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Abstract This paper presents a unified geometric framework to input-output
linearization of open-chain multi-body systems with symmetry in their reduced
phase space. This leads us to an output tracking controller for a class of un-
deractuated open-chain multi-body systems with holonomic and nonholonomic
constraints. We consider the systems with multi-degree-of-freedom joints and
possibly with non-zero constant total momentum (in the holonomic case). The
examples of these systems are free-base space manipulators and mobile manip-
ulators. We first formalize the control problem, and rigorously state an output
tracking problem for such systems. Then, we introduce a geometrical definition
of the end-effector pose and velocity error. The main contribution of this pa-
per is reported in Section 5, where we solve for the input-output linearization
of the highly nonlinear problem of coupled manipulator and base dynamics
subject to holonomic and nonholonomic constraints. This enables us to de-
sign a coordinate-independent controller, similar to a proportional-derivative
with feed-forward, for concurrently controlling a free-base, multi-body sys-
tem. Finally, by defining a Lyapunov function we prove in Theorem 3 that the
closed-loop system is exponentially stable. A detailed case study concludes
this paper.
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Nomenclature

Bi Body i of a multi-body system
rcm,i Relative pose of a frame at the centre of mass of Bi with

respect to the inertial frame

rji,0 Initial relative pose of Bi with respect to Bj
Lr Left composition/translation by r
Rr Right composition/translation by r
idn n× n identity matrix
0n n× n zero matrix
Adr Adjoint operator corresponding to r
adξ adjoint operator corresponding to ξ
[ξ, η] Lie bracket or matrix commutator
Tmf Tangent map corresponding to the map f at the element m
T ∗mf Cotangent map corresponding to the map f at the element m
TmM Tangent space of the manifold M at the element m
TM Tangent bundle of the manifold M
T ∗mM Cotangent space of the manifold M at the element m
T ∗M Cotangent bundle of the manifold M
exp(ξ) Group/matrix exponential of ξ
Gµ Coadjoint isotropy group for µ in dual of Lie algebra
‖v‖h Norm of the vector v with respect to the metric h
〈·, ·〉 Canonical pairing of the elements of tangent and cotangent space
L Lagrangian function
ξM Vector field on the manifold M induced by the infinitesimal

action of ξ in Lie algebra
X(M) Space of all vector fields on the manifold M
Ω2(M) Space of all differential 2-forms on the manifold M
dΩ Exterior derivative of the differential form Ω
df Exterior derivative of the function f
M/G Quotient manifold corresponding to a free and proper action

of the Lie group G

1 Introduction

Holonomic and nonholonomic open-chain multi-body systems mostly appear
in the field of robotics. In the context of geometric mechanics, these systems are
considered as Hamiltonian mechanical systems. In this paper, we introduce a
unified approach towards the dynamical reduction and output tracking control
of such systems in the presence of symmetry. In the following, we first report
the existing literature for different topics appearing in this paper. Then, we
list the main contributions of the paper, and give the outline of the paper.

An example of a mechanical system with symmetry is a free-base multi-
body system, which is mostly studied in the field of robotics and aerospace.
Vafa and Dubowsky introduce the notion of Virtual Manipulator [34] (for a
free-floating manipulator with zero total momentum), and they show that this



Concurrent Control of Underactuated Multi-bodies 3

approach decouples the system centre of mass translational and rotational
motion. Dubowsky and Papadopoulos in [12] use this notion to solve for the
inverse dynamics problem that yields to designing linear controllers in joint
and task space.

Since the trivial behaviour of a multi-body system due to momentum con-
servation is eliminated during a reduction process, the behaviour of the sys-
tem is more explicit in the reduced space. The reduction procedures have been
helpful for extracting control laws for space manipulators by restricting the
dynamical equations to the submanifold of the phase space where the mo-
mentum of the system is constant (and usually equal to zero). Yoshida et al.
investigate the kinematics of free-floating multi-body systems utilizing the mo-
mentum conservation law. They derive a new Jacobian matrix in generalized
form and develop a control method based on the resolved motion rate control
concept [33,20]. McClamroch et al. propose an articulated-body dynamical
model for free-floating robots based on Hamilton’s equation, and implement
it to derive an adaptive motion control law [38]. Based on the concept of Vir-
tual manipulator, Parlaktuna and Ozkan also develop an adaptive controller
for free-floating space manipulators [23]. Wang and Xie introduce an adap-
tive control law for position/force tracking of free-flying manipulators [35,36],
and later they use recursive Newton-Euler equations to derive a novel adap-
tive controller for position tracking of free-floating manipulators in their task
space [37]. In this controller, they estimate the inertia tensor of the spacecraft
(base body) by a parameter projection algorithm. As an application, Pazelli et
al. investigate different nonlinear H∞ control schemes implemented to a free
floating space manipulator, subject to parameter uncertainty and external dis-
turbances [24].

In the case of underactuated space manipulators, Mukherjee and Chen
in [19] show that even if the unactuated joints do not possess brakes, the ma-
nipulator can be brought to a complete rest provided that the system main-
tains zero momentum. In [32] an alternative path planning methodology is
developed for underactuated manipulators using high order polynomials as
arguments in cosine functions to specify the desired path directly in joint
space. Note that all of the above mentioned control strategies were developed
for holonomic multi-body systems with one-degree-of-freedom (d.o.f.) joints
and for zero momentum of the system.

Geometric methods have also been used to reduce the dynamical model of
free-base multi-body systems and introduce effective control laws. For exam-
ple, in [30,31] Sreenath symplectically reduces Hamilton’s equation by SO(2)
for free-base planar multi-body systems with non-zero angular momentum.
Chen in his Ph.D. thesis [8] extends Sreenath’s approach to spatial multi-
body systems with zero angular momentum. Duindam and Stramigioly de-
rive the Boltzmann-Hamel equations for multi-body systems with generalized
multi-d.o.f. holonomic and nonholonomic joints by restricting the dynamical
equations to the nonholonomic distribution [13]. This is the first attempt to
reduce the dynamical equations of an open-chain multi-body systems with
generalized holonomic and nonholonomic joints. Furthermore, Shen proposes
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a novel trajectory planning in shape space for nonlinear control of multi-body
systems with symmetry [28,26,27]. In his work he performs symplectic reduc-
tion for zero momentum and assumes multi-body systems on trivial bundles.
Then, in [29] he extends his results to include nonholonomic constraints. Hus-
sein and Bloch study optimal control of nonholonomic mechanical systems,
using an affine connection formalism [16]. Sliding mode control of underac-
tuated multi-body systems is also studied in [2]. In the control community,
Olfati-Saber in his Ph.D. thesis [21] studies the reduction of underactuated
holonomic and nonholonomic Lagrangian mechanical systems with symmetry
and its application to nonlinear control of such systems. He uses a feedback lin-
earization method in the reduced phase space to extract control laws for such
systems [22]. However, he only considers abelian symmetry groups, and he does
not take into account non-zero momentum of the system. As a continuation of
Olfati-Saber’s work, Grizzle et al. in [14] show that a planar mechanism with a
cyclic unactuated parameter is always locally feedback linearizable, and they
derive a nonlinear control law for such a system. Further, Bloch and Bullo
extract coordinate-independent nonlinear control laws for holonomic and non-
holonomic mechanical systems with symmetry in [4,5,7].

In this paper, we use the dynamical reduction of a class of underactuated
multi-body systems with holonomic or nonholonomic constraints to derive an
output tracking control law. The main contribution of this work is generalizing
and unifying the existing approaches to the control of underactuated multi-
body systems with symmetry, more specifically, by

– considering holonomic free-base multi-body systems with non-abelian sym-
metry groups and non-zero conserved momentum,

– considering free-base multi-body systems with nonholonomic constraints,
– unifying the holonomic and nonholonomic cases to introduce a generalized

output tracking controller for both types of underactuated multi-body sys-
tems.

Section 2 focuses on a quick review of the dynamical reduction of open-chain
multi-body systems with holonomic or nonholonomic constraints [11,9]. Then
using this reduction procedure, we formulate an output tracking control prob-
lem in Section 3. We define the output manifold of a multi-body system and
consequently choose a compatible error function and velocity error for the
output of the system, in Section 4. Section 5 states one of the main results of
this paper, which is the input-output linearization of a class of underactuated
multi-body systems with symmetry in their reduced phase space. As the result,
we solve the inverse dynamics problem of such systems. Finally, in Section 6
we suggest a nonlinear output tracking control law for free-base open-chain
multi-body systems on their output manifold. And, we prove the exponential
stability of the closed loop, for any feasible desired trajectory of the system.
We conclude the paper with a case study in Section 7.
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2 Dynamical Reduction of Multi-body Systems

In this section we briefly review our results on the dynamical reduction of
open-chain multi-body systems with symmetry stated in [9,11]. The multi-
body systems considered in this paper consist of rigid bodies connected with
multi-d.o.f. displacement subgroups [10], and possibly with nonholonomic con-
straints. The reduced dynamical equations of holonomic open-chain multi-
body systems with (not necessarily zero) conserved total momentum are first
stated. Then, we perform the dynamical reduction for nonholonomic open-
chain multi-body systems with symmetry that satisfy the Chaplygin assump-
tion. Although we only focus on these two classes of underactuated open-chain
multi-body systems, our results can be generalized to the systems with bigger
symmetry groups [9,11].

An open-chain multi-body system MBS(N) considered in this paper is a
mechanical system consisting of N +1 rigid bodies, denoted by B0 to BN , and
N displacement subgroups [10,15,25], denoted by J1 to JN , such that there
exists a unique path between any two bodies. In a MBS(N), bodies with only
one neighbouring body are called extremities. In case the multi-body system
is subject to nonholonomic constraints, we call the system a nonholonomic
open-chain multi-body system.

Let di be the number of degrees of freedom of a displacement subgroup
in a MBS(N). It is associated with a di-dimensional configuration manifold,
namely Qi, which is a Lie subgroup of SE(3). As a result, the configuration
manifold of the system is Q := Q1 × · · · × QN , which is a Lie subgroup
of P := SE(3) × · · · × SE(3) (N -times). Any state of the system can be
realized by an element q := (q1, · · · , qN ) ∈ Q. In this paper, without loss of
generality, we assume that B0 represents an inertial observer, with respect to
which we measure the absolute velocities of the bodies in the MBS(N). Let
rcm,i ∈ SE(3) be the initial pose of the centre of mass of Bi with respect to B0.
The pose of the centre of mass of the bodies in MBS(N) are then calculated
through the map F : Q → P:

F (q) := (q1rcm,1, q1q2rcm,2, · · · , q1 · · · qNrcm,N ). (2.1)

Only the joints in the path connecting B0 to Bi contribute to the ith compo-
nent (i = 1, · · · , N) of F .

Any motion of the multi-body system is represented by a curve t 7→ q(t) ∈
Q. The absolute velocity of the coordinate frames attached to the centre
of mass of bodies is calculated by ṗ(t) := d

dtF (q(t)) = Tq(t)F (q̇(t)), where
TF : TQ → TP is the induced tangent map of F .

The Lagrangian L : TQ → R for the MBS(N) consists of the kinematic
energy and a potential function: L(vq) = 1

2Kq(vq, vq)−V (q). The metric K is
the metric induced by the left-invariant kinetic energy metric of rigid bodies,
and V : Q → R is a potential energy function. Let hi (i = 1, · · · , N) be the
left-invariant metric corresponding to Bi. Let h := h1⊕· · ·⊕hN be the induced
left-invariant metric on P. The kinetic energy metric of an MBS(N) is then
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calculated by K := T ∗F (h), which reads the pull back of the metric h by the
map F . That is, ∀q ∈ Q and ∀vq, wq ∈ TqQ we have

Kq(vq, wq) = hF (q) (TqF (vq), TqF (wq))

= he
(
TF (q)LF (q)−1(TqF (vq)), TF (q)LF (q)−1(TqF (wq))

)
, (2.2)

where e is the identity element of the Lie group P, and for any element p ∈ P,
the left translation map is denoted by Lp. The function V can be any function
on the configuration manifold Q. The most common potential function is the
gravitational potential function induced by a constant field.

Using the Legendre transformation induced by the metric K, we define the
Hamiltonian H : T ∗Q → R for the MBS(N) by

H(pq) := 〈pq,FL−1
q (pq)〉 − L(FL−1

q (pq)), (2.3)

which is the total energy of the system. Here, we remind the reader that
FL : TQ → T ∗Q is the fibre-wise invertible Legendre transformation defined
by 〈FLq(vq), wq〉 := Kq(vq, wq), ∀vq, wq ∈ TqQ. For multi-body systems this
map is the symmetric tensor corresponding to the metric K. Hence, we write

FLq =



K11(q) · · · K1N (q)

...
. . .

...
KN1(q) · · · KNN (q)


 ,

where Kij(q)dqi⊗dqj (i, j = 1, · · · , N) are the block components of the kinetic
energy tensor.

