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Abstract— This letter presents explicit sub-optimal track-
to-track fusion algorithms for Multi-Sensor Systems (MSS)
estimating nonlinear processes. The individual tracks in
an MSS are correlated due to the presence of a com-
mon process noise in the track estimation errors. Herein,
we propose recursive formulae for consistent correlation
estimation in mildly and highly nonlinear systems that
respectively use Extended Kalman Filters (EKF) and Un-
scented Kalman Filters (UKF) for track estimation. In mildly
nonlinear systems, the EKF provides sufficiently accurate
estimates based on the linearized model of the system at its
latest estimate. This linear model offers a correlation prop-
agation formula that will be coupled with the optimal track
fusion rule to generate a sub-optimal fused estimate in an
EKF-based MSS architecture. On the other hand in highly
nonlinear systems, the UKF-based architectures are proven
effective for track estimation. The UKF works based on the
unscented transform of deterministic sigma points and it is
accurate up to the third order of the Taylor Series expansion
of the system. The unscented transform is equivalent to the
Statistical Linearization Regression (SLR) process when
using the sigma points. For UKF-based MSS architectures,
we propose a consistent correlation propagation recursion
according to the SLR technique that will be coupled with the
optimal track fusion rule to generate a sub-optimal fused
estimate. The performance of the developed fusion algo-
rithms is demonstrated through conducting a statistical
test and an average root mean square error analysis.

Index Terms— Track-to-Track Fusion, Correlation Prop-
agation, Unscented Kalman Filter, Statistical Linearization
Regression

I. INTRODUCTION

MULTI-Sensor Systems (MSS) have recently gained a
great attention in robotics and automation. They play

a central role in applications that demand state and parameter
estimation from multiple sources such as cooperative motion
estimation [1], distributed estimation and tracking [2], [3], and
localization and mapping [4], [5]. In comparison to a single
sensor, a well-designed MSS fuses data from multiple sensors
with different visibility and capability to improve estimation.

Sensor-level and track-level fusions are two commonly used
fusion strategies in an MSS (see Fig. 1). In sensor-level
fusion, Fig. 1(a), the raw observations, obtained directly from
the sensors, are combined for better visibility and coverage.
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However, in track-level fusion, Fig. 1(b), which is the strategy
under study in this paper, multiple noise-corrupted estimates
generated by local estimators are combined to obtain the
so-called fused estimate. This process is also referred to as
track-to-track fusion [6]. In track-to-track fusion the local
estimates are correlated due to a common process noise that
enters the estimation errors corresponding to all sensors [6].
To generate consistent fused tracks, the main challenge is
to explicitly or implicitly account for such correlation terms.
Explicit approaches keep track of correlation terms and use
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Fig. 1: Two fusion strategies, (a) sensor-level, (b) track-levelthe known correlations in their fusion rules. A recursion for
correlation propagation in linear systems was proposed using
Kalman gains and the properties of recursive estimators [6].
This recursion along with the fusion rule proposed by the same
author yields the optimum solution (minimum variance) for
track-to-track fusion of correlated estimates [7]. However, the
proposed recursion in [6] is limited to linear systems and under
some strict conditions it can be extended to mildly nonlinear
systems where Kalman filter and its variants are applicable.
A simple but rough computation of correlations is proposed
in [8], where the cross-covariance matrix between two tracks
is approximated based on the product of sensors’ covariance
matrices and a constant correlation coefficient determined by
numerical simulations. In a relatively recent paper, sample-
based track fusion is proposed for linear systems in which
the cross-correlation between the tracks are reconstructed by
a set of deterministic sample points [9]. In implicit approaches,
however, the correlation terms are assumed unknown and
this lack of knowledge is compensated by ensuring that the
resulting fused estimate is conservative comparing to the
optimal solution. As the result, the implicit approaches provide
an upper bound for the error covariance of the optimum
solution. The well-known classic example of such approaches
is the Covariance Intersection (CI) [10]. The CI’s solutions
are sub-optimal as they tend to yield conservative estimates.
Alternative track-to-track fusion methods that produce less



conservative estimates have been proposed [11]–[14].
The main drawback of such approaches is that they may

produce too optimistic estimates that can lead to performance
degradation. In [15] and [16] the authors use optimization
techniques to compute the cross-covariance matrix between
the estimates that is not computationally efficient for large
systems. In [17] and [18] two similar centralized fusion
algorithms are proposed that are mainly based on the use
of cross-covariance matrix of the tracks and minimizing the
trace of the fused covariance. Indeed both methods produce
unbiased fused tracks, however, since they work with the trace
(scalar measure) of the joint covariance matrix instead of
the full matrix, their consistency may be compromised. Fur-
thermore, the proposed algorithms can undergo computational
barriers when dealing with large systems, due to requirement
of inverting large matrices. To remediate the drawbacks of
implicit approaches, we propose an explicit sub-optimal track-
to-track fusion rule for nonlinear systems that extends the
existing explicit approaches limited to linear systems.

