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Abstract

This paper develops a methodology to generate Pareto optimal trajectories

for long-range rendezvous of a servicing satellite with a moving target, in

an on-orbit servicing mission. The methodology employs a multi-impulse

shape-based trajectory planning algorithm for in-plane orbit transfer, based

on the two-body problem. We first derive the necessary and sufficient con-

ditions that determine the set of smooth impulsive trajectories connecting

the servicing satellite to the orbiting target. The Pareto optimal trajectories

from this set are then obtained using a constrained multi-objective opti-

mization algorithm developed based on the Non-dominated Sorting Genetic

Algorithm-II (NSGA-II). In a mission, an optimal solution from the Pareto

frontier set may be selected based on the mission requirements. Transfer

time and control effort are the two Pareto cost functions that are considered

in the multi-objective optimization. To reduce the risk of collision in pop-

ulated orbits and to remain in an orbital regime, we include restrictions on
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orbital elements as part of the constraints. Further, a maximum available

impulse is considered as an upper-bound for velocity changes in an impul-

sive trajectory. The number of impulses along with the location of the first

impulse in the parking orbit and the orbital parameters of the intermediate

orbits form the set of design variables. The key advantage of the proposed

trajectory optimization methodology compared to its counterparts using con-

tinuous thrust is the significant reduction of the number of design variables.

Finally, we demonstrate the superiority of the developed trajectory planner

by comparing its results with those obtained from another multi-objective

evolutionary algorithm called the Multi-Objective Genetic Algorithm and an

optimal Lambert approach based on single-objective optimization.

Keywords: On-orbit servicing, Long-range rendezvous, Dynamic target,

Multi-impulse maneuver, Shape-based trajectory, Multi-objective

optimization, Genetic algorithm

1. Introduction

On-Orbit Servicing (OOS) comprises a range of missions to provide the

operating satellites with various services, such as, refueling, repairing, up-

grading, orbit modification, assembly, and debris removal. Such operations

intend to increase the satellites’ lifetime and enhance their performance, as

well as to reduce the operating costs associated with space programs. Exam-

ples of manned OOS missions are repairing the Hubble Space Telescope and

assembling the International Space Station [1]. The world’s first unmanned

OOS mission was conducted by Engineering Test Satellite (ETS-VII), which

was equipped with a deployable robotic arm, to demonstrate the capability
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of docking to a target and the utilization of robotic technologies [2]. Other

successful unmanned OOS missions have been performed. The most recent

attempt that will be commissioned in 2022 is On-orbit Servicing, Assembly,

and Manufacturing 1 (OSAM-1) that is a mission to extend satellites’ lifespan

even if they are not designed to be serviced on orbit [3]. An autonomous ser-

vicing satellite (SS) (hereafter called servicer) that is equipped with robotic

arms can perform valuable services, e.g., visual inspection, refueling, and

debris removal.

The highly increasing demand for OOS operations suggests the necessity

to move towards industrialization, whose main challenge is the design of an

efficient mission architecture for continuous supply of multiple services to

a number of target satellites (hereafter called target). The phase of a ser-

vicing mission that mostly contributes to fuel and time consumption is the

long-range rendezvous. Therefore, transfer trajectory optimization must be

considered as one of the crucial steps in the industrialization process [4]. Vari-

ous approaches for addressing the spacecraft trajectory optimization problem

have been reviewed in [5, 6, 7]. In a survey by Shirazi et al. different aspects

of the satellite transfer trajectory design are separately studied, including

modeling, objective functions, and solutions [7]. In the following, the rele-

vant research works conducted in these three aspects are surveyed in detail.

Figure 1 is the visual illustration of different approaches to the trajectory

optimization problem.

1.1. Model

In the design of transfer trajectories, two key characteristics of the space-

craft model must be considered: transfer type and equations of motion.

3



Figure 1: Spacecraft trajectory optimization process

Transfer type. Modelling the shape of the control input in an orbit trans-

fer is an important step in trajectory optimization. Impulsive [8] and con-

tinuous [9] maneuvers are the two typical transfer types that enjoyed more

attention in the literature. Although continuous transfer type captures a

more accurate model of spacecraft motion, it adds to the complexity of the

optimization problem, as the system always experiences non-zero inputs. On

the other hand, the impulsive model reduces the computational effort, with

an almost negligible compromise in the optimality of the objective function.

Low specific impulse or high thrust level engines execute the impulsive ma-

neuvers that generate conic arcs as the result of the velocity increment ∆v

at the impulse location [10]. Specifically when ∆v is tangent to the path of

motion, the generated trajectory is considered smooth. Of the impulsive ma-
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neuvers, Hohmann transfer between two circular orbits is the most popular

transfer method in which a two-impulse trajectory is generated. As another

popular two-impulse transfer trajectory, one can refer to the Lambert trans-

fer with the ability to generate a transfer orbit between any two arbitrary

spatial points with a desire time interval. Improved versions of this approach

have also been suggested in the literature, considering multiple orbital rev-

olutions [11], orbital perturbations [12], and optimal Lambert solutions [13].

Beside the Lambert and Hohmann, shape-based approaches are other popu-

lar trajectory design methods for both impulsive and continuous maneuvers

that work based on the trajectory’s geometry. The distinguished feature of

shape-based approaches is having fewer design variables comparing to their

counterparts that do not consider constraints. Shakouri et al. propose a

set of constraint equations to generate multi-impulse shape-based transfer

trajectories between eccentric orbits in a central gravity [14]. A favorite ge-

ometry for designing continuous shape-based maneuvers is the use of spiral

functions [15].

Equations of motion. Motion of the Earth’s satellites is dominantly gov-

erned by the central gravity of the Earth (two-body problem). In addition,

other factors, such as the gravity of other celestial objects [16], Earth oblate-

ness [17], atmospheric drag [18], solar radiation pressure [19], etc., may be

considered in the form of disturbing effects in the equations of motion. The

magnitude of these disturbing forces changes with the satellite’s orbital al-

titude. For example, the dominant disturbances in the Low Earth Orbital

(LEO) regime are perturbations induced by Earth’s oblateness (short peri-

odic, long periodic, and mean change) and atmospheric drag [18]. Including
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such effects in the equations of motion depends on the application [20]. For

example, in a rendezvous mission in LEO, comprising the two phases of

long-range and short-range, the effects of the long-periodic, mean changes,

and atmospheric drag dominate those of the short periodic in the long-range

rendezvous [21]. On the other hand, in the short-range rendezvous relative

maneuvers with respect to target need be designed that require including

relative equations of motion for both position and attitude dynamics [22].