Accordingly, any MBS(N) can be considered as a Hamiltonian mechanical
system described by the four-tuple (T ∗Q, Ωcan, H,K), where T ∗Q is the phase
space of the system parametrized by (q, p) and Ωcan = −dp∧dq is the canonical
2-form on this space. Here, the metric K and the Hamiltonian H are defined
by (2.2) and (2.3), respectively. Hamilton’s equation for an MBS(N) has the
following form:

[Ωcan]

[
q̇
ṗ

]
:=

[
0 − id
id 0

] [
q̇
ṗ

]
=

[
∂H
∂q
∂H
∂p

]
,

where id is the identity matrix with the appropriate size.

2.1 Holonomic Open-chain Multi-body Systems

Let G be a Lie group with a free and proper action on the phase space of
a Hamiltonian mechanical system. If this action preserves the corresponding
Hamiltonian and 2-form of the system, we call the Lie group G a symmetry
group and the Hamiltonian system along with this Lie group is a Hamilto-
nian system with symmetry. The G-action induces a momentum map M from
the phase space to G∗, the dual of the Lie algebra of G, which is constant
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along the trajectories of the Hamiltonian system with symmetry (Noether’s
Theorem). As the result, one performs the symplectic reduction, by first re-
stricting to the pre-image of the momentum map at a constant value µ ∈ G∗,
and then quotienting by the isotropy group Gµ :=

{
g ∈ G|Ad∗g(µ) = µ

}
. This

reduction method, which was first introduced by Marsden and Weinstein [18],
expresses the equations of motion in a smaller phase space and guarantees the
symplecticity of the resulting Hamiltonian system.

In this section, we consider free-base holonomic open-chain multi-body sys-
tems as Hamiltonian mechanical systems with symmetry and perform the sym-
plectic reduction for such systems. The adjective free-base for a multi-body
system refers to the unactuation of the base body, which can be considered
to be B1, without loss of generality. According to the definition of the Kinetic
energy metric (2.2), it is easy to show that K is invariant under the action of
G = Q1 by the left translation on the first component of Q. For any g ∈ G
we denote the G-action by Φg : Q → Q such that ∀q = (q1, · · · , qN ) ∈ Q we
have Φg(q) = (gq1, q2, · · · , qN ) [9]. Note that the canonical 2-form on T ∗Q is
also invariant under the lifted G-action. So, if the potential energy is also in-
variant under the G-action, then G is a symmetry group of the MBS(N). This
condition is satisfied, for example, in the case of space manipulators where
V ≡ 0 and mobile robots where the gravitational field is perpendicular to the
plane of the rover motion. We denote an open-chain multi-body system with
symmetry by the five-tuple (T ∗Q, Ωcan, H,K,G), as defined above.

In the case of a free-base multi-body system, the momentum map M : T ∗Q →
G∗ is defined by a fibre-wise linear map

Mq =
[
T ∗e1Rq1 0 · · · 0

]
, (2.4)

whereRq1 : Q1 → Q1 is the right translation by q1 onQ1, and T ∗e1Rq1 : T ∗q1Q1 →
Q∗1 is the induced map in the level of the cotangent bundles, where Q∗1 is the
dual of the Lie algebra of Q1. This momentum map for a space manipulator
is the total Linear and angular momentum of the system with respect to the
inertial coordinate frame. If we have additional holonomic constraints at the
base body, M corresponds to the projection of the total momentum of the
system onto the first joint axes. For any value µ ∈ G∗ the pre-image of the
momentum map M−1(µ) is a submanifold of T ∗Q and it is invariant under the
action of the isotropy group Gµ. By reducing the dynamical equations of an
MBS(N), we mean expressing the dynamical equations in the quotient space
M−1(µ)/Gµ that is symplectomorphic to a vector sub-bundle of the phase

space T ∗Q̃, where Q̃ = Q/Gµ.

In the following, we only state the final result for the symplectic reduction
of a multi-body system as a theorem. In [9] we provide the details of the
reduction of holonomic multi-body systems with a conserved momentum.

Theorem 1 (Symplectic Reduction of Multi-body Systems) Let µ ∈
G∗ be a regular value of the momentum map M. A holonomic open-chain
multi-body system with symmetry (T ∗Q, Ωcan, H,K,G) is reduced to a Hamil-
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tonian system represented by the triple (S̃, Ω̃, H̃). We introduce the components
of the reduced Hamiltonian system in the following.

– The reduced phase space S̃ =
{

(q̃, p̃) ∈ T ∗Q̃
∣∣∣ p̃1 = 0

}
is a vector sub-bundle

of T ∗Q̃, whose elements are represented by (q̃1, q, p̃1, p) := (q̃, p̃). Therefore,

the reduced phase space may be parametrized by (q̃, p) ∈ S̃. Note that q ∈
Q := Q2 × · · · × QN and p is its conjugate generalized momentum.

– The 2-form Ω̃ ∈ Ω2(S̃) is defined by

Ω̃ =− dp ∧ dq −
∑

i′<j′

Υi′j′(q̃)dq̃i′ ∧ dq̃j′

:=− dp ∧ dq −
∑

i<j

d1∑

a=1

Fa
((

∂Aaj
∂qi
− ∂Aai
∂qj

)
−
∑

l<k

Ealk(AliA
k
j −AljAki )

)
(dqi ∧ dqj)

−
∑

i′<j′

∑

l<k

d1∑

a=1

(
µaEalk(Hli′Hkj′ −Hlj′Hki′)

)
(dq̃i′ ∧ dq̃j′), (2.5)

such that we have the following identities:

A : =
[
K11(q)−1K12(q) · · · K11(q)−1K1N (q)

]
,

F : = µTAd(eµ,q̃1),

H : = −Aµ +
[
T(eµ,q̃1)R(eµ,q̃1) Ad(eµ,q̃1)A

]
,

Aµ : =
[
K̃11(q̃)−1K̃ ′11(q̃) K̃11(q̃)−1K̃12(q̃) · · · K̃11(q̃)−1K̃1N (q̃)

]
,

d1∑

a=1

EalkEa : = [El, Ek],

for l, k ∈ {1, · · · , d1}, and i, j ∈ {1, · · · ,dim(Q)− d1}, and i′, j′ ∈
{1, · · · ,dim(Q)− dim(Gµ)}, K1s(q) := K1s((e1, q)) (s = 1, · · · , N) and
{E1, · · · , Ed1} being a basis for G, the Lie algebra of G. For a local trivial-

ization of Gµ principal bundle, the block components K̃11(q̃) and K̃ ′11(q̃) of
the Legendre transformation correspond to the isotropy group Gµ and G/Gµ
at the identity element eµ ∈ Gµ, respectively, and the block components

K̃1s(q̃) (s = 2, · · · , N) correspond to the successive joints in the MBS(N)
at the identity element eµ.

– The reduced Hamiltonian of the system

H̃(q̃, p) =
1

2

〈
(Ad∗(eµ,q̃1)µ, p+A∗q(Ad∗(eµ,q̃1)µ)),

,FL−1
(eµ,q̃)

(Ad∗(eµ,q̃1)µ, p+A∗q(Ad∗(eµ,q̃1)µ))
〉

+ V (eµ, q̃). (2.6)
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Finally in the local coordinates of S̃, Hamilton’s equation reads




˙̃q1

q̇
ṗ


 = [Ω̃]−1(q̃)




∂H̃
∂q̃1
∂H̃
∂q
∂H̃
∂p


 , (2.7)

where [Ω̃] is the vector bundle map naturally associated to the 2-form Ω̃. This
map has the following form:

[Ω̃](q̃) =




[Ω̃]11(q̃) [Ω̃]12(q̃) 0

−[Ω̃]T12(q̃) [Ω̃]22(q̃) − id
0 id 0


 ,

where the zero and identity matrices have the appropriate dimensions and
the sub-matrices [Ω̃]11, [Ω̃]12 and [Ω̃]22 are defined based on Υi′j′(q̃) (i′, j′ =
1, · · · ,dim(Q)− dim(Gµ)).

2.2 Nonholonomic Open-chain Multi-body Systems

Consider a Hamiltonian mechanical system on the cotangent bundle T ∗Q sub-
ject to a set of (everywhere) linearly independent nonholonomic constraints{
ωa ∈ Ω1(Q)

∣∣ a = 1, · · · , f
}

, whose kernel D forms a distribution on the con-
figuration manifold Q. Let G be a Lie group with a free and proper action
on Q that leaves the distribution D and the corresponding Hamiltonian H
invariant. The nonholonomic system along with the Lie group G is called a
nonholonomic Hamiltonian mechanical system with symmetry. We call such a
system a Chaplygin system, if ∀q ∈ Q it also satisfies the Chaplygin assump-
tion:

TqQ = D(q)⊕ TqOq(G), (2.8)

where Oq(G) is the orbit of the G-action through q ∈ Q. As a result, one can
perform the Chaplygin reduction, by first restricting to FL(D) the image of
the distribution by the Legendre transformation, and then quotienting by the
induced G-action on FL(D). This reduction method, which was first introduced
by Koiller [17], expresses the equations of motion in a smaller phase space,
but the 2-form representing the equations of motion is not closed any more.
Therefore, the resulting mechanical system is not Hamiltonian.

In this section, we study the reduction of the class of free-base nonholo-
nomic open-chain multi-body systems that can be considered as Chaplygin
systems. We already know that the kinetic energy of a multi-body system is
invariant under the action of Q1, as defined in the previous subsection. Hence,
in the nonholonomic case we assume that there is an f -dimensional Lie sub-
group G ⊂ Q1 that leaves D invariant and satisfies the Chaplygin assumption
(2.8). Note that the canonical 2-form on T ∗Q is also invariant under the lifted
G-action. As the result, if the potential energy function is also invariant under
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the G-action, then the open-chain multi-body system MBS(N) is a Chaplygin
system. We denote such an open-chain multi-body system by the six-tuple
(T ∗Q, Ωcan, H,K,D,G), as defined above. By reducing the dynamical equa-
tions of a nonholonomic MBS(N), we mean expressing the dynamical equations
in the quotient space FL(D)/G that is symplectomorphic to the phase space

T ∗Q̂, where Q̂ = Q/G.
In the following, we only state the final result for the Chaplygin reduction

of a nonholonomic multi-body system as a theorem. In [11] we provide the
details of the reduction of nonholonomic multi-body systems.

Theorem 2 (Chaplygin Reduction of Multi-body Systems) A non-
holonomic open-chain multi-body system MBS(N) with symmetry whose dy-
namics is represented by (T ∗Q, Ωcan, H,K,D,G) is reduced to a mechanical

system represented by the triple (T ∗Q̂, Ω̂, Ĥ). We introduce the components of
the reduced mechanical system in the following.

– The reduced phase space T ∗Q̂ is the cotangent bundle of the quotient man-
ifold Q̂, whose elements are represented by (q̂1, q, p̂1, p) := (q̂, p̂).

– The almost symplectic 2-form

Ω̂ =− dp̂ ∧ dq̂ −
∑

i<j

Υ̂ij(q̂, p̂)dq̂i ∧ dq̂j

:=− dp̂ ∧ dq̂ −
∑

i<j

f∑

a=1

F̂a
((

∂Âaj
∂q̂i
− ∂Âai

∂q̂j

)
−
∑

l<k

Êalk(ÂliÂ
k
j − ÂljÂki )

)
(dq̂i ∧ dq̂j),

(2.9)

such that ∀g ∈ G we have the following identities:

Adg

[
TgLg−1 Âq̂

]
: =

f∑

a=1

ωaÊa,

F̂ : = p̂TFL̂−1
q̂

(
−Â∗K̂11(q̂) + K̂∗12(q̂)

)
,

d1∑

a=1

ÊalkÊa : = [Êl, Êk],

for l, k ∈ {1, · · · , f}, and i, j ∈ {1, · · · ,dim(Q)− f}, and
{
Ê1, · · · , Êf

}

being a basis for G. For a local trivialization of G principal bundle, we define
the following block components of the Legendre transformation correspond
to the Lie group G and the rest of the joint parameters of the nonholonomic
MBS(N). Accordingly, the Legendre transformation FL̂q̂ is defined based on

the induced metric on the reduced configuration manifold Q̂.
[

(T ∗gLg−1)K̂11(q̂)(TgLg−1) (T ∗gLg−1)K̂12(q̂)

K̂21(q̂)(TgLg−1) K̂22(q̂)

]
: = FLq,

FL̂q̂ := Â∗K̂11(q̂)Â− K̂21(q̂)Â− Â∗K̂12(q̂) + K̂22(q̂).



Concurrent Control of Underactuated Multi-bodies 11

– The reduced Hamiltonian

Ĥ(q̂, p̂) =
1

2

〈
p̂,FL̂−1

q̂ (p̂)
〉

+ V̂ (q̂), (2.10)

where if e ∈ G represents the identity element, in the local trivialization we
have V̂ (q̂) := V (e, q̂).

Finally in the local coordinates of T ∗Q̂, Hamilton’s equation reads

[
˙̂q
˙̂p

]
= [Ω̂]−1(q̂, p̂)

[
∂Ĥ
∂q̂
∂Ĥ
∂p̂

]
, (2.11)

where [Ω̂] is the vector bundle map naturally associated to the 2-form Ω̂. This
map has the following form:

[Ω̂](q̂, p̂) =

[
[Ω̂]1(q̂, p̂) − id

id 0

]
,

where the zero and identity matrices have the appropriate dimensions and the
sub-matrix [Ω̂]1 is defined based on Υ̂ij(q̂, p̂) (i, j = 1, · · · ,dim(Q)− f).