With the emphasis on nonlinear systems, this paper develops
consistent methodologies to recursively calculate correlation
terms in explicit track-to-track fusion of Kalman filter-based
MSS architectures. The EKF and UKF are the two commonly
used nonlinear recursive estimators. The UKF is accurate up to
the third order of the Taylor Series expansion of the system;
however, the EKF truncates the Taylor Series at first order.
In mildly nonlinear systems, as suggested by the structure
of the EKF, the linear approximation using the first order
terms of the Taylor Series is sufficient to calculate a sub-
optimal fusion rule. On the contrary in UKF-based MSS
architectures, the Statistical Linearization Regression (SLR)
technique [19] is employed to linearize a highly nonlinear
system. The SLR is equivalent to the Unscented Transform
(UT) that lies in the core of the UKF structure. It uses a set
of deterministic sample points (sigma points in the UKF) to
linearize a nonlinear function [19], [20]. The linearized models
obtained in both EKF- and UKF-based MSS architectures are
then used to propose consistent recursions for propagating the
cross-covariance matrices. The obtained matrices are coupled
with the optimal fusion rule to generate sub-optimal fused
tracks that are computationally cost effective comparing to,
for example, the CI or inverse CI relying on real-time numer-
ical optimizations. As the result, the proposed methodologies
offer a balance between speed and accuracy in the real-time
estimation of nonlinear systems.

The problem of track-to-track fusion in nonlinear MSS
architectures is described in Section II. In Section III, we
review the fundamental equations governing the basic forms of
the EKF and UKF, and the SLR technique. Section IV derives
a recursion for EKF-based MSS architectures. Section V uses
the SLR technique to propose a novel recursion for cross-
covariance propagation in UKF-based MSS architectures.
Through rigorous analytical error analysis in Section VI, we
demonstrate the effectiveness of the proposed methodologies.
Finally, Section VII includes some concluding remarks.

II. PROBLEM STATEMENT

Without loss of generality, we consider the simplest MSS
consisting of two sensors s1 and s2 that are observing a
common process whose true state at the kth time step is
denoted by x(k) ∈ Rn. For multiple tracks, a sequential fusion
method can be used [21]. The procedure starts by fusing two
local tracks to obtain a fused track, which is then sequentially
fused with the remaining tracks. Let the nonlinear process and
measurement models be given as

x(k) = f(x(k−1),u(k−1)) + w(k−1), (1)
zm(k) = hm(x(k)) + vm(k), m ∈ {1, 2}, (2)
w(k) ∼ N (0,Q(k)), (3)
vm(k) ∼ N (0,Rm(k)), m ∈ {1, 2}, (4)

where u(k) ∈ Rp and zm(k) ∈ Rq , for m ∈ {1, 2}, respectively
denote the control vector and measurement vector from sm,
and f : Rn+p → Rn and hm : Rn → Rq are nonlinear
functions. Furthermore, w(k) ∈ Rn and vm(k) ∈ Rq , for
m ∈ {1, 2}, are assumed to be independent normal white noise
sequences respectively corresponding to the dynamical process
and the sensor sm, i.e.,

E[w(k)w>(l)] = Q(k)δ(k−l), (5)

E[vm(k)v>m(l)] = Rm(k)δ(k−l), m ∈ {1, 2}, (6)

E[vm(k)w>(l)] = 0, m ∈ {1, 2}, (7)

E[v1(k)v
>
2 (l)] = 0. (8)

Here, δ(k−l) is the Kronecker delta function, E[·] denotes the
expected value operator, and Q(k) ∈ Rn×n and Rm(k) ∈ Rq×q
are the symmetric positive definite covariance matrices corre-
sponding to the process and measurement noise, respectively.