1.2. Objective Function

Another step in spacecraft trajectory optimization process is defining ob-

jectives based on the mission requirements. Objective functions (or cost func-

tions) may include fuel mass, total velocity increment, state errors, transfer

time, or control effort. For a general spacecraft trajectory optimization, the

objective function is formulated in two parts: (i) the Mayer term, which

demonstrates the cost related to the final states, and (ii) the Lagrange term

or the accumulated cost associated with the states and control efforts [23].

1.3. Approach and Solution

Solutions of the trajectory optimization problem are divided in two main

categories: analytical and numerical approaches. Analytical approaches work

based on the optimal control theory to determine a time history of control sig-

nals that minimizes a cost function, while satisfying a set of constraints [24].

Although the analytical approaches generate solutions with zero approxima-

tion, they are not necessarily attainable especially when the complexity of the

model and the problem increases. As an alternative, numerical approaches

are used to solve the satellite trajectory optimization problem, which are
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divided in two categories of direct and indirect methods [25]. The former

attempts to find the minimum cost function over the states and inputs of the

system, and the latter numerically solves Pontryagin’s minimum principle.

Direct methods are more popular than indirect methods because of the ease

of implementation, larger domain of convergence, and smaller problem size,

indeed with some compromises in accuracy. Both methods attempt to min-

imize cost functions and constraint violations using discrete approximations

based on some gradient- or heuristic-based approaches [26]. The high sensi-

tivity of gradient-based methods to the initial guess of all system parameters

renders them less desirable. Heuristic approaches offer alternative solutions

to spacecraft trajectory optimization [13, 27], whose examples include the

Genetic Algorithm (GA) [28, 29], the particle warm optimization [30], and

the simulated annealing [29, 31].

Several methods exist to solve multi-objective optimization problems that

can be divided in two general categories of decomposition and heuristic meth-

ods. In decomposition methods, a multi-objective optimization problem is

converted to a single-objective problem [32, 33, 34, 35, 36]. Unlike heuristic

methods, decomposition algorithms must be run several times to find a set

of Pareto-optimal solutions. This makes heuristic methods faster and more

reliable, comparing to decomposition ones [37]. Among all heuristic meth-

ods, Evolutionary Algorithms (EA), and more specifically GAs, are suitable

to handle multi-objective optimization problems with constraints, especially

for highly constrained problems in space applications [38] . A key feature of

Multi-Objective EAs (MOEA) is maintaining a diverse set of solutions, since

they work with a population of solutions. The Multi-Objective GA (MOGA),
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Non-dominated Sorting GA (NSGA), and Niched-Pareto GA (NPGA) are

the pioneering MOEAs that are able to find multiple Pareto-optimal solu-

tions in one single run [32]. Although these algorithms are proved effective

in generating multiple non-dominated solutions, they still lack elitism that

is an index for better convergence of an MOEA. Other algorithms, such as

Strength Pareto EA (SPEA), Pareto Archived Evolution Strategy (PAES),

and Pareto Envelope-based Selection Algorithm (PESA) have been intro-

duced as elitist MOEAs [32]. Deb et al. suggest a non-dominated sorting-

based multi-objective EA, called NSGA-II, which has attracted attention in

the research community [37]. They have developed NSGA-II to tackle the

drawbacks of the NSGA, which include high computational complexity, lack

of elitism, and the need for a sharing parameter to preserve diversity. This

algorithm also alleviates issues with the SPEA, PAES, and PESA by converg-

ing to a Utopian Pareto frontier while maintaining diversity of solutions. Deb

et al. also developed the NSGA-III, specialized for many-objective problems,

which substitutes the crowding distance sorting algorithm in the NSGA-II

with a reference-point-based algorithm. To further enhance its performance,

NSGA-III is combined with a specific multiple-shooting discretization and

tested in a highly constrained multi-objective trajectory optimization task

[38]. Although both the NSGA-II & III have been proved effective, the

NSGA-II is more efficient when handling 2 objective functions [39].

1.4. Statement of Contributions

This paper proposes a multi-impulse shape-based transfer trajectory gen-

erator for chasing a target in the long-range rendezvous phase of an OOS

mission. The transfer trajectories are designed based on the two-body prob-
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lem that captures the most dominant motion of the Earth’s satellites. The

benefit of including the target’s orbital motion in the long-range rendezvous

phase is to reduce the duration and fuel consumption in the short-range ren-

dezvous. We develop a multi-objective constrained optimization architecture

to minimize both the transfer time and control effort, using the concept of

Pareto optimality. The proposed architecture is based on the constrained

multi-objective NSGA-II with some modifications in sorting and mutation

operators, for the sake of efficiency in our satellite trajectory design task. In

addition, we implement the modified Inverted Generational Distance (IGD+)

as the convergence measure along with the modified NSGA-II. Smoothness of

the generated trajectories and avoiding some highly populated orbital regions

are among the constraints that are considered in this study. The former re-

duces the number of design variables and the computational complexity with

an acceptable accuracy penalty, and the latter decreases the risk of collision

with other orbiting objects. We consider the location and number of impulses

in addition to some intermediate orbital elements as the design variables. In-

cluding the waiting time before applying the first impulse among the design

variables considerably enhances the fuel consumption, with probably some

compromise in transfer time. We investigate the efficacy of the developed

optimal transfer trajectory generator in two case studies, where the results

are compared with those obtained from MOGA [40] and an optimal Lambert

approach. In the case studies, the convergence of the optimization, and the

effects of number of impulses and waiting time in parking orbit are studied.

The remaining sections of this paper are organized as follows. The mathe-

matical model describing a shape-based trajectory to chase a target is derived
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in Section 2. The developed multi-objective optimization architecture is pre-

sented in Section 3. Section 4 reports some simulation results in two case

studies. Finally, Section 5 includes some concluding remarks.