3 Problem Statement

In this section we formally state an output trajectory tracking control problem
for free-base, open-chain multi-body systems with multi-d.o.f. holonomic (non-
zero momentum) and nonholonomic joints. The output of such systems is
usually the pose of the extremities and the base. More generally, one may be
interested in controlling only parts of the motion of the extremities and the
base. For example, one may want to control the position of the end-effector
and the orientation of the base of a free-floating space manipulator. In this
case, the output manifold of the system is a quotient manifold, which is locally
identified by a submanifold of the space of all possible poses of the end-effector
and the base. In this paper, by output manifold we mean a submanifold of the
smooth manifold that consists of all possible poses of the extremities of a
free-base, open-chain multi-body system.

3.1 Mathematical Formalization and Assumptions

Let an open-chain multi-body system with symmetry be denoted by (T ∗Q, Ωcan,
H,K,G) or (T ∗Q, Ωcan, H,K,D,G). In the holonomic case, G = Q1 and the
momentum is conserved, and G is an f -dimensional Lie subgroup of Q1 for a
Chaplygin system. Also, we denote the number of independent control direc-
tions by nc; in general, it is equal to dim(Q)− dim(G).

CON1) We assume that G is a symmetry group of the holonomic or nonholonomic
multi-body system, in the sense introduced in Section 2.
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We recall that for a mechanical system control directions are modelled by
1-forms on Q.

CON2) We also assume that there is no control input collocated with the G-orbits
of the system. That is, for a set of linearly independent differential 1-forms{
Ui ∈ Ω1(Q)

∣∣ i = 1,
· · · , nc} corresponding to the directions of the (available) control inputs
(in the form of control force or torque), ∀ξ ∈ G we have

Ui(ξQ) = 0, i = 1, · · · , nc (3.12)

where ξQ ∈ X(Q) is the vector field induced by the infinitesimal action of
G, corresponding to ξ.

This condition guarantees that there is no actuator at the first joint of a
holonomic system, and also the actuators of a nonholonomic system do not
overlap with the directions of the nonholonomic constraints.

Definition 1 For a free-base holonomic or nonholonomic MBS(N) with sym-
metry, we call (T ∗Q, Ωcan, H,K,G, {Ui}nci=1) or (T ∗Q, Ωcan, H,K,D,G, {Ui}nci=1),
respectively, a controlled multi-body system with symmetry.

Let
{
ui ∈ C2(T ∗Q× R)

∣∣ i = 1, · · · , nc
}

be a set of twice differentiable func-
tions on the extended phase space (by the time direction). We define the control
input for a controlled multi-body system with symmetry by

nc∑

i=1

uiUi. (3.13)

We write the control Hamilton’s equation for a controlled multi-body system
with symmetry as

[Ωcan]

[
q̇
ṗ

]
=

[
∂H
∂q
∂H
∂p

]
−
[∑f

a=1 κaωa
0

]
+

[∑nc
i=1 uiUi

0

]
, (3.14)

ωa(q̇) = 0 a = 1, · · · , f

where ωa’s are the constraint 1-forms defining the nonholonomic distribution
D and κa’s are the Lagrange multipliers.

Remark 1 Note that this equation is Hamilton’s equation for both holonomic
and nonholonomic multi-body systems, where in the holonomic case ωa ≡ 0.

We are interested in controlling the motion of the extremities of a multi-
body system with symmetry, in certain directions. Let ne be the number of ex-
tremities of a controlled multi-body system with symmetry, and let FKi : Q →
SE(3) (for i = 1, · · · , ne) be the forward kinematics maps for the extremities,
defined by

FKi(q) = q1 · · · qi0r0
i0,0, i = 1, · · · , ne (3.15)
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where Bi0 is the ith extremity (base body is considered as the first extremity,
i.e., 10 = 1), r0

i0,0
∈ P0

∼= SE(3) is the initial pose of the ith extremity
with respect to the inertial coordinate frame. Note that only the elements
of the relative configuration manifolds of the joints that appear in the path
connecting B0 to Bi0 are involved in the above equation. For the ith extremity,
we identify the corresponding output manifold by the embedded submanifold
Ri ⊆ SE(3), which corresponds to the directions of motion of Bi0 that we
are interested in. This submanifold comes with the canonical inclusion map
ιRi : Ri ↪→ SE(3), and a projection map ri : SE(3) → Ri, such that we have
the identity ri ◦ ιRi = idRi , where idRi indicates the identity map on Ri. By
FK : Q → R := R1×· · ·×Rne we denote the collection of FKi composed with
the projection maps. We also denote the induced projection map that projects
Pe := SE(3) × · · · × SE(3) (ne − times) to R by r : Pe → R. The manifold
R is called the output manifold, and no := dim(R) indicates the dimension of
the output.

Remark 2 Note that in general the projection map r is not defined globally.
Whenever the projection map does not make sense globally, we define it in a
tubular neighbourhood in Pe around the submanifold R.

Consider a curve γ : R → R in the output manifold, corresponding to the
desired motion of the extremities.

CON3) It is always assumed that the curve t 7→ γ(t) is a feasible trajectory for
the system. That is, it respects the nonholonomic constraints and the mo-
mentum conservation, and also it is in the image of the forward kinematics
map FK with a full rank Jacobian.

CON4) We also assume that the number of control inputs nc is greater than or
equal to the dimension of the output manifold, i.e., D = dim(Q) ≥ nc ≥ no.

Remark 3 Condition CON4 together with the fact that the control directions
are linearly independent guarantee local controllability of a controlled holo-
nomic or nonholonomic open-chain multi-body system with symmetry at the
configurations away from the singularities of the Jacobian [26]. In the following
we assume that the system is always away from singular configurations.

Problem 1 (Control Problem) Let (T ∗Q, Ωcan, H,K,D,G, {Ui}nci=1) be a
controlled multi-body system with symmetry, and let γ : R → R be a de-
sired motion of its extremities. Find a set of twice differentiable functions{
ui ∈ C2(T ∗Q× R)

∣∣ i = 1, · · · , nc
}

, such that the output FK(q(t)) tracks the
curve γ with an exponentially decreasing error. We can formulate the con-
trolled system as

Controlled System: [Ωcan]

[
q̇
ṗ

]
=

[
∂H
∂q
∂H
∂p

]
−
[∑f

a=1 κaωa
0

]
+

[∑nc
i=1 uiUi

0

]
,

Nonholonomic Constraints: ωa(q̇) = 0, a = 1, · · · , f (3.16)

Output: FK(q(t)) = (r1(q1(t)), r2(q1(t) · · · q20
(t)), · · · , rne(q1(t) · · · qne0(t))).
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We defined the problem for a nonholonomic open-chain multi-body system
with symmetry. In the holonomic case, we have no constraint 1-form ωa in
(3.16), the distribution D = TQ. This problem is not precise, since we have
neither defined the error, nor the exponential stability on manifolds. After
reformulating the problem in the following section, we rigorously define the
error in Section 4 and the exponential stability in Definition 5.

3.2 Reduced Hamilton’s Equation and Reconstruction

In this section, we use the reduction theories stated in Section 2 and their cor-
responding reconstruction equations to reformulate Problem 1, in the reduced
phase space. One of the premises of this section is to introduce a notation to
treat holonomic and nonholonomic cases at the same time. We denote a re-
duced holonomic (nonholonomic) open-chain multi-body system by (Š, Ω̌, Ȟ),
where Š is the reduced phase space, Ω̌ ∈ Ω2(Š) is the (almost) symplectic 2-
form on the reduced phase space, Ȟ : Š → R is the reduced Hamiltonian. An
element of Š is denoted by (q̌, p̌), which has a configuration part q̌ and a mo-
mentum part p̌ that may not have the same dimensions. In the holonomic case,
the dimension of q̌ is larger than the dimension of p̌, and for nonholonomic
Chaplygin systems both dimensions are equal. Then the reduced Hamilton’s
equation for the system (Š, Ω̌, Ȟ) reads

[
˙̌q
˙̌p

]
= [Ω̌]−1(q̌, p̌)

[
∂Ȟ
∂q̌
∂Ȟ
∂p̌

]
, (3.17)

where [Ω̌] is the vector bundle map naturally associated to the 2-form Ω̌.
For the holonomic case, this equation is equivalent to (2.7), and in the non-
holonomic case it is (2.11). In order to control the extremities of a controlled
multi-body with symmetry in the inertial coordinate frame, not only we need
the reduced Hamilton’s equation but also the equations corresponding to the
reduced parameters of the system. The process of recovering these equations
is called reconstruction. The reconstruction equations are a set of first order
differential equations for the symmetry group parameters (the whole or part
of the first joint parameters) that involve the relative positions and velocities
of other joints.

For a holonomic open-chain multi-body system with symmetry, where G =
Q1, the reconstruction yields the velocity of B1 (base) with respect to the
inertial coordinate frame and expressed in the coordinate frame attached to
B1 (body velocity):

TgLg−1(ġ) = K
−1

11 (q)Ad∗q̃1(µ)−Aq q̇, (3.18)

where g is an element of G, µ ∈ G∗ is the constant momentum of the system,
and Aq : TqQ → G and K11(q) are defined in Theorem 1.
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For a nonholonomic system with symmetry, where G ⊆ Q1 as defined in
Section 2, the reconstruction leads to the body velocities of the base.

TgLg−1(ġ) = −Âq̂ ˙̂q, (3.19)

where in the local trivialization, we have q1 = (g, q̃1), and Âq̂ : Tq̂Q̂ → G is
defined in Theorem 2.

For a multi-body system with symmetry, we can uniquely identify nc con-
trol directions

{
Ǔ
}nc
i=1

in the reduced phase space Š. Further, we call the four

tuple (Š, Ω̌, Ȟ,
{
Ǔi
}nc
i=1

) the reduced controlled multi-body system.

Problem 2 Let (Š, Ω̌, Ȟ,
{
Ǔi
}nc
i=1

) be the reduced controlled multi-body sys-
tem, and let γ : R → R be a desired motion of the extremities of the original
controlled multi-body system with symmetry. Find a set of twice differentiable
functions

{
ǔi ∈ C2(G × Š × R)

∣∣ i = 1, · · · , nc
}

, such that the output FK(q(t))
tracks the curve γ with an exponentially decreasing error. We can reformulate
the controlled multi-body system as

Controlled System: [Ω̌]

[
˙̌q
˙̌p

]
=

[
∂Ȟ
∂q̌
∂Ȟ
∂p̌

]
+

[∑nc
i=1 ǔiǓi

0

]
,

Reconstruction Equation: (3.18) or (3.19)

Output: FK(q(t)) = (r1(q1(t)), r2(q1(t) · · · q20(t)), · · · , rne(q1(t) · · · qne0(t))).

We write the above equations for a controlled holonomic multi-body system:

Controlled System: [Ω̌](q̃)




˙̃q1

q̇
ṗ


 =




∂H̃
∂q̃1
∂H̃
∂q
∂H̃
∂p


+




0
u
0


 ,

Reconstruction Equation: TgLg−1(ġ) = K
−1

11 (q)Ad∗q̃1(µ)−Aq q̇, (3.20)

Output: FK(q(t)) = (r1(q1(t)), r2(q1(t) · · · q20(t)), · · · , rne(q1(t) · · · qne0(t))),

where u is the control input in the given coordinate chart.
And, for a controlled nonholonomic multi-body system we have

Controlled System: [Ω̂](q̂, p̂)

[
˙̂q
˙̂p

]
=

[
∂Ĥ
∂q̂
∂Ĥ
∂p̂

]
+

[
û
0

]
,

Reconstruction Equations: TgLg−1(ġ) = −Âq̂ ˙̂q, (3.21)

Output: FK(q(t)) = (r1(q1(t)), r2(q1(t) · · · q20
(t)), · · · , rne(q1(t) · · · qne0(t))),

where û are the control input in the given coordinate chart, and g ∈ G ⊆ Q1

is an element of the subgroup of Q1. The equations (3.20) and (3.21) formally
define the control problem in the reduced phase space.
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4 End-effector Pose and Velocity Error

4.1 Error Function

In this section we introduce a quadratic error function, based on an induced
metric on the output manifold R from a left-invariant metric on Pe. This er-
ror function represents the distance between the actual output and the desired
output of the system in the ambient manifold Pe. Different methods of defin-
ing error functions and their corresponding gradients are discussed in Bullo’s
thesis [5]. The definition of the error function adopted in this paper is due to
its geometrical interpretation. But, the following development can readily be
applied to other definitions of the error function.

Definition 2 A smooth two variable function Er : R × R → R≥0 is a sym-
metric error function on R, if Er(r1, r2) ≥ 0 for every r1, r2 ∈ R where the
equality holds if and only if r1 = r2, and Er(r1, r2) = E(r2, r1).