For this system, the posterior estimates of the sensors s1 and
s2 and their corresponding covariance matrices are assumed
to be generated by two recursive filters and respectively
denoted by (x̂1(k|k),P1(k|k)) and (x̂2(k|k),P2(k|k)). We also
assume that the estimates of the two sensors are consistent
and synchronized. Note that the common process noise w(k)

enters the estimation error of both sensors and results in
two correlated estimates of the system (1)-(4), i.e., the cross-
covariance matrix P12(k|k) 6= 0. To obtain a consistent fused
estimate x̂f (k|k) along with its covariance matrix Pf (k|k) this
cross-correlation should be formally accounted for. The earlier
works that carelessly rely on zero correlation assumption to
compute the fused track suffer from double counting problem
and typically produce optimistic results [22]. To avoid this
problem, a fusion rule, called the optimal (minimum vari-
ance) track fusion, was proposed based on the known cross-
covariance matrix [7]:

x̂f (k|k) = x̂1(k|k) +
(
P1(k|k)−P12(k|k)

)(
P1(k|k)+P2(k|k)−P12(k|k)−P

>
12(k|k)

)−1(
x̂2(k|k)−x̂1(k|k)

)
,
(9)

Pf (k|k)=P1(k|k)−
(
P1(k|k)−P12(k|k)

)(
P1(k|k)+P2(k|k)−P12(k|k)−P>12(k|k)

)−1(
P1(k|k)−P>12(k|k)

)
.

(10)



Reliably estimating the cross-covariance matrix is an identified
challenge in fusing tracks of an MSS. Considering the above
optimal fusion rule, this paper seeks a recursion to consistently
approximate P12(k|k) and propose sub-optimal track-to-track
fusion rules for nonlinear systems. In the next section, we
review the nonlinear filters and the SLR to pave the way
leading to our proposed method.

III. PRELIMINARIES

A. Extended Kalman Filter

Consider the discrete-time nonlinear system given in (1)-
(4). In the standard EKF [23], the system is linearized at its
most recent estimate assuming a perfectly known control input
u(k). For the sensor sm

xm(k) = Fm(k−1)x(k−1) + ũm(k−1) + w(k−1), (11)
zm(k) = Hm(k)x(k) + ỹm(k) + vm(k), (12)

where

Fm(k) =
∂f

∂x
|x̂m(k|k) ∈ Rn×n, (13)

Hm(k) =
∂hm
∂x
|x̂m(k|k−1) ∈ Rn×q, (14)

ũm(k) = f(x̂m(k|k),u(k))− Fm(k)x̂m(k|k), (15)
ỹm(k) = hm(x̂m(k|k−1))−Hm(k)x̂m(k|k−1). (16)

The operator ∂(·)
∂x denotes the Jacobian of a vector function

with respect to x. In this framework, the prior estimate for the
mth sensor is given by

x̂m(k|k−1) = Fm(k−1)x̂m(k−1|k−1) + ũm(k−1), (17)

Pm(k|k−1) = Fm(k−1)Pm(k−1|k−1)F>m(k−1) + Q(k−1),
(18)

and the posterior estimate is calculated as

x̂m(k|k)= x̂m(k|k−1)

+Km(k)
(
zm(k)−Hm(k)x̂m(k|k−1)−ỹm(k)

)
, (19)

Pm(k|k) =
(
I−Km(k)Hm(k)

)
Pm(k|k−1), (20)

where I ∈ Rn×n is the identity matrix and the EKF gain ma-
trix for the mth sensor is Km(k) = Pm(k|k)H>m(k)R−1m (k) ∈
Rn×q .

B. Unscented Kalman Filter

The UKF first proposed in [24] is an alternative nonlinear
estimator with performance superiority comparing to the EKF.
In the UKF a set of deterministic sample points called sigma
points are used to propagate mean and covariance using UT.
It has been shown that the UKF is accurate up to the third
order of the Taylor Series expansion [24], and to reduce the
forth-order errors some techniques have been suggested, e.g.,
in [25], [26]. In the following, we present the basic form of
the UKF for the nonlinear system described in (1)-(4). It is
noted that our proposed methodology in Section V works for
all variants of the UKF. But for simplicity, we only focus on
its basic form.

The 2n sigma points for the mth sensor are defined as

χ(i)
m (k−1|k−1)= x̂m(k−1|k−1)+χ̃(i)

m (k−1|k−1), i=1, ..., 2n

(21)

χ̃(j)
m (k−1|k−1) =

(√
nPm(k−1|k−1)

)>
j
,

χ̃(n+j)
m (k−1|k−1) = −

(√
nPm(k−1|k−1)

)>
j
, j = 1, ..., n

(22)

where (
√
nPm(k−1|k−1))j denotes the jth row of matrix

square root of nPm(k−1|k−1). The known nonlinear function
f is used to transform the sigma points

χ(i)
m (k|k−1) = f(χ(i)

m (k−1|k−1),u(k−1)), (23)

which are then combined to yield the prior estimate

x̂m(k|k−1) =
1

2n

2n∑
i=1

χ(i)
m (k|k−1), (24)

Pm(k|k−1)=
1

2n

2n∑
i=1

(
χ(i)
m (k|k−1)−x̂m(k|k−1)

)(
.
)>+Q(k−1),

(25)

where
(
.
)

implies the quantity between parenthesis is the same
as the quantity between the previous parenthesis.