2. Multi-impulse Shape-based Trajectories for Target Chasing

In this section, we derive a set of constraint equations to generate multi-

impulse smooth transfer trajectories for a servicer chasing a target in the

long-range rendezvous phase. The motion of the servicer and the target is

formulated based on the two-body problem, and smoothness requirement dic-

tates that they must move in a plane. We model an impulse in an impulsive

trajectory with an instantaneous velocity change. As the result, the pro-

posed transfer trajectories are constructed by joining a number of co-planar

co-focal elliptical arcs.

Motion of a satellite in a central gravity is fully described by the set of

classical orbital elements denoted by the vector q = [a, e, ι,Ω, ω, ν]T . Here, a

is the semi-major axis, e is the eccentricity, ι is the inclination, Ω is the Right

Ascension of Ascending Node (RAAN), ω is the argument of perigee, and ν is

the true anomaly. In a given plane in the three-dimensional space, identified

by known ι and Ω, the satellite’s motion is fully described by only four orbital

elements, i.e., a, e, ω, and ν. Using the polar coordinates of the plane (r, θ),

depicted in Figure 2, ν can be replaced by θ = ν −ω to introduce the vector

p = [a, e, θ, ω]T as the set of planar orbital elements. The parameters r, ν,

θ, a, e, and ω are shown in Figure 2, where the origin is the Earth’s center.

Conversely, knowing the satellite’s position (r, θ) and its velocity (ṙ, θ̇)

relative to the Earth-Centered Inertial (ECI) coordinate frame, we find the
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Figure 2: Oblique ellipse parameters in polar coordinate system

planar orbital elements by [10, p. 210]:

a =
µr

2µ− r(ṙ2 + r2θ̇2)
, (1)

e =

√
1− r4θ̇2

µa
, (2)

ω = cos−1{1

e
[
a

r
(1− e2)− 1]} − θ, (3)

where µ is the gravitational constant of the Earth ( ≈ 398601.2 km3s−2).

When an impulse takes place, the satellite’s velocity changes instanta-

neously resulting in a sudden variation of the orbital elements and accordingly

the satellite’s trajectory. The velocity change at an intersection is denoted by

∆v. Given (1)-(3), we can observe how the radial (∆ṙ) and tangential (r∆θ̇)

components of ∆v vary the orbital elements of a satellite. A trajectory is

called smooth, if the curves before and after an impulse intersect and share

an identical tangent direction at the intersection point [41]. The smoothness

condition at the intersection of any two sequential arcs can be formulated in
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the polar coordinates as follows [14]:

r− = r+, (4)

θ− = θ+, (5)

(
dr

dθ
)− = (

dr

dθ
)+. (6)

The + and − signs correspond to the conditions right after and right before

an impulse, respectively. Using the relationship between r and the planar

orbital elements [10, p. 182], the tangent direction of a trajectory is calculated

by
dr

dθ
=

e sin(θ + ω)

1 + e cos(θ + ω)
r, (7)

r =
a(1− e2)

1 + e cos(θ + ω)
. (8)

The conditions in (4) and (5) imply that the two curves must have an

intersection at the impulse location, and the polar coordinates of the satellite

remain unchanged over the course of an impulse. Further, (6) demonstrates

that at the location of the impulse the direction of the velocity vector does

not change, and only its magnitude must vary. This condition implies that

the two curves before and after an impulse must remain in a plane.

Problem 2.1 (Smoothness). Given two locations in two co-planar orbits and

an integer N , find the necessary and sufficient conditions for the smoothness

of an N -impulse trajectory for a satellite joining these two locations.

For a general N -impulse smooth co-planar maneuver, N − 1 arcs need to

be designed to generate a transfer trajectory, each of which must satisfy (4)-

(6) at the impulse locations. We denote the initial and final orbital locations
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by p1 and pN+1, respectively, and we index the intermediate orbital elements

by i = 2, . . . , N . The vectors pi = [ai, ei, θi, ωi]
T , i = 1, · · · , N + 1, are the

set of planar orbital elements describing the full satellite trajectory starting

from p1 and ending at pN+1. The parameter θi, for i = 1, · · · , N , describes

the location of the impulse where the satellite leaves the ith orbit, and based

on (5) it is equal to the satellite’s polar angle immediately after the impulse.

Note that θN+1 = θN that indicates the point of entry to the final orbit. To

guarantee the smoothness of an N -impulse transfer trajectory from a known

initial orbital location p1 to a given final orbital location pN+1, we impose

the following set of 2N nonlinear equations based on (4)-(6), for i = 1, . . . , N :

fi1(pi,pi+1) := ei sin(θi + ωi) + eiei+1 sin(ωi − ωi+1)

− ei+1 sin(θi + ωi+1) = 0, (9)

fi2(pi,pi+1) := ai(1− e2i )[1 + ei+1 cos(θi + ωi+1)]

− ai+1(1− e2i+1)[1 + ei cos(θi + ωi)] = 0. (10)

The number of unknowns in this set of equations is 4N − 5 including the

elements of vectors p2 to pN minus θN that must be equal to the known

θN+1 based on (5).

Problem 2.2 (Chasing). Given co-planar orbital locations of a servicer and

a target at the time t = 0, find N -impulse smooth transfer trajectories for

the servicer to intercept the target at its point of entry to the target’s orbit.

The time-dependent orbital elements of the servicer in the parking or-

bit and the target are denoted by pS(t) = [aS, eS, θS(t), ωS] and pT (t) =
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[aT , eT , θT (t), ωT ], respectively. In this problem, knowing θS(0) and θT (0) we

seek the necessary and sufficient conditions to generate N -impulse smooth

transfer trajectories for the servicer, such that p1 is the location of the first

impulse in the parking orbit and pN+1 is the point of entry of the servicer

to the target’s orbit intercepting the target. That is, we must impose the

following condition in addition to the smoothness conditions in (9)-(10):

pN+1 = pT (tf ), (11)

where tf indicates the servicer’s arrival time. For an N -impulse trajectory,

tf depends on the intermediate orbital elements, and is calculated by

tf (p1, · · · ,pN) =
N∑
i=1

∆ti(pi, θi−1), (12)

∆ti(pi, θi−1) =
M−

i −M+
i−1√

µ
a3i

, i = 1, · · · , N (13)

where M+
i and M−

i are the mean anomalies of the sevicer at the ith impulse

in the (i + 1)st and ith orbit, respectively. Note that M+
0 is equal to MS(0),

the servicer’s initial mean anomaly in its parking orbit. To calculate the

mean anomalies, we use the following set of equations (i = 1, · · · , N) [10,

p. 160]:

M+
i = E+

i − ei+1 sinE+
i , (14)

E+
i = 2 tan−1(

√
1− ei+1

1 + ei+1

tan
θi + ωi+1

2
), (15)

M−
i = E−i − ei sinE−i , (16)

E−i = 2 tan−1(

√
1− ei
1 + ei

tan
θi + ωi

2
). (17)
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The parameters E+
i and E−i are the eccentric anomalies of the servicer at the

ith impulse in the (i+ 1)st and the ith orbit, respectively. At the time tf the

mean anomaly of the target satellite MT (tf ) is calculated by [10, p. 158]:

MT (tf ) =

√
µ

a3T
tf +MT (0), (18)

where MT (0) is the target’s initial mean anomaly in its orbit. To ensure

interception of the target, the condition on the final polar angles of the

servicer and target in (11) can be substituted by

MT (tf ) = M+
N . (19)

Note that MT (tf ) is a function of the number of impulses N , intermediate

orbital elements pi, and the initial location of the servicer θS(0).

Comparing the chasing problem with smooth trajectory generation, the

location of the initial and final impulses, θ1 and θN = θN+1, are unknown;

however, the condition in (19) must be added to (9) and (10) to ensure

interception of the target. In summary, to generate an N -impulse smooth

trajectory to chase a target, the following constraints should be satisfied:

fi1(pi,pi+1) = 0, i = 1, · · · , N (20)

fi2(pi,pi+1) = 0, i = 1, · · · , N (21)

f3(p1, · · · ,pN+1) := (MT (0)−M+
N ) +

N∑
i=1

(
ai
aT

)
3
2 (M−

i −M+
i−1) = 0. (22)

The constraint equation in (22) is the result of substituting (12) and (18) in

(19). In the problem of N -impulse smooth trajectory generation for target

chasing, 2N + 1 constraints in (20)-(22) should be satisfied, while we have

4N − 3 unknowns, i.e., pi (i = 2, · · · , N) and θ1. Including the location of
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the first impulse among the unknowns allows us to study its effect on the

long-range rendezvous maneuvers, which will be discussed in Section 4.

Some additional assumptions must be considered to find a unique solution

to (20)-(22), since the number of unknowns is more than that of the equations

for N ≥ 3. We implement the Newton method in the current paper to

numerically solve for an N -impulse smooth trajectory in chasing problems

(see Algorithm 1). Once we have a solution, the magnitude of the velocity

Algorithm 1: Smooth trajectory generation for chasing problem.
Data: a1, e1, ω1, aT , eT , ωT , θS(0), θT (0), N , plus 2N − 4 unknowns

Result: Impulse locations and intermediate orbital elements: θ1, pi

(i = 2, · · · , N)

1 for i← 1 to N do

Form the system of nonlinear equations from (20)- (21);

end

2 Add (22) to the system of equations, using (14)-(17).

3 Initialize the Newton algorithm using ga().

4 Solve using Newton algorithm.

change at the ith impulse location ∆vi = ‖∆vi‖ is calculated based on the

orbital elements of the smooth transfer trajectory by

∆vi = v+i − v−i , (23)

where,

v+i =

√
µ(

2

ri
− 1

ai+1

) and v−i =

√
µ(

2

ri
− 1

ai
). (24)

The velocity magnitude before and after the ith impulse are denoted by v−i

and v+i , respectively. The radius ri is the radial component of the location of
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the servicer at the ith impulse in polar coordinates, based on (8). Note that

at the ith impulse location, the direction of ∆vi is the same as the servicer’s

velocity direction due to the smoothness conditions.

3. Trajectory Design Optimization

For N ≥ 3, since we have 2N − 4 unknowns more than the number of

equations in (20)-(22), there exist infinitely many smooth trajectories for

chasing a target. Each set of 2N − 4 unknowns results in a feasible transfer

trajectory with a specific control effort and transfer time. In this section,

we implement a multi-objective non-dominated sorting genetic algorithm to

find the set of Pareto optimal smooth transfer trajectories. Employing opti-

mization helps enhance the performance of the derived multi-impulse smooth

trajectories for chasing a target in the long-range rendezvous phase of OOS.

Problem 3.1 (Optimality). Given the control effort and transfer time as

Pareto cost functions, and the number of impulses N along with the set of

2N−4 unknowns as design variables, find the set of Pareto-optimal trajecto-

ries satisfying (20)-(22). The optimization must also include constraints on

the orbital elements of the transfer trajectories.

The remainder of this section details the employed constrained multi-

objective optimization, including the description of design variables, Pareto

cost functions, and constraints, to find the optimal transfer trajectories.

3.1. Design variables

Since N is a part of design variables and its change linearly affects the

total number of design variables, a maximum number of impulses Nmax is
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fixed. This introduces a total number of 2Nmax − 3 design variables in the

trajectory design optimization. When N = 2, there is a unique solution to

(20)-(22). If 3 ≤ N ≤ Nmax, a subset of 2N − 4 design variables identifies

the solution to (20)-(22). The collection of all design variables is denoted

by the vector x ∈ R2Nmax−3. For an N , we have the freedom to choose the

design variables from the vectors pi, i = 1, · · · , N . To capture the required

unknowns to solve (20)-(22) for every value of 3 ≤ N ≤ Nmax, we have to

cautiously choose the design variables to include enough information. Any

two variables from the components of p2 and p3, and θ1 (9 variables in total)

can be chosen to be two of the design variables for Nmax = 3, e.g., the

vectors x = [N, θ1, ω2] or x = [N, a2, e3] are acceptable choices. However,

some parameters are preferred over the others, e.g., since θi and ωi appear

in the argument of trigonometric functions they are more reasonable choices

comparing to ai and ei. As it is evident in (9)-(10), knowing θ1 and ω2 for

N = 3 gives explicit answers for a2 and e2, without needing a nonlinear

solver. In the case of Nmax = 4, we keep the first two design variables as

the ones chosen for Nmax = 3 and add two more design variables from p2,

p3, and p4, i.e., the vectors x = [N, θ1, ω2, ω3, ω4] or x = [N, θ1, ω2, e3, e4]

can serve as the vector of design variables. But as discussed, the former

choice is preferred. This process can be extended to any maximum number

of impulses considered in the optimization. Note that in any design candidate

x if N < Nmax, only a subset of design variables identifies the cost functions.