Let ιR : R ↪→ Pe be the inclusion map, and let Ki (for i = 1, · · · , ne) be an
arbitrary left invariant Riemannian metric on SE(3) corresponding to the ith

extremity. These metrics induce a left invariant metric K := K1 ⊕ · · · ⊕ Kne
on Pe. Consider two elements r1, r2 ∈ R and the one-parameter subgroup
σ : R → Pe in Pe that connects ιR(r1) to ιR(r2). We define the distance
between r1 ∈ R and r2 ∈ R by the length of the portion of σ that connects
ιR(r1) ∈ Pe to ιR(r2) ∈ Pe in the ambient manifold. That is,

dis(r1, r2) =

∫ 1

0

√
Kσ(s)

(
dσ(s)

ds
,
dσ(s)

ds

)
ds σ(0) = ιR(r1), σ(1) = ιR(r2)

=

∫ 1

0

√
KeP

(
σ−1(s)

dσ(s)

ds
, σ−1(s)

dσ(s)

ds

)
ds,

where s ∈ R is the curve parameter for σ, and eP is the identity element of Pe.
Since one-parameter subgroups are the integral curves of left invariant vector
fields, we can write the curve as

σ(s) = ιR(r1) exp
(
s exp−1(re)

)
,

where re := ιR(r1)−1ιR(r2) that is called output pose error. Consequently,

σ−1(s)
dσ(s)

ds
= exp−1(re),

which is a constant vector in Pe, the Lie algebra of Pe. As the result,

dis(r1, r2) =
√
KeP (exp−1(re), exp−1(re)) =‖ exp−1(re) ‖KeP ,

where ‖ · ‖KeP is the induced norm on Pe by the left invariant metric K. This
length is also equal to the length of the one-parameter subgroup that connects
eP ∈ Pe to re. It is easy to show that the error function defined by

Er(r1, r2) =
1

2
dis(r1, r2)2 =

1

2
‖ exp−1(re) ‖2KeP (4.22)
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is a quadratic, smooth, symmetric error function on R.

Remark 4 Although it would have been natural to define the length of the
geodesic corresponding to the induced metric on R by K as the error function,
the error function defined by 4.22 is more efficient computationally.

We denote the exterior derivative of the error function with respect to the
first and second input by d1 and d2, respectively. Also, let us use KP for the
self-adjoint positive definite map between Pe and P∗e corresponding to the
induced metric on the Lie algebra. Then, for all vr1 ∈ Tr1R and wr2 ∈ Tr2R
we have the following equations:

〈d1Er(r1, r2), vr1〉 =
1

2

〈
d1KeP

(
exp−1(re), exp−1(re)

)
, vr1

〉

= −KeP
(
exp−1(re), Θ(re)

−1AdιR(r2)−1(TιR(r1)RιR(r1)−1)(Tr1ιR)(vr1)
)

=
〈
−KP exp−1(re), Θ(re)

−1AdιR(r2)−1(TιR(r1)RιR(r1)−1)(Tr1ιR)(vr1)
〉

=
〈
−(T ∗r1ιR)(T ∗ιR(r1)RιR(r1)−1)Ad∗ιR(r2)−1(Θ(re)

−1)∗KP exp−1(re), vr1

〉
,

(4.23)

〈d2Er(r1, r2), wr2〉 =
1

2

〈
d2KeP

(
exp−1(re), exp−1(re)

)
, wr2

〉

= KeP
(
exp−1(re), Θ(re)

−1(TιR(r2)LιR(r2)−1)(Tr2ιR)(wr2)
)

=
〈
KP exp−1(re), Θ(re)

−1(TιR(r2)LιR(r2)−1)(Tr2ιR)(wr2)
〉

=
〈

(T ∗r2ιR)(T ∗ιR(r2)LιR(r2)−1)(Θ(re)
−1)∗KP exp−1(re), wr2

〉
,

(4.24)

where d1Er(r1, r2) ∈ T ∗r1R and d2Er(r1, r2) ∈ T ∗r2R. The map Θ(re) : P→ P

Θ(re) :=

∫ 1

0

Adexp(s exp−1(re))ds,

which is the linear map that appears in the tangent map of the exponential
map, corresponding to non-commutativity of Lie algebra elements [10]. The
tangent map to exp: P→ P at the element ξ ∈ P is defined as

Tξ exp = TeLexp(ξ)Θ(exp(ξ)).

The Lie algebra of P is denoted by P. The map Θ is invertible in an open
neighbourhood of the identity element. From now on, we always assume that
re = ιR(r1)−1ιR(r2) belongs to a symmetric neighbourhood of identity such
that Θ(re) is invertible.
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4.2 Velocity Error

For Lie groups, one can use the tangent to left or right translation maps to
trivialize the tangent bundle of the Lie group. Hence, we identify the tangent
space at each element of the Lie group with the Lie algebra. In this section
we use the right translation map of Pe to define an isomorphism between
the tangent spaces of R to define the output velocity error of a controlled
multi-body system.

For an element r′ ∈ Pe, let TRr′ : TPe → TPe be the tangent to the
right translation map by r′ on the Lie group Pe. Recall that the canonical
inclusion map and the projection map for the output manifold R are denoted
by ιR : R → Pe and r : Pe → R, respectively. We define the linear isomorphism
Γ(r1,r2) : Tr2R → Tr1R by

Γ(r1,r2) = (TιR(r1)r)(TιR(r2)RιR(r2)−1ιR(r1))(Tr2ιR)

= (TιR(r1)r)(TιR(r2)Rr−1
e

)(Tr2ιR), (4.25)

which is a well-defined map for any r2 ∈ R in a neighbourhood of r1 ∈ R.
Unlike the tangent map of the right translation, which is globally defined,
the isomorphism defined in (4.25) can only make sense, locally. The size of the
neighbourhood of r1, in which the above map is a linear isomorphism, depends
on the given projection map r.

Definition 3 Let γ1 : R → R and γ2 : R → R be two curves, and t ∈ R be
their curve parameter. We call

Ve(t) := γ̇1(t)− Γ(γ1(t),γ2(t))(γ̇2(t)) (4.26)

the output velocity error of a system.

Note that unlike the case of systems on linear spaces, where the velocity error
can be simply defined by subtracting the velocity of curves, in the case of
systems on manifolds, we need an isomorphism Γ to define the velocity error.
In the next section, we use this notion to design control laws for controlled
multi-body systems with symmetry.

Definition 4 The isomorphism Γ is called compatible with the error function
Er, if ∀r1, r2 ∈ R the following equality holds [5]:

d2Er(r1, r2) = −Γ ∗(r1,r2)d1Er(r1, r2). (4.27)

The map Γ ∗(r1,r2) : T ∗r1R → T ∗r2R is the dual map that naturally corresponds
to the linear isomorphism Γ(r1,r2).

Lemma 1 ([5]) Let γ1 : R → R and γ2 : R → R be two curves. If Γ is
compatible with the error function, then

d

dt
Er(γ1(t), γ2(t)) = 〈d1Er(γ1(t), γ2(t)), Ve(t)〉 . (4.28)
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Proposition 1 ([9]) If R is the right translation of a Lie subgroup of Pe,
then the linear isomorphism Γ in (4.25) is compatible with the error function
Er in (4.22).

CON5) From now on, we assume that R ⊆ Pe is a Lie subgroup of Pe. Note that
any statement in the rest of this paper also holds for any right translation
of Lie subgroups of Pe.

To simplify our notation, from now on, we do not use the inclusion map ιR to
show elements of the Lie subgroup R in Pe, whenever it does not result any
confusion.

5 Input-output Linearization and Inverse Dynamics in the
Reduced Phase Space

In this section, we present an input-output linearization process for the re-
duced dynamics of controlled open-chain multi-body systems with symmetry,
based on left trivialization of the tangent bundles of Q and SE(3). This pro-
cess is useful for deriving an output tracking feed-forward PD (proportional-
derivative)-like controller for such systems, which is the subject of the next
section.

Consider the Jacobian maps for the extremities that map the joint velocities
to the twist of the extremities with respect to the inertial coordinate frame
and expressed in the body coordinate frames (attached to the extremities). We
may use the fact that Q is a Lie group and left trivialize its tangent bundle.
As a result, we define the Jacobian maps J0

i : Q×Q → se(3) (i = 1, · · · , ne)
by

J0
1 : =

(
TFK1(q)LFK1(q)−1

)
TqFK1 (Te1Lq1) (Te1ι1) = Ad(r01,0)−1

[
Te1ι1 0

]
,

J0
i : =

(
TFKi(q)LFKi(q)−1

)
TqFKi

(
Te1Lq1 ⊕ · · · ⊕ Tei0Lqi0

)
(Te1ι1 ⊕ · · · ⊕ Tei0 ιi0)

= Ad(r0i0,0
)−1

[
Ad(q2···qi0 )−1Te1ι1 · · · Tei0 ιi0

]
,

where Q is the Lie algebra of Q, r0
i0,0
∈ SE(3) (i = 1, · · · , ne) is the initial pose

of the coordinate frame attached to an extremity (with respect to the inertial
coordinate frame), and ιj : Qj → SE(3) for j = 1, · · · , N are the canonical
inclusion maps. We denote the collection of J0

i ’s by

Jq :=




(J0
1 )q
...

(J0
ne)q


 : Q→ Pe.

Note that the Jacobian maps q 7→ (J0
i )q’s and consequently q 7→ Jq are Q1

invariant, as was detailed in [10]. We now define the Jacobian maps whose
images are projected to the Lie algebra of the output manifold R:

0i := Ei ◦ J0
i := TeP

(
Lri(FKi(q))−1 ◦ ri ◦ LFKi(q)

)
J0
i , i = 1, · · · , ne

(5.29)
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where the fibre-wise linear maps (Ei)q : se(3) → Ri are obtained from the
derivative of the projection maps ri : SE(3) → Ri (see page 13) and the left
translation map. We then denote the collection of Ei’s by Eq := (E1)q ⊕ · · · ⊕
(Ene)q : Pe → R. As a result, we introduce the fibre-wise linear (Jacobian)
map q : → R by

q :=




(01)q
...

(0ne)q


 = Eq ◦ Jq.

In other words, in terms of the output function FK that is a function of the
projection maps

q = (TFK(q)LFK(q)−1) (TqFK) (T(e1,··· ,eN )Lq) (Te1ι1 ⊕ · · · ⊕ Tei0 ιN ).

Consider an initial phase for the controlled multi-body system with sym-
metry (q0, p0) ∈ T ∗Q that induces an initial phase for the reduced controlled
multi-body system (q̌0, p̌0) ∈ Š. We denote the integral curves of the system
and its reduced dynamics by t 7→ (q(t), p(t)) ∈ T ∗Q and t 7→ (q̌(t), p̌(t)) ∈ Š,
respectively.

CON6) We assume that the above initial conditions respect a pre-chosen constant
(non-zero) momentum of the system, and respect the nonholonomic con-
straints.

We restrict the map  : Q×Q→ R to the curve

t 7→
(
q(t), τ(t) := Tq(t)Lq(t)−1 q̇(t) = Tq(t)Lq(t)−1FL−1

q(t)(p(t))
)
,

which is defined as the result of the integral curve of the system in the phase
space (q(t), p(t)). This is the curve in the trivialized bundle Q ×Q that cor-
responds to the evolution of the relative twists of the extremities. Then the
image of this curve under the map ,

t 7→ q(t)(τ(t)) = Eq(t) ◦Jq(t)(τ1(t), · · · , τN (t)) := Eq(t) ◦Jq(t)(τ(t)) ∈ R (5.30)

corresponds to the evolution of the output of the system in the Lie algebra
of the output manifold R. In the holonomic case the first entry of this map
τ1(t) = Tq1(t)Lq(t)−1 q̇1(t) is the relative twist of the first body with respect
to the inertial coordinate frame and expressed in the body coordinate frame,
which is the outcome of the reconstruction equation (3.18). That is,

τ1(t) = K
−1

11 (q(t))Ad∗q̃1(t)(µ)−Aq(t)q̇(t). (5.31)

Based on (3.19), for a nonholonomic open-chain multi-body system with
symmetry we have

τ1(t) = (g(t)q̂1(t))−1
(
ġ(t)q̂1(t) + g(t) ˙̂q1(t)

)
= Adq̂1(t)−1

(
g−1(t)ġ(t)

)
+ q̂−1

1 (t) ˙̂q1(t)

= −Adq̂1(t)−1

(
Âq̂(t) ˙̂q(t)

)
+ q̂−1

1 (t) ˙̂q1(t). (5.32)
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Let [Ω̌] : T Š → T ∗Š be the vector bundle map corresponding to the 2-form
Ω̌ ∈ Ω2(Š), in the dynamical equations of a reduced controlled holonomic
or nonholonomic open-chain multi-body system. For a holonomic multi-body
system with symmetry and with non-zero conserved momentum, this map is
equal to [Ω̃] as defined in Theorem 1, and it is easy to check that

[Ω̃]−1(q̃) =




[Ω̃]−1
11 0 − [Ω̃]−1

11 [Ω̃]12

0 0 id

−[Ω̃]T12[Ω̃]−1
11 − id [Ω̃]22 + [Ω̃]T12[Ω̃]−1

11 [Ω̃]12


 .

For a nonholonomic multi-body system with symmetry, this map is equal to
[Ω̂] as defined in Theorem 2, and its inverse is

[Ω̂]−1(q̂, p̂) =

[
0 id

−id [Ω̂]1

]
.

Note that for the holonomic multi-body systems where Gµ = G, the form of

the vector bundle map [Ω̃] and consequently its inverse is the same as the
maps appearing in the nonholonomic case.