The propagated sigma points χ
(i)
m (k|k−1) are updated based

on (21)-(22) using the mean x̂m(k|k−1) and covariance
Pm(k|k−1). Then, the new sigma points define the predicted
measurement vector

Z(i)
m (k|k−1) = hm

(
χ(i)
m (k|k−1)

)
, (26)

ẑm(k) =
1

2n

2n∑
i=1

Z(i)
m (k|k−1). (27)

The covariance matrix of measurements for the sensor sm is

Pzzm (k) =
1

2n

2n∑
i=1

(
Z(i)
m (k|k−1)− ẑm(k)

)(
.
)>

+ Rm(k).

(28)

In addition, the cross-covariance matrix between measure-
ments and estimated states need to be determined based on

Pxzm (k)=

1

2n

2n∑
i=1

(
χ(i)
m (k|k−1)−x̂m(k|k−1)

)(
Z(i)
m (k|k−1)−ẑm(k)

)>
(29)

to complete the estimation recursion. Finally, the posterior
estimate of the states is computed by the standard recursive
filter equations

x̂m(k|k) = x̂m(k|k−1) + Km(k)(zm(k)− ẑm(k)), (30)

Pm(k|k) = Pm(k|k−1)−Km(k)Pzzm (k)K>m(k), (31)

where Km(k) = Pxzm (k)P−1zzm (k) denotes the UKF gain for
sm.



C. Statistical Linear Regression of Nonlinear Functions
The SLR is a method to linearize a nonlinear function using

a set of deterministic sample points. Let y = g(x) be an
arbitrary nonlinear function of the system states. The SLR
evaluates this function in r sample points (χ(i),Y(i)), where
Y(i) = g(χ(i)) and i = 1, ..., r. The objective is to find the
linear model y = Ax+b based on the following minimization
problem:

argmin
A,b

r∑
i=1

(E(i))>E(i), (32)

where the error E(i) is calculated as

E(i) = Y(i) − (Aχ(i) + b). (33)

The solution of the optimization problem (32) as developed in
[19] is

A = P>xyP
−1
xx , (34)

b = ŷ −Ax̂, (35)

where x̂ = 1
r

∑r
i=1 χ

(i), ŷ = 1
r

∑r
i=1 Y

(i) and

Pxx =
1

r

p∑
i=1

(χ(i) − x̂)(.)>, (36)

Pyy =
1

r

r∑
i=1

(Y(i) − ŷ)(.)>, (37)

Pxy =
1

r

r∑
i=1

(χ(i) − x̂)(Y(i) − ŷ)>. (38)

The statistical linearized model is therefore

y = Ax + b + E, (39)

where for any nonlinear function y, the linearization error E
will be treated as an independent zero mean random variable
with the covariance matrix given by

PEE =
1

r

r∑
i=1

E(i)(E(i))> = Pyy −APxxA
>. (40)

Note that the matrix A is not a Jacobian and the linearization
error can be estimated in the process. The key point is that
the SLR equations are equivalent to those of the UT using the
sigma points generated by (21)-(22) as reported in [19], [20].

IV. CORRELATION PROPAGATION IN EKF-BASED MSS
ARCHITECTURES

Bar-shalom in [6] has proposed a method to propagate
cross-covariance matrix in linear track-to-track fusion prob-
lems. Herein, following a similar procedure, we derive a
recursion for EKF-based MSS architectures and discuss the
conditions under which this recursion can be used effectively.

The posterior cross-covariance matrix between the two
estimates at time k is

P12(k|k) = E[x̃1(k|k)x̃
>
2 (k|k)], (41)

where x̃m(k|k), m ∈ {1, 2}, denotes the posterior error of the
mth sensor and can be computed by

x̃m(k|k) = x(k)− x̂m(k|k)

=
(
I−Km(k)Hm(k)

)
x̃m(k|k−1)−Km(k)vm(k).