3.2. Constraints

In every real-world optimization problem, certain physical or manufac-

turing requirements ought to be satisfied, leading to a set of constraints on
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the design variables. In the problem of trajectory design optimization, four

different types of constraints are considered

1. To meet the smoothness and chasing requirements of the N -impulse

transfer trajectories, (20)-(22) are the first set of constraints.

2. A belt of orbits is defined to be a set of neighbouring elliptic orbits of

the Earth. Such a belt can be identified by the following inequalities

on a, e, and ω:

aL < a < aU and eL < e < eU and ωL < ω < ωU ,

where the subscripts L and U indicate the lower and upper bound

for an orbital element, respectively. Therefore, to avoid a certain belt

of orbits, a set of inequalities are imposed on the parameters of the

intermediate orbital elements (i = 2, · · · , N):

ai ≥ aU or ai ≤ aL, or ei ≥ eU or ei ≤ eL, or ωi ≥ ωU or ωi ≤ ωL.

(25)

A belt of orbits may represent a populated orbital region where the risk

of collision with other spatial objects is high. Note that avoiding a belt

of orbits guarantees that the servicer never uses any orbit in the belt

for transfer; however, it may cross the belt in its path to the target.

3. To ensure that the servicer stays within an orbital region, constraints

may also be applied on functions of the intermediate orbital elements.

For example, to always stay within LEO throughout a long-range ren-

dezvous with a target, the following inequalities must be satisfied to

ensure that the maximum and minimum altitude of the servicer re-
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main between 100-2000 kilometers. For i = 2, · · · , N :

ai(1 + ei) ≤ 8371km and ai(1− ei) ≥ 6471km. (26)

4. The maximum amount of available ∆v at each impulse is subject to

some limitations. Defining ∆vU as the maximum available velocity

increment at each impulse, the following set of inequalities must be

satisfied for i = 1, · · · , N to find a feasible transfer trajectory.

∆vi ≤ ∆vU . (27)

3.3. Cost Functions

Both total Transfer Time (TT) and Control Effort (CE) are critical per-

formance indexes in the servicer trajectory planning problem. For any im-

pulsive trajectory design in the two-body problem context, TT and CE can

be respectively computed by the following functions:

Jt = tf (p1, · · · ,pN), (28)

Jc =
N∑
i=1

|∆vi(pi,pi+1)|. (29)

The functions tf and ∆vi are already defined in (12) and (23), respectively.

3.4. Optimization problem

Let J denote the collection of the objective functions Jt and Jc, i.e.,

J = [Jt, Jc]
T . (30)

The optimality problem in Problem 3.1 can now be formulated as the follow-

ing multi-objective constrained optimization:

x∗ = arg min
x
J(x) (31)

subject to (20)-(22) and (25)-(27).

20



Here, x∗ denotes a member of the set of optimal solutions. The set of equality

constraints in (20)-(22) are already taken into consideration when defining

the design variables as a subset of parameters appearing in p2 to pNmax
along

with θ1 and N .

Let gj(x) for j = 1, · · · ,m be a set of functions of the design variables.

A constrained optimization problem with a set of inequality constraints in

the form of gj(x) ≤ 0 (j = 1, · · · ,m) can be converted into an unconstrained

problem. Note that the constraints in (25)-(27) can be reformatted to this

form. Let Φ be a cost function defined as:

Φ(x;αt, αc) = J(x) + [αt, αc]
T

m∑
j=1

Gj(x),

where Gj(x) = max{0, gj(x)} and αt, αc � 1 are two penalty constants. The

following unconstrained multi-objective optimization problem is equivalent

to (31):

x∗ = arg min
x

Φ(x;αt, αc). (32)

In a multi-objective optimization, if two objectives are cooperative, i.e.,

changing design variables has the same effect on both, the optimal solution is

a single point. However, if we deal with two competitive objectives, we have

multiple optimal solutions whose collection is called the Pareto frontier set.

In the trajectory optimization problem in (32), the Pareto cost functions Jt

and Jc are normally competitive and the solutions to (32) form the Pareto

frontier set. A solution x∗ in the Pareto frontier set dominates every other

feasible solution to (32) in the space of objectives. Point A dominates point
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B in the Pareto sense, if A is better than B in at least one objective function

and not worse with respect to all other objective functions. Then, Pareto

frontier set is the collection of all of the solutions that cannot dominate one

another [42], i.e., no solution is superior to others.

3.5. Non-dominated Sorting Genetic Algorithm

Non-dominated Sorting Genetic Algorithm (NSGA-II) is a guided random

search multi-objective optimization algorithm with the capability of explor-

ing the diverse regions of the solution space. This algorithm proposes a direct

approach using the concept of Pareto-optimality for solving multi-objective

problems with four main advantages to its direct rival multi-objective op-

timization algorithms: (i) it uses a fast non-dominated sorting procedure,

(ii) it is an elitist-preserving approach, (iii) it uses an operator for exploring

diverse regions, and (iv) it provides strategies for handling constraints [37].

The flowchart in Figure 3 demonstrates the implementation of NSGA-II to

find the optimal transfer trajectories from (32). The steps of NSGA-II for

finding the optimal answers are elaborated in the following.

3.5.1. Initialization

Considering Nmax number of impulses, 2Nmax−3 design variables must be

initialized for K number of population. This initialization can be performed

whether randomly or by a specific pattern. For example, if there are some

”good” solutions available, they can be included in the initial population.

The original NSGA-II sorts the population after the initialization. However,

we perform sorting after producing the children to save some computations.
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Figure 3: Multi-objective optimization architecture

3.5.2. Cost Function evaluation

To evaluate the cost functions, the nonlinear solver in Algorithm 1 calls

the initialized design variables to find K smooth transfer trajectories that

chase a dynamic target by N ≤ Nmax number of impulses based on (20)-(22).