Therefore, we can write the speed of the integral curve of a controlled
holonomic open-chain multi-body system in the reduced phase space as:




˙̃q1

q̇
ṗ


 = [Ω̃]−1(q̃(t))




∂H̃
∂q̃1

∂H̃
∂q + u
∂H̃
∂p




=




[Ω̃]−1
11 0 − [Ω̃]−1

11 [Ω̃]12

0 0 id

−[Ω̃]T12[Ω̃]−1
11 − id [Ω̃]22 + [Ω̃]T12[Ω̃]−1

11 [Ω̃]12







∂H̃
∂q̃1

∂H̃
∂q + u
∂H̃
∂p




=




[Ω̃]−1
11

∂H̃
∂q̃1
−
(

[Ω̃]−1
11 [Ω̃]12

)
∂H̃
∂p

∂H̃
∂p

−
(

[Ω̃]T12[Ω̃]−1
11

)
∂H̃
∂q̃1
− ∂H̃

∂q − u+
(

[Ω̃]22 + [Ω̃]T12[Ω̃]−1
11 [Ω̃]12

)
∂H̃
∂p


 .

(5.33)

In the nonholonomic case, the above calculation is performed as follows:

[
˙̂q
˙̂p

]
= [Ω̂]−1(q̂(t), p̂(t))

[
∂Ĥ
∂q̂ + û
∂Ĥ
∂p̂

]
=

[
0 id

−id [Ω̂]1

][∂Ĥ
∂q̂ + û
∂Ĥ
∂p̂

]

=

[
∂Ĥ
∂p̂

−∂Ĥ∂q̂ − û+ [Ω̂]1
∂Ĥ
∂p̂

]
. (5.34)
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Based on the first two equations in (5.33), in the holonomic case we define
the functions

q̃(q̃(t), p(t)) := ˙̃q1(t) = [Ω̃]−1
11

∂H̃

∂q̃1
−
(

[Ω̃]−1
11 [Ω̃]12

) ∂H̃
∂p

, (5.35)

q(q̃(t), p(t)) := q̇(t) =
∂H̃

∂p
, (5.36)

and for a nonholonomic system, i.e., based on (5.34), we only have the inverse
of the Legendre transformation in the reduced phase space:

q̂(q̂(t), p̂(t)) := ˙̂q(t) =
∂Ĥ

∂p̂
. (5.37)

By substituting these equations in (5.31) and (5.32), we obtain the follow-
ing relations for holonomic and nonholonomic cases, respectively:

τ1(t) = K
−1

11 (q(t))Ad∗q̃1(t)(µ)−Aq(t)q(q̃(t), p(t)).

and

τ1(t) = −Adq̂−1
1 (t)

(
Âq̂(t)q̂((q̂(t), p̂(t)))

)
+ q̂−1

1 (t)q̂1(q̂(t), p̂(t)),

where q̂1 : T ∗Q̂ → T (Q1/G) specifies the components of the dynamical vector
field in T (Q1/G) as a portion of the components of q̂. To unify our notation,
for a holonomic or nonholonomic open-chain multi-body system we write

q̌(q̌(t), p̌(t)) := ˙̌q(t), (5.38)

where in the holonomic case this formula represents the combination of (5.35)
and (5.36), and for a nonholonomic system it is (5.37).

We can then write τ̌(q̌(t), p̌(t)) := τ(t), where the function τ̌ : Š → Q is
defined based on (5.38) and the reconstruction equations. Therefore, the curve
in (5.30) can be rewritten as

t 7→ q(t) ◦ τ̌(q̌(t), p̌(t))) ∈ R,

where we have  ◦ τ̌ : G × Š → R. Taking the derivative of this curve with
respect to time, we obtain a curve in TR ∼= R:

t 7→ d

dt

(
q(t) ◦ τ̌(q̌(t), p̌(t))

)
=

(
∂

∂q
q̇(t)

)
τ̌ + 

(
∂τ̌

∂q̌
˙̌q(t) +

∂τ̌

∂p̌
˙̌p(t)

)

=

(
∂

∂q

(
TeLq(t)(τ̌)

))
τ̌ + 

(
∂τ̌

∂q̌
˙̌q(t) +

∂τ̌

∂p̌
˙̌p(t)

)

=

(
∂

∂q

(
TeLq(t)(τ̌)

))
τ̌ + 

(
∂τ̌

∂q̌
q̌ +

∂τ̌

∂p̌
(p̌− ǔ)

)
∈ R, (5.39)

where the last line is the consequence of substituting (5.38) in the equation,
ǔ is equal to u or û in the holonomic or nonholonomic case, respectively.
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Further, the map p̌ is defined based on the last equation of (5.33) or (5.34) for
the holonomic or nonholonomic case, respectively:

p̌(q̃(t), p(t)) = −
(

[Ω̃]T12[Ω̃]−1
11

) ∂H̃
∂q̃1
− ∂H̃

∂q
+
(

[Ω̃]22 + [Ω̃]T12[Ω̃]−1
11 [Ω̃]12

) ∂H̃
∂p

,

or

p̌(q̂(t), p̂(t)) = −∂Ĥ
∂q̂

+ [Ω̂]1
∂Ĥ

∂p̂
.

Equation (5.39) is the input-output linearized form in the reduced phase space
of a holonomic or nonholonomic open-chain multi-body system with multi-
d.o.f. joints and non-zero momentum. The input-output linearization method
presented in this section generalizes different approaches to the input-output
linearization of underactuated, holonomic and nonholonomic multi-body sys-
tems used, e.g., in [1,3,12,14,21,22], to derive nonlinear control laws. Equation
(5.39) holds for any holonomic open-chain multi-body system with non-abelian
symmetry group and non-zero momentum, and also it holds for Chaplygin sys-
tems with underactuated joints.

In (5.39), ǔ is going to be designed such that the output of the controlled
holonomic or nonholonomic open-chain multi-body system follows the desired
trajectory t 7→ γ(t). As a result, we solve the inverse dynamics problem for a
free-base, open-chain multi-body system with symmetry by equating the curve
in (5.39) and d

dt

(
γ−1(t)γ̇(t)

)
:

d

dt
(r−1(t)ṙ(t)) =

d

dt

(
q(t) ◦ τ̌(q̌(t), p̌(t))

)
=

d

dt

(
γ−1(t)γ̇(t)

)
,

where t 7→ r(t) := FK(q(t)) is the output of the system. Now, we use the last
line of (5.39) to find the solution for the inverse dynamics problem, by solving
for ǔ in the reduced phase space.

ǔ(g(t),q̌(t), p̌(t), γ(t), γ̇(t), γ̈(t))

=

(

∂τ̌

∂p̌

)−1((
∂

∂q

(
TeLq(t)(τ̌)

))
τ̌ + 

∂τ̌

∂q̌
q̌− d

dt

(
γ−1(t)γ̇(t)

))
+ p̌,

(5.40)

where (g(t), q̌(t)) = q(t) in the local trivialization. Note that (5.40) matches
with the equation (17) in [12] in a special case where the total momentum of
the system is equal to zero and there is no nonholonomic constraints. Also,
the formulation in [12] is based on a specific parametrization of the output
manifold of the system. Therefore, (5.40) can be considered as a generalization
of the inverse dynamics solution of a free-base, open-chain multi-body system,
in the reduced phase space, and subject to holonomic (possibly with non-zero
total momentum) or nonholonomic constraints.

Remark 5 The matrix ∂τ̌∂p̌ is square if the number of control inputs nc is equal
to the dimension of the output manifold, i.e., no = nc. In case no < nc, we can
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either choose ǔ amongst all possible solutions by, for example, optimizing a
function along the trajectories of the system, or using a pseudo inverse matrix
in the above equation.

Remark 6 Note that since the Legendre transformation is invertible for the
reduced open-chain multi-body system with symmetry, the matrix ∂τ̌

∂p̌ is always

full rank. Furthermore, for a feasible desired trajectory t 7→ γ(t) the Jacobian
q is also full rank. Therefore, the inverse dynamics problem in the reduced
phase space has a unique solution ǔ (or the matrix ∂τ̌∂p̌ is invertible), if no = nc
and the desired trajectory t 7→ γ(t) is feasible.

CON7) In the next section, we assume that the dimension of the output manifold
no is equal to the number of control inputs nc of a controlled holonomic or
nonholonomic open-chain multi-body system.

6 An Output-tracking Feed-forward Servo-like Controller

In this section, under the dimensional assumption CON7 and the feasibility of
the desired trajectory t 7→ γ(t), we develop an output tracking feed-forward
servo-like controller for a open-chain multi-body system with symmetry. The
system can include multi-d.o.f. joints and can be subject to holonomic or non-
holonomic constraints. Also, for the holonomic case the total momentum of
the system can be non-zero. In this process, we use the definition of the error
function and velocity error of the system output introduced in Section 4. Con-
sequently, we show that the developed controller exponentially stabilizes the
closed-loop system using a Lyapunov function t 7→ VL(r(t), ṙ(t), γ(t), γ̇(t)) ∈
R.

Definition 5 ([5]) Let t 7→ r(t) = FK(q(t)) ∈ R denote the output of a
controlled holonomic or nonholonomic, open-chain multi-body system, and let
t 7→ γ(t) ∈ R be a feasible desired output trajectory. The desired trajectory γ

i) is Lyapunov stable with Lyapunov function t 7→ VL(r(t), ṙ(t), γ(t), γ̇(t)) ∈
R, if VL(t) ≤ VL(0) from all initial conditions (r(0), ṙ(0)).

ii) is exponentially stable with Lyapunov function t 7→ VL(r(t), ṙ(t), γ(t), γ̇(t)) ∈
R, if there exist two positive constants δ1 and δ2 such that VL(t) ≤ δ1VL(0)e−δ2t

from all initial conditions (r(0), ṙ(0)).

Theorem 3 Consider the controlled holonomic or nonholonomic, open-chain
multi-body system in (3.20) or (3.21), and let the curve t 7→ γ(t) ∈ R be
a twice differentiable feasible trajectory in the output manifold that satisfies
the assumption CON3. Also, let Er : R × R → R≥0 be the error function in
(4.22) and Γ be its compatible linear isomorphism (assuming CON5), defined
by (4.25). Let KP : R → R∗, KD : R → R∗ and I : R → R∗ be self-adjoint
positive-definite linear maps, such that the induced norm of I on R is denoted
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by ‖ · ‖I . Under the condition CON7 the control input in the reduced phase
space is

ǔ(q, p̌, γ, γ̇, γ̈) =

(

∂τ̌

∂p̌

)−1((
∂

∂q
(TeLq(τ̌))

)
τ̌ + 

∂τ̌

∂q̌
q̌− ν̌

)
+ p, (6.41)

where we have the control law as:

ν̌ = ν̌PD + ν̌FF , (6.42)

ν̌PD = −I−1T ∗ePLr(t) (d1Er(r, γ))− I−1KDve(r, γ, ṙ, γ̇), (6.43)

ν̌FF = ad(r−1ṙ)Ad(r−1γ)

(
γ−1γ̇

)
+ Ad(r−1γ)

(
d

dt

(
γ−1γ̇

))
(6.44)

where r(t) = FK(q(t)) ∈ R is the output of the system, and

ve(r, γ, ṙ, γ̇) := r−1ṙ − r−1Γ(r,γ)(γ̇) = r−1ṙ −Ad(r−1γ)(γ
−1γ̇) (6.45)

is the left translated output velocity error to R. Then, the desired trajectory
t 7→ γ(t) is Lyapunov stable with the Lyapunov function VL : R→ R≥0:

VL(t) = Er(r, γ) +
1

2
‖ ve(r, γ, ṙ, γ̇) ‖2I . (6.46)

Further, the desired trajectory t 7→ γ(t) is exponentially stable with Lyapunov
function VL from all initial conditions, such that we have VL(0) < W 2

R. Here,
WR is the length of the radius of an open ball in R with respect to the norm
induced by I, where the exponential map is a diffeomorphism.

Proof In order to show Lyapunov stability of the desired trajectory, we have
to show that the time derivative of a candidate Lyapunov function is always
less than or equal to zero. We choose the Lyapunov function to be (6.46), and
we start with the time derivative of the error function. Based on CON5 and
Lemma 1, we have

d

dt
Er(r, γ) = 〈d1Er(r, γ), Ve〉 =

〈
T ∗ePLr(t) (d1Er(r, γ)) , ve

〉
. (6.47)

The time derivative of the second term in (6.46) is also calculated as follows:

d

dt

(
1

2
〈Ive, ve〉

)
=

〈
Ive,

d

dt
ve

〉

=

〈
Ive,

d

dt

(
r−1ṙ − r−1Γ(r,γ)(γ̇)

)〉

=

〈
Ive,

d

dt
(q τ̌)− d

dt

(
r−1Γ(r,γ)(γ̇)

)〉

=

〈
Ive, ν̌ −

d

dt

(
r−1(γ̇)γ−1r

)〉

=

〈
Ive, ν̌PD + ν̌FF −

d

dt

(
Ad(r−1γ)(γ

−1γ̇)
)〉

=

〈
Ive, ν̌PD + ν̌FF − ad(r−1ṙ)Ad(r−1γ)

(
γ−1γ̇

)
+ Ad(r−1γ)

(
d

dt

(
γ−1γ̇

))〉
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= 〈Ive, ν̌PD〉
=
〈
Ive,−I−1T ∗ePLr(t) (d1Er)− I−1KDve

〉

=
〈
−T ∗ePLr(t) (d1Er)−KDve, ve

〉
. (6.48)

By adding (6.47) and (6.48), we calculate the time derivative of VL as:

dVL
dt

(t) = −〈KDve, ve〉 ,

which is always less than or equal to zero due to the fact that KD is positive
definite. This proves the Lyapunov stability of the feasible desired trajectory.