(42)

Here, x̂m(k|k) is obtained from (19) and the prior estimation
error

x̃m(k|k−1) = x(k)− x̂m(k|k−1)

= Fm(k−1)x̃m(k−1|k−1) + w(k−1), (43)

with the prior estimate x̂m(k|k−1) substituted from (17).
Theorem 1: In an EKF-based MSS architecture, let

x̃m(k|k−1) and x̃m(k|k) be respectively the prior and posterior
estimation errors for the mth sensor given by (43) and (42).
Assuming the independence of noise signals given in (5)-(8)
, the consistent cross-covariance estimation recursion for the
nonlinear system (1)-(4) is

P12(k|k)=
(
I−K1(k)H1(k)

)
P12(k|k−1)

(
I−K2(k)H2(k)

)>
,

(44)

P12(k|k−1) = F1(k−1)P12(k−1|k−1)F
>
2 (k−1) + Q(k−1). (45)

Proof: The posterior cross-covariance matrix is calcu-
lated as

P12(k|k) = E[x̃1(k|k)x̃
>
2 (k|k)]

= (I−K1(k)H1(k))E[x̃1(k|k−1)x̃
>
2 (k|k−1)](I−K2(k)H2(k))

>

− (I−K1(k)H1(k))E[x̃1(k|k−1)v
>
2 (k)]K>2 (k)

−K1(k)E[v1(k)x̃
>
2 (k|k−1)](I−K2(k)H2(k))

>

+ K1(k)E[v1(k)v
>
2 (k)]K>2 (k) (46)

Assuming independence of noise signals,
E
[
x̃1(k|k−1)v

>
2 (k)

]
= 0, E

[
v1(k)v

>
2 (k)

]
= 0, and

E
[
v1(k)x̃

>
2 (k|k−1)

]
= 0, we obtain (44). The prior cross-

covariance matrix is

P12(k|k−1) = E[x̃1(k|k−1)x̃
>
2 (k|k−1)]

= F1(k−1)E[x̃1(k−1|k−1)x̃
>
2 (k−1|k−1)]F>2 (k−1)

+ F1(k−1)E[x̃1(k−1|k−1)w
>
(k−1)]

+ E[w(k−1)x̃>2 (k−1|k−1)]F>2 (k−1)

+ E[w(k−1)w>(k−1)]. (47)

By the assumptions, we have E[x̃1(k−1|k−1)w
>
(k−1)] = 0 and

E[w(k−1)x̃>2 (k−1|k−1)] = 0, which yields (45).
It is noted that at the beginning of the estimation the two
estimates are not correlated [6]. Thus, we can assume that the
initial condition of (45) is zero, i.e. P12(0|0) = 0. In linear
systems, a Gaussian distribution is linearly transformed to
another Gaussian distribution. However, in nonlinear systems
the transformed distributions may not remain Gaussian. When
a system is mildly nonlinear, the transformed distributions are
slightly distorted. As a result, mean and covariance can still
be approximated under linear assumptions. The EKF, is an
estimation technique that relies on this assumption. Obviously,
the linearity assumption in EKF is not necessarily valid for all
nonlinear systems, particularly those with high curvatures.



V. CORRELATION PROPAGATION IN UKF-BASED MSS
ARCHITECTURES

To derive a recursion for estimating the cross-covariance
matrix in UKF-based MSS architectures, we linearize the
system defined in (1)-(4) for the mth sensor, in the first
step. The need for lineariztion is that the nonlinear terms
cannot be computed recursively in the procedure of correlation
propagation. The accuracy of the linearization technique used
in this step must be consistent with that of the estimations
provided by the UKF. The SLR technique is equivalent to
the UT in the UKF, when using sigma points to calculate an
estimate. Therefore, we use the SLR technique to linearize the
process and measurement models in (1)-(4) based on (39):

x(k) = Fm(k−1)x(k−1) + bfm(k−1) + w(k−1) + Efm(k−1),
(48)

zm(k) = Hm(k)x(k) + bhm(k) + vm(k) + Ehm(k), (49)

The symbols are defined based on Table I that reports the
correspondence between the linearized model described in
section III-C and the system in (48)-(49). The linearization

TABLE I: The symbol correspondence in the linearization
process

SLR Method UKF Process Model UKF Measurement Model
x x(k−1) x(k)

y x(k) zm(k)

x̂ x̂m(k−1|k−1) x̂m(k|k−1)

ŷ x̂m(k|k−1) ẑm(k)

g(.) f(.) h(.)
A Fm(k−1) Hm(k)

b bf
m(k−1) bh

m(k)

χ(i) χ
(i)
m (k−1|k−1) χ

(i)
m (k|k−1)