The Newton method as the nonlinear solver has a fast convergence near the

optimal point, but it is too sensitive to the initialization of the parameters

computed by this solver. To address this drawback, the ga() function from

MATLAB with a low number of iterations is used to find a set of initial

parameters for which the functions fi1, fi2, and f3 (i = 1, · · · , N) are close

enough to zero. The transfer time and control effort are calculated based

on (12) and (23) after computing the feasible intermediate orbital elements

from the Newton solver. Moreover, those solutions which do not satisfy the
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constraints in (25)-(27) are penalized using αt and αc in the cost function Φ

to have less chance to be part of the next generation.

3.5.3. Sorting Operators

The NSGA-II uses the rank and crowding distance operations in the space

of objectives including CE and TT to sort the individuals in a generation [37].

For each individual xk (k = 1, · · · , K) in a generation, the rank operator is

evaluated based on the following algorithm. Two entities are calculated:

(i) domination count nxk
that is the number of individuals dominating xk,

and (ii) a set of individuals Sxk
that xk dominates. Initially, nxk

= 0 and

Sxk
= ∅. Then, we form Sxk

and compute nxk
by comparing all individuals in

the generation. If nxk
= 0, the rank of xk, denoted by rank(xk), is assigned

to be 1. For every xk with rank 1, we reduce the domination count of

every element in the set Sxk
by 1. Excluding the rank 1 individuals, if the

recomputed nxk
= 0, then rank(xk) = 2. Repeating the same procedure,

we rank all of the individuals in the generation. We denote the set of all

individuals with rank l by PFl. Clearly, the lower the rank, the closer the

individuals are to the Pareto-optimal solutions. The algorithmic evaluation

of the rank operator is detailed in Appendix A.

The Crowding Distance (CD) operator guides the algorithm at each stage

towards a uniform Pareto frontier set, and helps generate diverse solutions.

In a generation, the CD operator is evaluated for an individual xk, based on

the following algorithm. The two extreme individuals in PFl are identified:

xlt = arg max
xk∈PFl

Jt(x) & xlc = arg max
xk∈PFl

Jc(x).

For the extreme individuals xlt and xlc with rank l, we define the CD to
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Figure 4: Non-dominated sorting ranking. Figure 5: Crowding distance for two objectives.

be infinity. We sort the members of PFl based on the value of one of the

objective functions. Then, for the individuals in PFl except the extremes we

define the CD to be

CD(xk) =
Jc(xk+1)− Jc(xk−1)
Jc(xlc)− Jc(xlt)

+
Jt(xk+1)− Jt(xk−1)
Jt(xlt)− Jt(xlc)

. (33)

Note that xk−1, xk, and xk+1 are three consecutive individuals in the set PFl.

The higher the CD, the more preferred individual is in PFl, since it identifies

rare regions in the search space. Figure 5 demonstrates the crowding distance

in a set PFl, and the algorithmic evaluation of the CD operator is detailed

in Appendix A.

3.5.4. Binary Tournament Selection

In any step of the optimization that we need to select parents, we use

binary tournament selection method. In this method, two individuals are

randomly chosen from the population and the one with the lower rank is

kept in the process. If the two individuals have the same rank, then the one
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with higher CD is preferred to become the parent. To select other parents,

we repeat the same procedure [43].

3.5.5. Arithmetic Crossover

Crossover is an inheritance operator, that causes the children to have

attributes from all parents. Initially, a crossover rate (between 0 and 1)

is fixed that is the indicator of the execution probability of this operator.

During the optimization, each time that the crossover operator is called, a

random number between 0 and 1 is generated. If this number is smaller

than the crossover rate, then this operator is executed. During crossover, a

random 2Nmax−3 dimensional vector β whose elements are between 0 and 1

is generated, based on which we define the children xc1,x
c
2 of the two selected

parents by the binary tournament selection, xp1,x
p
2.

xc1 = β ∗ xp1 + (1− β) ∗ xp2, & xc2 = β ∗ xp2 + (1− β) ∗ xp1,

where the operator ∗ refers to the element-wise multiplication of two vectors

and the vector 1 is the 2Nmax − 3 dimensional vector whose elements are all

equal to 1 [43].

3.5.6. Mutation

In the iteration 1 ≤ d ≤ D, where D is the maximum number of iter-

ations, a number of individuals are randomly selected based on the binary

tournament selection to be mutated with a probability, to explore the search

region. A mutation probability distribution is fixed at the initialization phase

of the NSGA-II algorithm. This distribution allows the mutation operator to
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execute with a higher probability at the beginning of the optimization, which

leads to avoiding convergence to local optima. In this paper, the mutation

probability PM in the iteration d is defined by (see Figure 6)

PM(d) = PM0(1 + cos
πd

D
),

where PM0 is a parameter, fixed at the beginning of the optimization loop.

Each time that the mutation operator is called for an individual, 2Nmax − 3

random numbers between 0 and 1 are generated. If any of these numbers is

smaller than PM(d), then the corresponding design variable in the individual

is randomly reassigned within its bounds [43].

3.5.7. Replacement

After applying the crossover and mutation operators on the current pop-

ulation, K children are generated and added to the current population. This

new population of 2K individuals is sorted first based on their rank and

then their crowding distance. To maintain a fix number for the population

in each generation, K best individuals are truncated. Note that the new K

individuals must be sorted again, since the sorting operators depend on all

members of a population. This new K individuals are the population for the

next generation (iteration) [37].

3.5.8. Termination Criteria and Convergence

In an optimization, several termination criteria can be considered: (i)

maximum number of iterations, (ii) maximum number of iterations with no

improvement, (iii) maximum allowed CPU time, and (iv) reaching an admis-

sible fitness. For multi-objective problems, another criterion that is widely
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Figure 6: Mutation probability Figure 7: Inverted Generational Distance

used to measure both convergence and diversity is Inverted Generational Dis-

tance (IGD) [44]. This performance metric is defined in the following. Let

PF∗ denote the ideal Pareto frontier, defined as the one-dimensional hyper-

plane in the performance space according to the minimum values of Jt and

Jc and the constraints over them. If no constraints are specified for the ob-

jective functions, the PF∗ includes two lines parallel to the objective axes

passing through the minimum values of Jt and Jc. The two lines meet at a

point closest to the origin, coined as the ideal point. Considering a set of

reference points P ∗, i.e., uniformly distributed points along the ideal Pareto

frontier, and PF1 as the set of non-dominated solutions generated by the op-

timization algorithm, the modified Inverted Generational Distance (IGD+)

is defined as:

IGD+ =

∑
P∈P ∗ dist(P,PF1)

|P ∗|
.

