (ASRoM-Lab)
 - Vision: Long-term, reliable autonomy of future space missions
 - Mission: Developing concepts, theories, methodologies and technologies for advanced guidance, navigation and control of next-generation space robotics, based on techniques in Geometric Mechanics and Control, and experimentally testing them against realistic situations
- Conceptualizing notion of teams of chaser-manipulator systems to perform autonomous and optimal on-orbit servicing tasks, individually and collaboratively
- Geometric guidance and control of chaser-manipulator system in proximity operations
- Geometric observer-based control of hyper-flexible space manipulators

GUIDANCE, NAVIGATION AND CONTROL DEPARTMENT (MDA)

- Pre-capture mission planning of chaser-manipulator system for large space debris removal
- On-orbit calibration of force/moment sensor of the Space Station Remote Manipulator System (SSRMS) considering thermal drift
- Satellite jettison deployer design for SSRMS and Special Purpose Dexterous Manipulator (SPDM)
- Nonlinear modal analysis of free-base elastic robots in contact with the environment

 $^{^{15}}$ Flight-Releasable Grapple Fixture

¹⁶Gear-Box Limping

¹⁷Joint Electronic Unit

 $^{^{18}\}mbox{Payload/Orbital}$ Replacement Unit Accommodations

¹⁹Special Purpose Dexterous Manipulator

 $^{^{20}}$ Joint Control System

 $^{^{21}} Force/Moment\ Accommodation$

²²ORU/Tool Changeout Mechanisms

- Spherical harmonic model of the gravitational force and gravity gradient torque for relative dynamics of elastic multi-body systems
- Wind and air density estimation in Thermosphere for aerodynamic force/torque approximation
- Multi-body model and nonlinear control of Lunar Exploration Light Rover (LELR): dynamical reduction and feedback linearization
- Torque distribution and traction control of LELR
- Robust control of LELR with non-ideal nonholonomic constraints
- Electromechanical analysis of the Bogie Electro-Mechanical Assembly (BEMA) of ExoMars rover during rover deployment
- Developing and improving the Space Station Operations and Training Simulator
- Involved in new R&D projects: 1) control of singular manipulators, and 2) control of cooperative elastic manipulators.

MATHEMATICS AND STATISTICS (UNIVERSITY OF CALGARY)

- Hamilton's equation for second (and higher) order Lagrangian systems, and coordinate-independent variational principle on Pontryagin bundle
- Symmetries, conservation laws and dynamical reduction of second order Lagrangian systems
- Quantization of second order Lagrangian systems with symmetry
- Constrained Hamiltonian dynamics of parametrization-invariant second order Lagrangian systems
- Differential spaces, jet bundles and nonlinear output-tracking control of multi-body systems with singularity

INSTITUTE FOR AEROSPACE STUDIES (UNIVERSITY OF TORONTO)

- Lie groupoid/algebroid formalism for studying the kinematics of constrained multi-body systems
- Geometric reduction of Hamiltonian mechanical systems with affine constraints
- Lie group classification of multi-degree-of-freedom joints
- Generalization of the exponential formula for Forward and Differential Kinematics of nonholonomic openchain multi-body systems
- Symplectic reduction of holonomic multi-body systems with non-zero momentum, as a generalization of the existing reduction methods for free-base manipulators with zero momentum
- Generalization of the dynamical reduction of nonholonomic Hamiltonian mechanical systems and its application to nonholonomic multi-body systems
- Unification of the dynamical reduction of holonomic and nonholonomic systems
- Coordinate-independent feedback linearization and nonlinear control of free-base, holonomic (with non-zero momentum) and nonholonomic multi-body systems, in the reduced phase space
- Unification of Hamilton's equation for holonomic and nonholonomic systems, using a coordinate-independent variational principle on Pontryagin bundle
- Three-step reduction of nonholonomic Hamiltonian mechanical systems with symmetry
- Development of an energy-based modeling framework for mechatronic systems using bond-graphs and introducing holistic design criteria for mechatronic design
- Development of an effective concurrent design methodology for mechatronic systems, namely Holistic Concurrent Design, based on fuzzy set theory and bond-graph modeling
- Implementation of the Holistic Concurrent Design using hardware-in-the-loop simulation

AEROSPACE ENGINEERING (SHARIF UNIVERSITY OF TECHNOLOGY)

• Kinematic, dynamic and aerodynamic model of tail-sitter using *Visual Nastran*, *Matlab* and *SolidWorks*; fuzzy control design; and development of a hardware-in-the-loop simulation for implementation and validation (*BASc project*, supervised by Professor Fariborz Saghafi)

TEACHING EXPERIENCE

INSTRUCTOR

- (MECH4806) Mechatronics, Carleton University, Mechanical and Aerospace Engineering (Winter 2019)
- (MAAE3500) Feedback Control Systems, Carleton University, Mechanical and Aerospace Engineering