Y(i) χ
(i)
m (k|k−1) Z(i)

m (k|k−1)

E Ef
m(k−1) Eh

m(k)

r 2n 2n

errors for the functions f and h corresponding to the mth

sensor are denoted by Efm(k) and Ehm(k), respectively. All
linearization errors are zero mean random variables with the
following covariance matrices

E[Eαm(k)(Eβm′ (l))
>] = PαβEmm′ (k)δ(k−l), m,m

′ ∈ {1, 2},
(50)

Here, for m,m′ ∈ {1, 2} and α, β ∈ {f, h} the covariance
matrix

PαβEmm′ (k) =
1

2n

2n∑
i=1

Eαm
(i)

(k)(Eβm′
(i)

(k))>, (51)

where the error terms Eαm
(i)

(k) and Eβm′
(i)

(k) are obtained
based on (33) with appropriate parameters and sigma points
defined in Table I for process and measurement models. The
assumption in (50) is valid due to the independence of the
noise signals in different time steps described in (5)-(8). For
the system (48)-(49), the posterior error of the mth sensor is

x̃m(k|k) = x(k)− x̂m(k|k)

= x̃m(k|k−1)−Km(k)
(
zm(k)− ẑm(k)

)
, (52)

where x̃m(k|k−1) = x(k) − x̂m(k|k−1) is the prior estimation
error, zm(k) is substituted from (49), and knowing that the
signal Ehm(k) is zero mean ẑm(k) is calculated by

ẑm(k) = Hm(k)x̂(k|k−1) + bhm(k), (53)

Therefore,

x̃m(k|k)=
(
I−Km(k)Hm(k)

)
x̃m(k|k−1)

−Km(k)(vm(k)+Ehm(k)).
(54)

The prior estimation error x̃m(k|k−1) is determined in the
following. Under the assumption of w(k) and Efm(k) being
zero mean signals,

x̂m(k|k−1) = Fm(k−1)x̂m(k−1|k−1) + bfm(k−1). (55)

Substituting (48) and (55) in the definition of the prior
estimation error,

x̃m(k|k−1) = Fm(k−1)x̃m(k−1|k−1) + w(k−1) + Efm(k−1).
(56)

Theorem 2: In a UKF-based MSS architecture, let
x̃m(k|k−1) and x̃m(k|k) be respectively the prior and posterior
estimation errors for the mth sensor given by (56) and
(54). Assuming the independence of random signals given
in (5)-(8) and considering the relationship defined in (50),
the consistent cross-covariance estimation recursion for the
nonlinear system (1)-(4) is

P12(k|k) = (I−K1(k)H1(k))P12(k|k−1)(I−K2(k)H2(k))
>

+ K1(k)P
hh
E12

(k)K>2 (k), (57)

P12(k|k−1) = F1(k−1)P12(k−1|k−1)F>2 (k−1) + Q(k−1)

−F1(k−1)K1(k−1)P
hf
E12

(k−1)

−PfhE12
(k−1)K>2 (k−1)F>2 (k−1) + PffE12

(k−1),
(58)

where PhhE12
(k), PfhE12

(k−1), PhfE12
(k−1) and PffE12

(k−1) are
determined in (51)

Proof: The posterior cross-covariance between the two
estimates is calculated by

P12(k|k) = E[x̃1(k|k)x̃
>
2 (k|k)]

= (I−K1(k)H1(k))E[x̃1(k|k−1)x̃
>
2 (k|k−1)](I−K2(k)H2(k))

>

− (I−K1(k)H1(k))E[x̃1(k|k−1)ṽ
>
2 (k)]K>2 (k)

− (I−K1(k)H1(k))E[x̃1(k|k−1)(Eh2 (k))>]K>2 (k)

−K1(k)E[v1(k)x̃
>
2 (k|k−1)](I−K2(k)H2(k))

>

+ K1(k)E[v1(k)v
>
2 (k)]K>2 (k) + K1(k)E[v1(k)(Eh2 (k))>]K>2 (k)

−K1(k)E[Eh1 (k)x̃>2 (k|k−1)](I−K2(k)H2(k))
>

+ K1(k)E[Eh1 (k)v>2 (k)]K>2 (k) + K1(k)E[Eh1 (k)(E
h
2 (k))

>]K>2 (k).