Here, dist(P,PF1) is the minimum Euclidean distance d(P, Y ), between P ∈

P ∗ and the point Y in PF1, and |P ∗| is the cardinality of the set P ∗. The
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Euclidean distance d(P, Y ) for the two-objective problem is calculated by

d(P, Y ) =

√√√√ 2∑
j=1

max(Pj − Yj, 0)2.

As opposed to the IGD, the modified measure IGD+ can differentiate the

quality of PF1 when it is nondominated by the reference points in P ∗. If |P ∗|

is large enough, IGD+ can measure both diversity and convergence of the

optimization algorithm. The details of finding the reference points P ∗ are

explained in [44]. Minimizing IGD+is a convergence criterion that indicates

how far we are from the ideal Pareto frontier. In this paper, minimizing the

IGD+ is numerically studied to ensure the convergence of the optimizations

in different case studies.

4. Case Studies

In this section, we aim to evaluate the proposed N -impulse optimal

smooth trajectory generator, presented in Sections 2 and 3, in two case stud-

ies. We consider transfer time and control effort as the two Pareto cost

functions. In all case studies, we solve the unconstrained multi-objective op-

timization problem and investigate the effect of constraints in the formation

of the Pareto frontier. To examine the efficiency of the proposed optimiza-

tion algorithm, we compare the resulted unconstrained Pareto frontier with

that of the MOGA. The optimization parameters of the MOGA and the

modified NSGA-II are selected the same, wherever possible. Moreover, the

unconstrained solutions closest to the ideal points are compared with the

optimal Lambert approach developed for chasing a satellite, in this paper.

In the proposed Lambert approach, the design variables are the transfer time
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and the location of the first impulse, and the control effort is the objective

function. The optimization performed to find the optimal Lambert solu-

tions uses a single-objective GA with the same parameters. Note that the

trajectories generated by the Lambert approach are not necessarily smooth.

However, the proposed smooth 2-impulse trajectories can be considered as

a specific case of the Lambert approach, where the smoothness constraint is

applied. In the following case studies, it is assumed that θS(0) = 270 deg,

θT (0) = 0 deg, Nmax = 5. In the constrained optimizations, we consider the

following constraints: (i) ∆vi ≤ 6 km/sec for i = 1, · · · , N , and (ii) staying

within LEO regime, i.e., (26). The typical value of the crossover rate used

in the literature is [0.8, 0.95] [37]. For constant mutation functions, the rate

is selected to be reciprocally proportional to the number of design variables,

which is almost 0.4 in our case studies; hence, PM0 = 0.4. Based on an inves-

tigation conducted on the optimization time and the quality of the produced

solutions, the number of population and the maximum number of iterations

are obtained to be K = 50 and D = 200, respectively. Moreover, the optimal

number of reference points in calculating the IGD+ is found to be around

|P ∗| = 100. To ensure convergence, the behaviour of IGD+ over the course

of iterations is monitored. We consider convergence of IGD+ to a number

less than 1 as the indicator of the multi-objective optimization convergence.

As indicated in [37], the computational complexity of the NSGA-II for a

problem with two objective functions is O(2K2). The Newton method is im-

plemented to evaluate the objective functions by solving a system of 2Nmax+1

nonlinear equations with the computational complexity O((2Nmax+1)3) [45].

It is initialized using ga() with the computational complexity O(F (2Nmax +
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1)), where F is the number of population multiplied by the number of gen-

erations. Overall, the computational complexity of the proposed algorithm

for solving (32) is O(K2N3
max).

4.1. Case study 1

In this case study, the initial and final orbital elements are:

aS = 13756 km eS = 0.5 ωS = 10 deg

aT = 13756 km eT = 0

This case study is simulated with and without constraints. The Pareto opti-

mal solutions for the unconstrained optimization along with the convergence

criterion IGD+, as well as the transfer trajectories for the two extreme solu-

tions are shown in Figures 8-11, respectively. The Pareto frontier set in this

case only includes solutions with three and four number of impulses. The

initial/final locations of the servicer and target, and the location of impulses

are shown in Figures 10-12. The blue-dashed curve is the proposed optimal

smooth transfer trajectory. It can be observed in Figure 10, which is the tra-

jectory for the solution with the minimum time and maximum control effort,

the servicer loiters in an inner orbit with high eccentricity until it catches the

target. However, in the solution with minimum control effort and maximum

time, the servicer waits in the first orbit for a long period of time and trans-

fers to the target orbit using elliptic arcs with low eccentricity. The optimal

transfer time and control effort for this case study are shown in Table 1. The

minimum transfer time corresponds to a trajectory with N = 3, which is al-

most 16 times faster than the second extreme solution. However, the extreme
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solution with minimum Jc has four impulses and demonstrates a control ef-

fort that is ten times smaller than that of the other extreme solution. It is

worth noticing that all of the 50 initial population become non-dominating

solutions. As we yet to apply the constraints, Figure 8 shows all the possi-

ble solutions to chase a target with the given initial condition, even if they

are not feasible. Figure 8 also depicts the Pareto Frontier obtained using

MOGA (blue stars). Both algorithms have the same maximum iteration and

initial population. However, the computational time of solving the problem

using MOGA is almost 2 times more than that of the NSGA-II, due to the

increased computational complexity of the MOGA. Further, the MOGA can

converge to only 10 optimal solutions for this case study, while all of them

are dominated by the solutions of NSGA-II. To have a reasonable comparison

between the proposed optimal trajectory design and the optimal Lambert,

the solution closest to the ideal point is compared with the optimal Lambert

in Figure 12. In the proposed optimal Lambert, the servicer waits in the

initial orbit to find the right location for the first impulse, which is shown

with the green star. Then, it catches the target with the Lambert trajectory

shown with the red curve. It can be interpreted from Table 1 that the J∗c

of the Lambert solution is 4 times bigger than that of the proposed optimal

transfer trajectory, with almost 30% smaller transfer time. The Pareto opti-

mal solutions after applying constraints in (26) are shown in Figure 13. For

the constrained optimization we find 40 non-dominated solutions out of 50

population, with three impulses. We plot the changes in the planar orbital

elements in time for the trajectory closest to the ideal point in Figure 14 to

visualize the dynamics of the optimal solution.
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Figure 8: Case 1; Unconstrained Pareto Frontier Figure 9: Case 1; IGD+;