In order to show the exponential stability, we need to add a term to VL
and define a new Lyapunov function V̌L : R→ R≥0 [6]:

V̌L(t) := Er(r, γ) +
1

2
‖ ve(r, γ, ṙ, γ̇) ‖2I +ε

d

dt
Er(r, γ),

where we have to find ε > 0 such that V̌L is positive definite, i.e., V̌L is
greater than or equal to zero and it is zero if and only if Er(r, γ) = 0 and
ve(r, γ, ṙ, γ̇) = 0. Let re(t) = r(t)−1γ(t):

V̌L(t) = Er +
1

2
〈Ive, ve〉+ ε

〈
T ∗ePLr (d1Er) , ve

〉

=
1

2

〈
KP exp−1(re), exp−1(re)

〉
+

1

2
〈Ive, ve〉+ ε

〈
T ∗ePLr (d1Er) , ve

〉

=
1

2

〈
KP exp−1(re), exp−1(re)

〉
+

1

2
〈Ive, ve〉 − ε

〈
Ad∗

r−1
e

(Θ(re)
−1)∗KP exp−1(re), ve

〉
.

From the proof of Lyapunov stability of the closed loop for t 7→ γ(t), we have

VL(t) ≤W0 := VL(0) =⇒ Er(r, γ) ≤W0, ‖ ve(r, γ, ṙ, γ̇) ‖I≤W0.

We consider the induced norm by KeP and I on the space of all automorphisms
of R, as a vector space. For any linear map = : R → R, this induced norm is
defined by

‖ = ‖I := max {‖ =ξ ‖I | ξ ∈ R, ‖ ξ ‖I= 1} ,
for I, and similarly we can define the norm, which is induced by KeP . Since
the error function is bounded by the Lyapunov stability and re ∈ R is assumed
to be in a neighbourhood of the identity where Θ(re) is invertible, ∀t ∈ R we
have the following bounds:

‖ Adr−1
e
‖I ≤ sup

{
‖ Adr−1

e
‖I
∣∣∣ re ∈ R, ‖ exp−1(re) ‖KeP≤

√
W0

}
= W1,

‖ Θ(re)
−1 ‖I ≤ sup

{
‖ Θ(re)

−1 ‖I
∣∣ re ∈ R, ‖ exp−1(re) ‖KeP≤

√
W0

}
= W2.

As the result of these bounds,

V̌L(t) ≥ 1

2
‖ exp−1(re) ‖2KeP +

1

2
‖ ve ‖2I −ε ‖ exp−1(re) ‖KeP ‖ Θ(re)

−1Adr−1
e

ve ‖I

≥ 1

2
‖ exp−1(re) ‖2KeP +

1

2
‖ ve ‖2I

− ε ‖ Adr−1
e
‖I‖ Θ(re)

−1 ‖I‖ exp−1(re) ‖KeP ‖ ve ‖I
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≥ 1

2
‖ exp−1(re) ‖2KeP +

1

2
‖ ve ‖2I −εW1W2 ‖ exp−1(re) ‖KeP ‖ ve ‖I

=
1

2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T
W̌
[‖ exp−1(re) ‖KeP

‖ ve ‖I

]

:=
1

2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T [
1 −εW1W2

−εW1W2 1

] [‖ exp−1(re) ‖KeP
‖ ve ‖I

]
,

where, W̌ is a positive definite matrix if 0 < ε < 1√
W1W2

. Therefore, for any ε

in this range, V̌L is a well-defined Lyapunov function.
Now, to calculate the time derivative of V̌L(t) we only need to take the

derivative of the term d
dtEr(r, γ):

d

dt

(
d

dt
Er(r, γ)

)
=

d

dt

〈
T ∗ePLr (d1Er) , ve

〉
= − d

dt

〈
Ad∗

r−1
e

(Θ(re)
−1)∗KP exp−1(re), ve

〉

= − d

dt

〈
KP exp−1(re), Θ(re)

−1Adr−1
e

ve

〉

= −
〈
KP

d

dt

(
exp−1(re)

)
, Θ(re)

−1Adr−1
e

ve

〉
−
〈
KP exp−1(re),

d

dt

(
Θ(re)

−1Adr−1
e

ve

)〉
.

In the following, we calculate the terms appeared in the above equation.
〈
KP

d

dt

(
exp−1(re)

)
, Θ(re)

−1Adr−1
e

ve

〉
=
〈
KPΘ(re)

−1TePLr−1
e
ṙe, Θ(re)

−1Adr−1
e

ve

〉

= −
〈
KPΘ(re)

−1Adr−1
e

ve, Θ(re)
−1Adr−1

e
ve

〉

= − ‖ Θ(re)
−1Adr−1

e
ve ‖2KeP , (6.49)

since we have

ṙe =
d

dt

(
r−1γ)

)
= −r−1ṙr−1γ + r−1γ̇ = −

(
r−1ṙ − r−1γ̇γ−1r

)
re

= −TePRre
(
r−1ṙ − r−1Γ(r,γ)(γ̇)

)
= −TePRre(ve).

And,

d

dt

(
Θ(re)

−1Adr−1
e

ve

)
=

(
∂Θ−1

∂re
ṙe

)
Adr−1

e
(ve)−Θ−1Adr−1

e
adṙer−1

e
(ve) +Θ−1Adr−1

e
(v̇e)

=

(
∂Θ−1

∂re
(−vere)

)
Adr−1

e
(ve)−Θ−1Adr−1

e
adve(ve) +Θ−1Adr−1

e
(ν̌PD)

= −
(
∂Θ−1

∂re
(vere)

)
Adr−1

e
(ve) +Θ−1Adr−1

e
(ν̌PD)

= −
(
∂Θ−1

∂re
(vere)

)
Adr−1

e
(ve)−Θ−1Adr−1

e

(
I−1T ∗ePLr (d1Er) + I−1KDve

)

= −
(
∂Θ−1

∂re
(vere)

)
Adr−1

e
(ve)

+Θ−1Adr−1
e

(
I−1Ad∗

r−1
e

(Θ(re)
−1)∗KP exp−1(re)− I−1KDve

)
,

(6.50)
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which is the result of the following equalities:

ṙe = −vere,
v̇e = ν̌PD,

d

dt
Adr−1

e
(η) =

d

dt

(
r−1
e ηre

)
= −r−1

e ṙer
−1
e ηre + r−1

e ηṙe = r−1
e

(
ηṙer

−1
e − ṙer−1

e η
)
re

= −Adr−1
e

adṙer−1
e

(η),

where in the last equality η is an element of R. Therefore, by (6.49) and (6.50)
we have

d

dt

(
d

dt
Er(r, γ)

)
= ‖ Θ(re)

−1Adr−1
e

ve ‖2KeP

+

〈
KP exp−1(re),

(
∂Θ−1

∂re
(vere)

)
Adr−1

e
(ve)

〉

−
〈

Ad∗
r−1
e

(Θ(re)
−1)∗KP exp−1(re), I−1Ad∗

r−1
e

(Θ(re)
−1)∗KP exp−1(re)

〉

+
〈
KP exp−1(re), Θ

−1Adr−1
e
I−1KDve

〉
.

Based on the norm equivalence inequality and since we have the bounds
‖ Adr−1

e
‖I≤W1 and ‖ Θ(re)

−1 ‖I≤W2, there exists W3 > 0 such that

‖ Ad∗
r−1
e

(Θ(re)
−1)∗KP exp−1(re) ‖2I
≥W3 ‖ KP exp−1(re) ‖2KeP= W3 ‖ exp−1(re) ‖2KeP , (6.51)

wherever we have an element of R∗ inside the norm we mean the naturally
induced norm by a metric on R∗. Also, we have the following inequalities:

‖ Θ(re)
−1Adr−1

e
ve ‖2KeP ≤W4 ‖ ve ‖2I , (6.52)

〈
KP exp−1(re),

(
∂Θ−1

∂re
(vere)

)
Adr−1

e
(ve)

〉
≤W5 ‖ ve ‖I‖ exp−1(re) ‖KeP ,

(6.53)
〈
KP exp−1(re), Θ

−1Adr−1
e
K−1
P KDve

〉
≤W6 ‖ ve ‖I‖ exp−1(re) ‖KeP ,

(6.54)

where W4,W5,W6 > 0 are three positive real numbers. The inequalities in
(6.51), (6.52), (6.53) and (6.54) yields to

d

dt

(
d

dt
Er(r, γ)

)
≤

− 1

2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T
W̃
[‖ exp−1(re) ‖KeP

‖ ve ‖I

]

:= −1

2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T [
2W3 −(W5 +W6)

−(W5 +W6) −2W4

] [‖ exp−1(re) ‖KeP
‖ ve ‖I

]
,
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where W̃ is a symmetric matrix. As a result, we have

d

dt
V̌L(t) ≤

− 1

2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T
Ŵ
[‖ exp−1(re) ‖KeP

‖ ve ‖I

]

:= −1

2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T [
2εW3 −ε(W5 +W6)

−ε(W5 +W6) −2(εW4 −W6)

] [‖ exp−1(re) ‖KeP
‖ ve ‖I

]
.

(6.55)

It is easy to check that if

0 < ε <
4W3W6

(W5 +W6)2 + 4W3W4
,

then Ŵ is a symmetric positive-definite matrix. Therefore, for any positive ε

less than the min
{

1√
W1W2

, 4W3W6

(W5+W6)2+4W3W4

}
, V̌L is a Lyapunov function and

(6.55) holds. Until this step, we have proved the asymptotic stability of the
desired feasible trajectory t 7→ γ(t) ∈ R.

In the final step, we show that in fact this trajectory is exponential stable.
Consider the Lyapunov function V̌L for an appropriate ε. We have

V̌L(t) ≤ 1

2
‖ exp−1(re) ‖2KeP +

1

2
‖ ve ‖2I +εW1W2 ‖ exp−1(re) ‖KeP ‖ ve ‖I

=
1

2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T
W ′
[‖ exp−1(re) ‖KeP

‖ ve ‖I

]

:=
1

2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T [
1 εW1W2

εW1W2 1

] [‖ exp−1(re) ‖KeP
‖ ve ‖I

]
,

where W ′ is a symmetric positive definite matrix. Using the norm equivalence
inequality, there exists a positive number δ2 such that

d

dt
V̌L(t) ≤ −1

2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T
Ŵ
[‖ exp−1(re) ‖KeP

‖ ve ‖I

]

≤ −δ2
2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T
Ŵ ′
[‖ exp−1(re) ‖KeP

‖ ve ‖I

]
≤ −δ2V̌L(t).

Based on this inequality, V̌L(t) ≤ V̌L(0)e−δ2t. Consequently, there exists a
positive number δ1 such that

VL(t) =
1

2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T [
1 0
0 1

] [‖ exp−1(re) ‖KeP
‖ ve ‖I

]

≤ δ1
2

[‖ exp−1(re) ‖KeP
‖ ve ‖I

]T
W̌
[‖ exp−1(re) ‖KeP

‖ ve ‖I

]

≤ δ1V̌L(t) ≤ δ1V̌L(0)e−δ2t ≤ 2δ1VL(0)e−δ2t,

where the last inequality holds due to the fact that V̌L(0) ≤ 2VL(0). ut
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Remark 7 Theorem 3 presents an output tracking, feed-forward PD-like con-
troller in the reduced phase space that exponentially stabilizes the closed-loop
holonomic or nonholonomic multi-body system. The control input is a function
of the joint displacements, including those of the unactuated joints eliminated
in the reduction process, and the velocities of the actuated joints.

Remark 8 The controller input in (6.41) is in the reduced space. In order to
find the control input for the original system in (3.16), we have to first express
ǔ in the reduced basis for the control directions, i.e.

{
Ǔi
}nc
i=1

, then we have to
lift the result to the original phase space of the system. That is,

nc∑

i=1

uiǓi := ǔ =

nc∑

i=1

uiUi,

where Ui’s are the original control directions of the controlled multi-body sys-
tem.

Figures 1 and 2 depict the block diagrams of the proposed control scheme
for free-base, holonomic and nonholonomic controlled multi-body systems, re-
spectively. In these diagrams, g is an element of the symmetry group G, and
r′, ṙ′ correspond to the actual motion of the robot. Also, we have

p(q, p) =



K22(q) · · · K2N (q)

...
. . .