By the assumptions of the theorem, i.e. (5)-(8), we have
E[x̃1(k|k)v

>
2 (k)] = 0, E[v1(k)v

>
2 (k)] = 0, E[Eh1 (k)v>2 (k)] =

0, E[v1(k)x̃
>
2 (k|k)] = 0, E[v1(k)(Eh2 (k))>] = 0, and due

to (50) we conclude that E[Eh1 (k)x̃>2 (k|k−1)] = 0 and
E[x̃1(k|k−1)(Eh2 (k))>] = 0. Therefore, we obtain

P12(k|k) = (I−K1(k)H1(k))P12(k|k−1)(I−K2(k)H2(k))
>

+ K1(k)E[Eh1 (k)(E
h
2 (k))

>]K>2 (k), (59)



where E[Eh1 (k)(E
h
2 (k))

>] = PhhE12
(k) and it is calculated in

(51).
The prior cross-covariance matrix P12(k|k−1) is calculated

as

P12(k|k−1) = E[x̃1(k|k−1)x̃
>
2 (k|k−1)]

= F1(k−1)E[x̃1(k−1|k−1)x̃
>
2 (k−1|k−1)]F>2 (k−1)

+ F1(k−1)E[x̃1(k−1|k−1)w
>
(k−1)]

+ F1(k−1)E[x̃1(k−1|k−1)(Ef2 (k−1))>]

+ E[w(k−1)x̃>2 (k−1|k−1)]F>2 (k−1)

+ E[w(k−1)w>(k−1)] + E[w(k−1)(Ef2 (k−1))>]

+ E[Ef1 (k−1)x̃
>
2 (k−1|k−1)]F>2 (k−1)

+E[Ef1 (k−1)w(k−1)]+E[Ef1 (k−1)(E
f
2 (k−1))

>],

where it is assumed that E[x̃1(k−1|k−1)w
>
(k−1)] = 0,

E[w(k−1)x̃>2 (k|k−1)] = 0 E[w(k−1)(Ef2 (k−1))>] = 0, and
E[Ef1 (k−1))w>(k−1)] = 0. The term E[Ef1 (k−1)x̃

>
2 (k−1|k−1)]

is

E[Ef1 (k−1)x̃
>
2 (k−1|k−1)] = −E[Ef1 (k−1)v>2 (k−1)]K>2 (k−1)

+ E[Ef1 (k−1)x̃
>
2 (k−1|k−2)](I−Km(k−1)Hm(k−1))>

− E[Ef1 (k−1)E
h
2 (k−1)]K

>
2 (k−1), (60)

where the first two terms are zero respectively due to the
independence of the noise signals and the time lag be-
tween the random variables defined in (50). As the result,
E[Ef1 (k−1)x̃

>
2 (k−1|k−1)] = −PfhE12

(k−1)K>2 (k−1). A simi-
lar reasoning would result in E[x̃1(k−1|k−1)(Ef2 (k−1))>] =
−K1(k−1)P

hf
E12

(k−1), where the matrices PfhE12
(k−1) and

PhfE12
(k−1) are calculated in (51). Thus,

P12(k|k−1) = F1(k−1)P12(k−1|k−1)F>2 (k−1) + Q(k−1)

−F1(k−1)K1(k−1)P
hf
E12

(k−1)

−PfhE12
(k−1)K>2 (k−1)F>2 (k−1)

+ E[Ef1 (k−1)(E
f
2 (k−1))

>],

(61)

where E[Ef1 (k−1)(E
f
2 (k−1))

>] = PffE12
(k−1) is determined in

(51).

In comparison to EKF-based recursions, the matrices
Fm(k−1) and Hm(k) are calculated based on the sigma
points with higher precision and the new terms PhhE12

(k),
PffE12

(k),PfhE12
(k), and PhfE12

(k) are added to the recursion.
These terms are respectively resulted from the errors in the
linearization of the measurement and the process models of
the system. For a linear system, these terms are always zero,
and in an EKF-based architecture the contribution of these
terms is assumed negligible.

VI. SIMULATIONS

The performance of the proposed fusion rules are eval-
uated in a numerical study of tracking a robot moving in
a circle [18]. The case study considers the problem of es-
timating position and orientation of the robot, i.e. x(k) =
[ x(k) y(k) θ(k) ]

> (x and y are in meters and θ is in radi-
ans), that moves with constant linear velocity V and angular

velocity Ω. Furthermore, two range sensors along with two
angle sensors take noisy measurements from the process. The
nonlinear system for the two sensors m ∈ {1, 2} is described
as:

x(k+1) =

x(k+1)

y(k+1)

θ(k+1)

 =

x(k) + ∆tV cos(θ(k))
y(k) + ∆tV sin(θ(k))

θ(k) + ∆tΩ

+ w(k)