- (MATH331) Multivariate Calculus, University of Calgary, Mathematics and Statistics (Winter 2014)
- (AER304) Aerospace Laboratory II, University of Toronto, Institute for Aerospace Studies (Winter 2010)
- (AER303) Aerospace Laboratory I, University of Toronto, Institute for Aerospace Studies (Fall 2009)
- (J-AER-1) Fundamentals of Aeronautics, University of Toronto, DEEP program (Summer 2008)

TEACHING ASSISTANT

- (MAT332H5) Introduction to Nonlinear Dynamics and Chaos, University of Toronto, Mathematics
 (Fall 2013)
- (MAT244H5) Differential Equations I, University of Toronto, Mathematics (Fall 2013)
- (MAT133Y5) Calculus and Linear Algebra for Commerce, University of Toronto, Mathematics

(Summer 2013)

- (MAT135Y5) Calculus and Differential Equations, University of Toronto, Mathematics (Winter 2013)
- (MAT224H5) Linear Algebra II, University of Toronto, Mathematics (Winter 2012)
- (AER304) Aerospace Laboratory II, University of Toronto, Institute for Aerospace Studies (Winter 2012)
- (MAT294H1) Calculus and Differential Equations, University of Toronto, Mathematics (Fall 2011)
- (MAT242H5) Differential Equations I, University of Toronto, Mathematics (Fall 2011)
- (MAT235Y1) Calculus II, University of Toronto, Mathematics (Fall 2011 & Winter 2012)
- (AER525) Robotics, University of Toronto, Institute for Aerospace Studies (Fall 2008)
- (AER303) Aerospace Laboratory I, University of Toronto, Institute for Aerospace Studies
 (Fall 2007 & 2010)

CERTIFICATES, COURSES AND WORKSHOPS

- New Faculty Orientation (OVPRI) (Carleton University, 2018)
- NSERC Discovery Grant Workshop (CORIS) (Carleton University, 2018)
- Accessibility for Ontarians with Disabilities (AODA) Customer Service Standard

(Carleton University, 2018)

- Accessibility for Ontarians with Disabilities (AODA) Employment Standard (Carleton University, 2018)
- Accessibility for Ontarians with Disabilities (AODA) Info & Communication Standard

(Carleton University, 2018)

- Worker Health & Safety Awareness Training (Carleton University, 2018)
- Violence & Harassment Training

• Electrical Safety Awareness (ESA)

- (Carleton University, 2018)

• Workplace Hazardous Materials Information System (WHMIS)

(MDA, 2014)

• Electrostatic Discharge Control Awareness Only (ASDC Awareness Only)

(MDA, 2014)

• Occupational Health and Safety (OH&S)

(MDA, 2014) (MDA, 2014)

• Prospective Professors in Training (PPIT)

(University of Toronto, 2012)

PEER REVIEW SERVICE

REVIEWER FOR REFERRED JOURNALS

- Mechatronics, Elsevier
- Robotica, Cambridge University Press
- Concurrent Engineering: Research and Applications, Sage
- Fuzzy Sets and Systems, Elsevier
- Transactions on Robotics, IEEE
- Acta Astronautica, Elsevier
- Nonlinear Dynamics, Springer
- Journal of Guidance, Control and Dynamics, AIAA
- Astronautical Sciences, Springer
- International Journal of Robotics and Automation, Acta Press

- International Journal of Information Technology & Decision Making, World Scientific
- International Journal of Mechanical Engineering and Mechatronics, Avestia Publishing

REVIEWER FOR GRANT APPLICATIONS

- Ontario Ministry of Economic Development and Growth (fund value: \$15M, project value: \$5.6B)
- Shastri Indo-Canadian Institute

MEMBER OF EXAMINATION BOARD FOR THESES

PHD COMPREHENSIVE EXAM AND PROPOSAL DEFENCE

 Colin Miyata, "A Novel Framework for User Safety in Human-Robot Interactions through the Use of Tactile Sensors," PhD Thesis Proposal, Department of Mechanical and Aerospace Engineering, Carleton University, September 2018.

MASC THESIS DEFENCE

 Cassidy Westin, "Modelling and Simulation of Marine Cables with a Dynamic Winch and Sheave Contact," MASc Thesis, Department of Mechanical and Aerospace Engineering, Carleton University, August 2018.

CHAIR

 Osama Al-Mai, "Design, Development and Calibration of Multi-Axis, Fiber-Optic, Force/Torque Sensors for Biomechanical Applications," PhD Thesis Proposal, Department of Mechanical and Aerospace Engineering, Carleton University, August 2018.

EXTERNAL EXAMINER

- Xueyang Yao, "Discrete 2D Transforms in Polar Coordinates," MASc Thesis, Department of Mechanical Engineering, University of Ottawa, April 2018.
- Yanzhang Wu, "Sensing Nonlinear Viscoelastic Constitutive Parameters with a Geometrically Nonlinear Timoshenko Beam: Modeling and Simulation," MASc Thesis, Department of Mechanical Engineering, University of Ottawa, September 2018.

TECHNICAL SKILLS

- Coding Software: Matlab, Fortran, Linux, Python, ADA, Delphi, Pascal
- Networking Software: Active Directory, Microsoft Office SharePoint Server
- Engineering Software: Simulink, SolidWorks, Visual Nastran