...
KN2(q) · · · KNN (q)


 q̇ −

[
K12(q) · · · K1N (q)

]∗
Aq q̇,

p̂(q̂, p̂) = FL̂q̂ ˙̂q,

ν̌P = −I−1T ∗ePLr(t) (d1Er(r, γ)) = I−1Ad∗
r−1
e

(Θ(re)
−1)∗KP exp−1(re),

ν̌D = −I−1KDve(r, γ, ṙ, γ̇) = −I−1KD
(
r−1ṙ −Adre(γ

−1γ̇)
)
,

ν̌FF = ad(r−1ṙ)Adre
(
γ−1γ̇

)
+ Adre

(
d

dt

(
γ−1γ̇

))

= ad(r−1ṙ)Adre
(
γ−1γ̇

)
+ Adre

(
γ−1γ̈ − (γ−1γ̇)(γ−1γ̇)

)

In Theorem 3, we introduce a feed-forward PD-like controller at the output
of a controlled open-chain multi-body system. We used the group structure of
the output manifold to define the pose and velocity error for the extremities,
and consequently, to construct this controller. As a result, the controller, i.e., ν̌,
is dependent on the group structure of the output manifold. For this controller,
the behaviour of the closed-loop system can be presented in the form of the
following set of coupled differential equations:

d

dt
(r−1ṙ) = ν̌FF + ν̌P + ν̌D

=
d

dt
(Adre(γ

−1γ̇))−Ad∗
r−1
e

(Θ(re)
−1)∗KP exp−1(re)−KD

(
r−1ṙ −Adre(γ

−1γ̇)
)
,

where we assume that the linear map I : R → R∗, which is used to define
Lyapunov function, is the identity matrix. This simplification helps illustrating
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1

γ−1γ̈ − (γ−1γ̇)(γ−1γ̇)

γ−1γ̇

re = r−1γ

ν̌FF

ν̌D

ν̌P

∑

ǔ(g, q, p, ν̌) ROBOT

FK(g, q)

(g, q, p)

Equation

(3.17)

p(q, q̇)

γ̈

γ̇

γ

q̇ q

g

r

r′

ṙ′

r−1ṙ

Figure 1: Feed-forward servo control for a generic free-base, open-chain multi-body sys-
tem

Fig. 1 Feed-forward servo-like control for a free-base, holonomic open-chain multi-body
system with non-zero momentum

the behaviour of the closed-loop system. By some manipulation, we get the
following set of coupled differential equations for the output error (re = r−1γ):

d

dt
(ṙer

−1
e ) +KD(ṙer

−1
e ) + Ad∗

r−1
e

(Θ(re)
−1)∗KP exp−1(re) = 0.

Now by appropriately choosing the self-adjoint linear maps KP and KD, we
can achieve a desired performance of the closed-loop system.

If the output manifold of the system is an abelian subgroup of Pe, the
above differential equation can be simplified to the familiar second order linear
differential equation. Then by choosing diagonal matrices for KP and KD

1

γ−1γ̈ − (γ−1γ̇)(γ−1γ̇)

γ−1γ̇

re = r−1γ

ν̌FF

ν̌D

ν̌P

∑

ǔ(g, q̂, p̂, ν̌) ROBOT

FK(g, q̂)

(g, q̂, p̂)

Equation

(3.18)

p̂(q̂, ˙̂q)

γ̈

γ̇

γ

˙̂q q̂

g

r

r′

ṙ′

r−1ṙ

Figure 1: Feed-forward servo control for a generic free-base, open-chain multi-body sys-
tem

Fig. 2 Feed-forward servo-like control for a free-base, nonholonomic open-chain multi-body
system
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we can decouple the differential equations representing the behaviour of the
closed-loop system, and we can explicitly design the controller to achieve any
desired performance of the system. In this case, the controller is simply a PD
controller, the output error is the difference between the desired and actual
output of the system, and the maps Adre , exp−1 and Θ(re) are the identity
maps. Therefore, we have

d2

dt2
(r − γ) +KD

d

dt
(r − γ) +KP (r − γ) = 0.

This situation occurs, for example, when we want to control the position of the
extremities without considering their orientation. This idea is illustrated in the
next section. Note that if we are interested in controlling the orientation of the
extremities, e.g., orientation of the base body of a free-floating manipulator,
then the controller design is not as simple.

7 Case Study

In this section, we derive the developed controller for the example of a three-
d.o.f. manipulator mounted on top of a two-wheeled differential rover. Note
that the manipulator may move out of the rover’s plane of motion.

We first identify the bodies as depicted in Figure 3, and the following graph
introduces the joints of the nonholonomic open-chain multi-body system.

B2

B0
J1

B1
J4

J3

J2

B4
J5

B5
J6

B6

B3

We then identify the relative configuration manifolds corresponding to the
joints of the robotic system. The relative pose of B1 with respect to the inertial
coordinate frame is identified by SE(2).

Q0
1 =








cos(θ) − sin(θ) 0 x
sin(θ) cos(θ) 0 y

0 0 1 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
x, y ∈ R, θ ∈ S1





;

Here, (x, y) is the position of C (see Figure 3) with respect to the inertial
coordinate frame and θ is the angle between the X1-axis and X0-axis (see
Figure 4). The second joint is a one-d.o.f. revolute joint between B2 and B1,
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Fig. 3 An example of a mobile manipulator

and its corresponding relative configuration manifold is given by

Q1
2 =








cos(ψ1) 0 sin(ψ1) 0
0 1 0 c

− sin(ψ1) 0 cos(ψ1) 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ψ1 ∈ S1




,

Fig. 4 The coordinate frames attached to the bodies of the mobile manipulator (Note that,
the Zi-axis (i = 0, · · · , 6) is normal to the plane)
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where c is the distance between the point C and the wheels. Similarly, for the
third joint we have

Q1
3 =








cos(ψ2) 0 sin(ψ2) 0
0 1 0 −c

− sin(ψ2) 0 cos(ψ2) 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ψ2 ∈ S1




.

The fourth, fifth and sixth joints are one-d.o.f. revolute joints whose axes of
revolution are the Z4, X5 and X6 axes, respectively. The relative configuration
manifolds of these joints are identified by

Q1
4 =








cos(ϕ1) − sin(ϕ1) 0 l0 + l1
sin(ϕ1) cos(ϕ1) 0 0

0 0 1 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ϕ1 ∈ S1




,

Q4
5 =








1 0 0 0
0 cos(ϕ2) − sin(ϕ2) l2
0 sin(ϕ2) cos(ϕ2) 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ϕ2 ∈ S1




,

Q5
6 =








1 0 0 0
0 cos(ϕ3) − sin(ϕ3) l3
0 sin(ϕ3) cos(ϕ3) 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ϕ3 ∈ S1




.

We assume that the initial pose of B1 with respect to the inertial coordinate
frame r0

1,0 is the identity element of SE(3). Therefore based on Figure 3 and
4, we have the initial relative poses of the bodies:

r1
2,0 =




1 0 0 0
0 1 0 c
0 0 1 0
0 0 0 1


 , r

1
3,0 =




1 0 0 0
0 1 0 −c
0 0 1 0
0 0 0 1


 , r

1
4,0 =




1 0 0 l0 + l1
0 1 0 0
0 0 1 0
0 0 0 1


 , r

4
5,0 =




1 0 0 0
0 1 0 l2
0 0 1 0
0 0 0 1


 , r

5
6,0 =




1 0 0 0
0 1 0 l3
0 0 1 0
0 0 0 1


 .

As a result, we have the initial relative pose of the centre of mass of the bodies
with respect to B0:

rcm,1 =




1 0 0 l0
0 1 0 0
0 0 1 0
0 0 0 1


 , rcm,2 = r1

2,0, rcm,3 = r1
3,0, rcm,4 =




1 0 0 l0 + l1
0 1 0 l2/2
0 0 1 0
0 0 0 1


 ,

rcm,5 =




1 0 0 l0 + l1
0 1 0 l2 + l3/2
0 0 1 0
0 0 0 1


 , rcm,6 =




1 0 0 l0 + l1
0 1 0 l2 + l3 + l4
0 0 1 0
0 0 0 1


 .
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With the above specifications of the system we identify the configuration
manifold of the nonholonomic open-chain multi-body system in this case study
by Q = Q1 × · · · × Q6, where

Q1 =




q1 =




cos(θ) − sin(θ) 0 x
sin(θ) cos(θ) 0 y

0 0 1 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
x, y ∈ R, θ ∈ S1




,

Q2 =




q2 =




cos(ψ1) 0 sin(ψ1) 0
0 1 0 0

− sin(ψ1) 0 cos(ψ1) 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ψ1 ∈ S1




,

Q3 =




q3 =




cos(ψ2) 0 sin(ψ2) 0
0 1 0 0

− sin(ψ2) 0 cos(ψ2) 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ψ2 ∈ S1




,

Q4 =




q4 =




cos(ϕ1) − sin(ϕ1) 0 2(l0 + l1) sin2(ϕ1/2)
sin(ϕ1) cos(ϕ1) 0 −(l0 + l1) sin(ϕ1)

0 0 1 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ϕ1 ∈ S1




,

Q5 =




q5 =




1 0 0 0
0 cos(ϕ2) − sin(ϕ2) 2l2 sin2(ϕ2/2)
0 sin(ϕ2) cos(ϕ2) −l2 sin(ϕ2)
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ϕ2 ∈ S1




,

Q6 =




q6 =




1 0 0 0
0 cos(ϕ3) − sin(ϕ3) 2(l2 + l3) sin2(ϕ3/2)
0 sin(ϕ3) cos(ϕ3) −(l2 + l3) sin(ϕ3)
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ϕ3 ∈ S1




.

The pose of the coordinate frames attached to the centres of mass of Bi
(i = 1, ..., 6) with respect to B0 is a function F : Q → P = SE(3)×· · ·×SE(3)
(6− times), such that

F (q1, · · · , q6) = (q1rcm,1, q1q2rcm,2, q1q3rcm,3, q1q4rcm,4, q1q4q5rcm,5, q1q4q5q6rcm,6)

the tangent map Tq(LF (q)−1F ) : TqQ → P in (2.2) is as follows:

Tq(LF (q)−1F ) =




Adr−1
cm,1
· · · 0

...
. . .

...
0 · · · Adr−1

cm,6







id6 06 06 06 06 06

Adq−1
2

id6 06 06 06 06

Adq−1
3

06 id6 06 06 06

Adq−1
4

06 06 id6 06 06

Ad(q4q5)−1 06 06 Adq−1
5

id6 06

Ad(q4q5q6)−1 06 06 Ad(q5q6)−1 Adq−1
6

id6
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Tq1(Lq−1

1
◦ ι1) · · · 0

...
. . .

...
0 · · · Tq6(Lq−1

6
◦ ι6)


 ,

where

Tq1(Lq−1
1
◦ ι1) =




cos(θ) − sin(θ) 0 0 0 0
sin(θ) cos(θ) 0 0 0 0

0 0 0 0 0 1



T

, Tq2(Lq−1
2
◦ ι2) =

[
0 0 0 0 1 0

]T
,

Tq3(Lq−1
3
◦ ι3) =

[
0 0 0 0 1 0

]T
, Tq4(Lq−1

4
◦ ι4) =

[
0 −l0 − l1 0 0 0 1

]T
,

Tq5(Lq−1
5
◦ ι5) =

[
0 0 −l2 1 0 0

]T
, Tq6(Lq−1

6
◦ ι6) =

[
0 0 −l2 − l3 1 0 0

]T
.

Note that ∀r0 =

[
R0 p0

01×3 1

]
∈ SE(3), we calculate the Adr0 operator by Adr0 =

[
R0 p̃0R0

03×3 R0

]
, where p̃0 is the antisymmetric matrix corresponding to p0.

The left-invariant metric h = h1⊕· · ·⊕h6 on P is identified by the metrics
(hi)e on the copies of se(3) represented in the standard basis of se(3):

(hi)e =




miid3 03

03



jx,i 0 0
0 jy,i 0
0 0 jz,i





 ,

where e corresponds to the identity element of SE(3), i = 1, · · · , 6, mi is the
mass of Bi, and (jx,i, jy,i, jz,i) are the moments of inertia of Bi about the X,
Y and Z axes of the coordinate frame attached to the centre of mass of Bi
whose axes coincide with the principal axes of Bi. Therefore, we have

FLq = T ∗q (LF (q)−1F )




(h1)e · · · 0
...

. . .
...

0 · · · (h6)e


Tq(LF (q)−1F ) =



K11(q) · · · K16(q)

...
. . .

...
K61(q) · · · K66(q)


 ,

and the kinetic energy is calculated by

Kq(q̇, q̇) =
1

2
q̇TFLq q̇,

where q̇ is the vector corresponding to the speed of the joint parameters.
The potential energy of the nonholonomic open-chain multi-body system

for a constant potential field [0 0 g]T is calculated by

V (q) = g(l4m6 sin(ϕ2 + ϕ3) + l3(
m5

2
+m6) sin(ϕ2)).

And, the Hamiltonian of the system is defined as

H(q, p) =
1

2
pTFL−1

q p+ V (q),
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where p = FLq q̇is the vector of generalized momenta.