(62)

zm(k) =

[√
(xm(k)− xcm) + (ym(k)− ycm)

tan−1( ym(k)
xm(k) )

]
+ vm(k),

(63)

where ∆t=0.5(s) is time increment, V = 1 (m/s), and Ω =
0.15 (rad/s). The covariance of the process noise w(k) is
Q= 0.001×Diag(0.1, 0.1, 0.01). Furthermore, the covariance
of noise sequences v1(k) and v2(k) are respectively considered
to be R1 = Diag(0.1, 0.001) and R2 = Diag(0.1, 0.001). We
also assumed that the two range measuring sensors are located
at the origin, i.e., (xcm , ycm) = 0, m ∈ {1, 2}. The initial
state vector for all filters is x(0) = [ 50 50 0 ]

> with the initial
covariance given by P(0) = 0.01× Diag(0.1, 0.1, 0.01).

The Average Normalised Estimation Error Squared
(ANEES) and Average Root Mean Square Error (ARMSE) are
two measures to evaluate the performance of the estimators.
The ANEES is a numerical test to measure the consistency of
estimations as proposed in [27]. The ANEES at time step k
for the total number of N runs is obtained according to

ANEES(k) =
1

nN

N∑
i=1

εi(k), (64)

where εi(k) =
(
xi(k)−x̂i(k|k)

)>
P−1i (k|k)

(
xi(k)−x̂i(k|k)

)
, and

n denotes the dimension of state vector xi(k). According to
this test, an estimator is consistent if and only if the value of
ANEES remains close to 1. If the ANEES is larger or smaller
than 1, the estimator is evaluated as optimistic or pessimistic,
respectively [27]. Moreover, we use ARMSE to compare
the accumulated error of different estimators. The ARMSE
resulted by an estimator at time step k for i = 1, ..., N
independent runs is calculated as follows ( see [26] ):

πxl (k) =
1

N

N∑
i=1

√√√√1

k

k∑
j=1

(xli(j)− x̂li(j|j))2, (65)

where xli(j), and x̂li(j|j) are, respectively, the ith true and
posterior estimate of the lth state xl(j) at time j.

The estimation task is conducted using an EKF-based and
three UKF-based architectures in an MSS with two sensors.
Fig. 2 shows the ANEES and ARMSE performance of the case
study averaged over 1000 runs, for both individual tracks and
fused tracks. It is observed that the performance of the pro-
posed UKF-based fusion algorithm is significantly better than
that of the EKF-based fusion rule and the methods proposed in
[17] and [18], due to the following reasons: (i) the superiority
of the UKF in handling nonlinearities in comparison to the
EKF, and (ii) the novel design of a sub-optimal fusion rule
based on the SLR method. As discussed, the SLR method



(a) (b)

Fig. 2: Estimation performanceof the moving robot, 1000 runs:
(a) Log of ANEES and (b) Log of total ARMSE of the states

is accurate up to the third order of Taylor Series and it is
compatible with UKF-based architectures. Fig. 2(a) demon-
strates the ANEES performance of all methods. It is seen that
the proposed architecture provides consistent tracks, however,
the EKF-based architecture and the remaining UKF-based
architectures generate optimistic results. Moreover, one can
notice that the ANEES performance of EKF-based architecture
is much better than the UKF-based architecture presented in
[17]. In fact the proposed methods in [17] and [18] fail to
generate consistent tracks due to the optimization scheme they
use, i.e. trace optimization instead of full matrix optimization,
and poor cross-covariance approximation, i.e. not including
linearization error of SLR in [17] and rough estimation of
the cross-covariance matrix based on sigma points in [18].
From Fig 2(b), it is concluded that the fused track in the
proposed UKF-based MSS demonstrates the smallest average
error among all tracks.

VII. CONCLUSION

The problem of track-to-track fusion using known correla-
tion terms between tracks was considered in this letter. The
focus was on nonlinear systems and development of a novel
straightforward recursion for propagating cross-covariance ma-
trix, introduced for EKF- and UKF-based architectures. For
EKF-based MSS architectures, a natural extension of the fu-
sion rule for linear systems was derived. For UKF-based MSS
architectures, the developed formulation employed statistical
linearization regression technique and the characteristics of
deterministic sample points in unscented transform to propa-
gate the cross-covariance matrix through time. In a numerical
example, the superiority of the proposed fusion algorithm
was demonstrated through comparing its consistency with two
existing techniques, recently reported in the literature. Further,
the average root mean square error was used to show the
effectiveness of the developed fusion method, when fusing two
tracks.
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