Figure 10: Case 1; Extreme point 1 Figure 11: Case 1; Extreme point 2

Figure 12: Case 1; Ideal point vs. Lambert Figure 13: Case 1; Constrained Pareto Frontier
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Figure 14: Case 1; Dynamics of the optimal solution closest to the ideal point

Table 1: Summary of the optimal results; Case study 1

Method N Jc [km/s] Jt [s] (×103) Design variables

Extreme point 1 3 12.46 1.72 ω2, θ1

Extreme point 2 4 1.25 28.21 ω2, ω3, ω4, θ1

Closest to ideal point 3 1.97 6.03 ω2, θ1

Optimal Lambert 2 7.74 4.36 tf , θ1

4.2. Case study 2

In this case study, the transfer trajectories from an eccentric orbit to a

circular orbit in LEO are studied. The initial and final orbital elements are:

aS = 7000 km eS = 0.05 ωS = 10 deg

aT = 7500 km eT = 0

The determined unconstrained Pareto optimal solutions are shown in Fig-

ure 15. Also, the transfer trajectories for the two extremes (both minimum
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transfer time and minimum control effort are for N = 3) and the solution

closest to the ideal point (N = 4) are depicted in Figures 17, 18, and 19,

respectively. Given the termination and convergence criteria defined for the

modified NSGA-II (Figure 16), 50 Pareto optimal trajectories were found

in this case study. Evidently, the trajectory corresponding to the minimum

transfer time drastically reduces the mission duration (almost 9 times), with

a large compromise in the control effort (almost 43 times), comparing to the

one with minimum control effort. Figure 15 also depicts the Pareto Frontier

obtained using the MOGA (blue stars). Similar to the previous case study,

the Pareto frontier consists of 17 solutions, all of which are dominated by

the NSGA-II solutions. The optimal solution closest to the ideal point is

compared with that of the optimal Lambert approach in Table 2 and Figure

19, proving that the Lambert solution is not efficient. The optimal control

effort and the corresponding transfer time in the Lambert approach are al-

most 8.6 and 1.3 times larger than those of the proposed optimal trajectory

generator, respectively. Figure 20 shows the Pareto frontier after enforcing

the trajectories to be in LEO and considering the limitation in ∆vi. Here, the

number of constrained optimal solutions is 50 and they include most of the

three-impulse unconstrained solutions with J∗c ≤ 0.7. The dynamics of the

planar orbital elements in time for the trajectory closest to the ideal point is

depicted in Figure 21.

5. Conclusion

In this paper, we developed a multi-impulse shape-based trajectory op-

timization methodology for the long-range rendezvous phase of a servicer
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Figure 15: Case 2; Unconstrained Pareto Frontier Figure 16: Case 2; IGD+

Figure 17: Case 2; Extreme point 1 Figure 18: Case 2; Extreme point 2

Figure 19: Case 2; Ideal point vs. Lambert Figure 20: Case 2; Constrained Pareto Frontier
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Figure 21: Case 2; Dynamics of the optimal solution closest to the ideal point

Table 2: Summary of the optimal results; Case study 2

Method N Jc [km/s] Jt [s] (×103) Design variables

Extreme point 1 3 11.14 1.13 ω2, θ1

Extreme point 2 3 0.26 10.02 ω2, θ1

Closest to ideal point 4 1.59 3.46 ω2, ω3, ω4, θ1

Optimal Lambert 2 13.64 4.58 tf , θ1

that chases a target in an OOS mission. In this process, three main prob-

lems were tackled: (i) smoothness, (ii) chasing, and (iii) optimality. The

first two problems identified a number of constraints on the feasible trajecto-

ries. A non-dominated sorting genetic algorithm, NSGA-II, was implemented

to solve the resulting constrained multi-objective optimization problem. To

study the convergence of the proposed algorithm, IGD+was used. To demon-

strate the efficacy of the proposed methodology, we compared the obtained
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optimal solutions with those generated by the MOGA and a developed opti-

mal Lambert approach for chasing a target, in two case studies. In addition

to the inherent complexity of the MOGA that resulted in slower optimization

process, it was evident from the case studies that the proposed optimization

based on the NSGA-II was superior to the MOGA. The size of the Pareto

frontier using the NSGA-II was larger and its solutions dominated those that

obtained from the MOGA. In the Lambert approach, the design variables

were the transfer time and the impulse location in the initial orbit, while the

objective function was the control effort. Overall, the multi-impulse smooth

trajectory design methodology provided improved solutions in terms of both

transfer time and control effort, as observed from Tables 1-2.
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Appendix A. Algorithms for Crowding Distance and Ranking

Algorithm 2: Crowding Distance [37].

Data: Jt(xk) and Jc(xk) for xk ∈PFl

Result: CD(xk) for xk ∈PFl

xl
t = argmaxxk∈PFl

Jt(x)

xl
c = argmaxxk∈PFl

Jc(x)

PFl =sort(PFl, Jt(x) or Jc(x) )

for xk ∈PFl do

if xk = xlt or xk = xlc then

CD(xk) =∞

else

CD(xk) =
Jc(xk+1)−Jc(xk−1)

Jc(xl
c)−Jc(xl

t)
+ Jt(xk+1)−Jt(xk−1)

Jt(xl
t)−Jt(xl

c)

end

end

end
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Algorithm 3: Ranking [37].

Data: xk, Jt(xk), Jc(xk) for k = 1, · · · ,K

Result: Sxk
and nxk

for k = 1, · · · ,K, and PFl

for xk, k ← 1 to K do

Sxk
= ∅

nxk
= 0

for xk′ , k
′ ← 1 to K do

if xk dominates xk′ then

Sxk
= Sxk

∪ {xk′}

else
nxk

= nxk
+ 1

end

end

end

end

if nxk = 0 then

rank(xk) = 1

PF1=PF1 ∪ {xk}
end

l = 1 while PFl 6= ∅ do
Q = ∅ Used to store the member of the next rank

for xk ∈ PFl do

for xk′ ∈ Sxk do
nxk′ = nxk′ − 1

end

end

if nxk′ = 0 then

rank(nxk′ ) = l + 1

Q = Q ∪ {nxk′}
end

l = l + 1

PFl=Q

end
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