The nonholonomic constraints of the system are non-slipping conditions of
the wheels, i.e., B2 and B3. The linearly independent constraint 1-forms are

ω1 = − sin(θ)dx+ cos(θ)dy,

ω2 = cos(θ)dx+ sin(θ)dy − cdθ − bdψ1,

ω3 = cos(θ)dx+ sin(θ)dy + cdθ − bdψ2,

where b is the radius of each wheel. The distribution D ⊂ TQ is the annihilator
of these constraint 1-forms, and it is the span of the following vector fields:

{
∂

∂ψ1
+
b

2

(
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y
− 1

c

∂

∂θ

)

,
∂

∂ψ2
+
b

2

(
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y
+

1

c

∂

∂θ

)
,
∂

∂ϕ1
,
∂

∂ϕ2
,
∂

∂ϕ3

}
.

In this example, base of the multi-body system consists of three bodies whose
configuration manifold Q1×Q2×Q3 is isomorphic to SE(2)×SO(2)×SO(2),
as a Lie group. The kinetic and potential energy of the system are invariant
under the action of this group by left translation on Q1 ×Q2 ×Q3. Also, the
distribution D is invariant under this action. Consider the action of G = SE(2),
which satisfies the dimensional assumption (2.8) for Chaplygin systems. Using
the joint parameters, ∀(x0, y0, θ0) ∈ G we have

Φ̂(x0,y0,θ0)(q) = (x cos(θ0)− y sin(θ0) + x0, x sin(θ0) + y cos(θ0) + y0, θ + θ0, q̂),

where q̂ = (ψ1, ψ2, ϕ1, ϕ2, ϕ3). We have the principal G-bundle π̂ : Q → Q̂ =
Q2 × · · · × Q6, and using the joint parameters its corresponding principal
connection Â : TQ → se(2) is defined by

Âq =

Adg︷ ︸︸ ︷


cos(θ) − sin(θ) y
sin(θ) cos(θ) −x

0 0 1







TgLg−1

︷ ︸︸ ︷


cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1




Âq̂︷ ︸︸ ︷

−b/2 −b/2

0 0
b/(2c) −b/(2c)




︸ ︷︷ ︸
Â1

03



,

where g = (x, y, θ) is an element of Q1. Consequently, the horizontal lift map

ĥlq : Tq̂Q̂ → TqQ and the Legendre transformation FL̂q̂ : Tq̂Q̂ → T ∗q̂ Q̂ are

ĥlq =






b cos(θ)/2 b cos(θ)/2
b sin(θ)/2 b sin(θ)/2
−b/(2c) b/(2c)


 03

id5


 ,FL̂q̂ = ĥl

T

q FLqĥlq =



K̂11(q̂) · · · K̂14(q̂)

...
. . .

...

K̂41(q̂) · · · K̂44(q̂)


 ,
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where the following equalities hold:

K̂11(q̂) = ÂT1 K11((e1, q̂))Â1 − ÂT1
[
K21((e1, q̂))
K31((e1, q̂))

]T
−
[
K21((e1, q̂))
K31((e1, q̂))

]
Â1

+

[
K22((e1, q̂)) K23((e1, q̂))
K32((e1, q̂)) K33((e1, q̂))

]
,

K̂1j(q̂) = −ÂT1 K1(j+2)((e1, q̂)) +

[
K2(j+2)((e1, q̂))
K3(j+2)((e1, q̂))

]
, ∀j = 2, 3, 4

K̂j1(q̂) = K̂1j(q̂)
T , ∀j = 2, 3, 4

K̂ij(q̂) = Kij((e1, q̂)). ∀i, j = 2, 3, 4

As a result, we can calculate the 2-form Ξ̂ by (2.9)

Ω̂ = −dp̂ ∧ dq̂ − p̂TFL̂−1
q̂




−ÂT1 K11((e1, q̂)) +

[
K21((e1, q̂))
K31((e1, q̂))

]

K41((e1, q̂))
...

K61((e1, q̂))







0
b2/(2c)

0


 dψ1 ∧ dψ2

= −dp̂ ∧ dq̂ − Υ (q̂, p̂)dψ1 ∧ dψ2,

where p̂ = FL̂q̂ ˙̂q is the vector of generalized momenta in the reduced phase
space. And, the reduced equations of motion of the nonholonomic system are

[
˙̂q
˙̂p

]
=




05×5 id5

−id5




0 Υ (q̂, p̂) 0 0 0
−Υ (q̂, p̂) 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0







[
∂Ĥ
∂q̂
∂Ĥ
∂p̂

]
,

where Ĥ is calculated by (2.10), with V̂ (q̂) = V ((e1, q̂)).
Now, we derive the control law presented in Theorem 3 for the example

under study. We assume that the two wheels of the rover and the three joints
of the manipulator are actuated. The output manifold is considered to be
R = R2 × R3 ⊂ SE(3) × SE(3) corresponding to the position of the centre
of mass of the rover and the centre of mass of the end-effector. Note that R
is a subgroup of Pe = SE(3) × SE(3). The forward kinematics maps for the
extremities of the system are

FK1(x, y, θ) = q1rcm,1 =




cos(θ) − sin(θ) 0 x+ l0 cos(θ)
sin(θ) cos(θ) 0 y + l0 sin(θ)

0 0 1 0
0 0 0 1


 ,

FK2(x, y, θ, ϕ1, ϕ2, ϕ3) =

[
RE pE
01×3 1

]
:= q1q4q5q6rcm,6,
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where RE(x, y, θ, ϕ1, ϕ2, ϕ3) ∈ SO(3) and pE(x, y, θ, ϕ1, ϕ2, ϕ3) ∈ R3 specify
the pose of the end-effector with respect to the inertial coordinate frame and
expressed in the same coordinate frame. The projection maps r1 : SE(3)→ R2

and r2 : SE(3)→ R3 are simply projection to the position components of the
poses of the rover and the end-effector, respectively. The output of the system
is calculated in the local coordinates as

FK(x, y, θ, ϕ1, ϕ2, ϕ3) = (r1 ◦ FK1(q), r2 ◦ FK2(q))

= (x+ l0 cos(θ), y + l0 sin(θ), pE(x, y, θ, ϕ1, ϕ2, ϕ3)).

Denote the output trajectory of the system by t 7→ r(t) = FK(x(t), y(t), θ(t),
ϕ1(t), ϕ2(t), ϕ3(t)), and consider a desired feasible trajectory t 7→ γ(t) ∈ R.
Since the output manifold is an abelian subgroup of Pe, the output pose error
is just re(t) = γ(t)− r(t), and considering KP = diag(K1

P , · · · ,K5
P ), the error

function is defined by Er(r(t), γ(t)) = 1
2 〈KP re(t), re(t)〉. Note that the expo-

nential map restricted to the abelian subgroup R ⊂ Pe is the identity map,
and it is everywhere invertible. The compatible linear isomorphism with Er is
the identity map, and the output velocity error is simply calculated by Ve =
ve = ṙ(t) − γ̇(t). We denote the derivative gain by KD = diag(K1

D, · · · ,K5
D),

with positive diagonal elements. Next, we calculate the Jacobian maps:

J0
1 =



id3 −

̃

l0
0
0




03 id3







1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1



T

=




1 0 0 0 0 0
0 1 0 0 0 0
0 l0 0 0 0 1



T

J0
2 = Adr−1

cm,6

[
Ad(q4q5q6)−1Te1ι1 Ad(q5q6)−1Te4ι4 Adq−1

6
Te5ι5 Te6ι6

]
,

where

Te1ι1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1



T

, Te2ι2 =
[
0 0 0 0 1 0

]T
, Te3ι3 =

[
0 0 0 0 1 0

]T
,

Te4ι4 =
[
0 −l0 − l1 0 0 0 1

]T
, Te5ι5 =

[
0 0 −l2 1 0 0

]T
, Te6ι6 =

[
0 0 −l2 − l3 1 0 0

]T
.

And accordingly, we have

q =

[[
(01)q 02×3

]

(02)q

]
such that 01 =

[
cos(θ) − sin(θ) −l0 sin(θ)
sin(θ) cos(θ) l0 cos(θ)

]
,

02 =


RE −RE

˜


l0 + l1
l2 + l3 + l4

0






[
Ad(q4q5q6)−1Te1ι1 Ad(q5q6)−1Te4ι4 Adq−1

6
Te5ι5 Te6ι6

]
.

Consider an initial phase (q̂(0), p̂(0)) in the reduced phase space T ∗Q̂ that
satisfies CON6. We denote the integral curve of the reduced system by t 7→
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(q̂(t), p̂(t)). Hence, the reduced controlled Hamilton’s equation is:

[
˙̂q
˙̂p

]
=




05×5 id5

−id5



[

0 Υ (q̂, p̂)
−Υ (q̂, p̂) 0

]
02×3

03×2 03







[
∂Ĥ
∂q̂ + û
∂Ĥ
∂p̂

]
.

From this equation and the reconstruction equation we have

[
q̂1(q̂, p̂)
q̌(q̂, p̂)

]
: = q̂(q̂, p̂) := ˙̂q =

[
∂Ĥ
∂p̂1
∂Ĥ
∂p̌

]
= FL̂−1

q̂ p̂,

p̂(q̂, p̂) : =



[

0 Υ (q̂, p̂)
−Υ (q̂, p̂) 0

]
02×3

03×2 03×3


FL̂−1

q̂ p̂− ∂Ĥ

∂q̂
, τ1 = −Â1q̂1(q̂, p̂),

where p̂ = (p̂1, p̌) = ((p̂ψ1 , p̂ψ2), (p̂ϕ1 , p̂ϕ2 , p̂ϕ3)) are the momenta correspond-
ing to q̂ = (q̂1, q̌) = ((ψ1, ψ2), (ϕ1, ϕ2, ϕ3)) in the reduced phase space, and

Â1 =



−b/2 −b/2

0 0
b/(2c) −b/(2c)


 .

In the following, we calculate the components of the control law stated in
(6.41). Since Q̂ is an abelian group, Tq̂Lq̂−1 is the identity map, and we have

τ̂(q̂(t), p̂(t)) : = τ(t) =

[
−Âq̂1(t)q̂1(q̂(t), p̂(t))

q̌(q̂(t), p̂(t))

]
=

[
−Âq̂1(t) 03

03×2 id3

]
FL̂−1

q̂(t)p̂,

∂τ̂

∂p̂
=

[
−Âq̂1(t) 03

03×2 id3

]
FL̂−1

q̂ ,

∂q
∂q

(TeLq τ̂(q̂, p̂)) = −∂q
∂x

[
cos(θ) − sin(θ) 0

]
Â1q̂1(q̂, p̂)

− ∂q
∂y

[
sin(θ) cos(θ) 0

]
Â1q̂1(q̂, p̂)− ∂q

∂θ

[
0 0 1

]
Â1q̂1(q̂, p̂)

+
∂q
∂ϕ1

∂Ĥ

∂p̂ϕ1

+
∂q
∂ϕ2

∂Ĥ

∂p̂ϕ2

+
∂q
∂ϕ3

∂Ĥ

∂p̂ϕ3

.

As a result, the following control law exponentially stabilizes the output of
the system for any feasible desired trajectory t 7→ γ(t):

û(q, p̂, γ, γ̇, γ̈) = FL̂q̂(t)
(
q

[
−Â1 03

03×2 id3

])−1((
∂q
∂q

(TeLq τ̂)

)[
−Â1 03

03×2 id3

]
FL̂−1

q̂ p̂

+q
∂τ̂

∂q̂
FL̂−1

q̂ p̂− ν̂
)

+ p̂,
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such that for this case study we have

ν̂ = ν̂PD + ν̂FF ,

ν̂PD = ν̂P + ν̂D = −KP (r(t)− γ(t))−KD(ṙ(t)− γ̇(t)),

ν̂FF = γ̈(t)

where r(t) := FK(q(t)) ∈ R is the output of the system. Here, we have chosen
I to be an identity matrix for the standard basis of R ∼= R5 and R∗ ∼= R5, and
KD = diag(K1

D, · · · ,K5
D) is a diagonal matrix with positive diagonal elements,

as defined above. In this case study, we can explicitly write the differential
equation that governs the behaviour of the closed-loop system:

d2

dt2
(r − γ) +KD

d

dt
(r − γ) +KP (r − γ) = 0,

where γ, r ∈ R5, and by choosing KP and KD diagonal we decouple this
differential equation. As a result, we can choose the diagonal elements of KP
and KD such that the closed-loop system becomes decoupled with a desired
performance. Consequently, the gains KiP ’s and KiD’s can be design so that the
system error dynamics will have a desired behaviour in each channel. Also, note
that the feed-forward function, in this case, becomes gain one. The complete
block diagram of the closed-loop system is shown in Figure 5. In this figure,
RZ(θ) ∈ SO(3) corresponds to the principal rotation about the Z axis for θ
radian.
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1

∑
û(q1, q̂, p̂, ν̂) ROBOT

p̂ = FL̂q̂( ˙̂q)

(q1, q̂, p̂)

FK(q1, q̂)

q̇1 = RZ(θ)Âq̂1
˙̂q1KD

KP

q1

q1

˙̂q q̂

ṙ

r

γ̈

γ̇
-+

γ
-+

r′

ṙ′

Figure 1: Servo controller for concurrent control of a three-d.o.f. manipulator mounted
on a two-wheeled rover

Fig. 5 Servo controller for concurrent control of a three-d.o.f. manipulator mounted on a
two-wheeled rover
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