A Generalized Exponential Formula for Forward and Differential Kinematics of Open-chain Multi-body Systems

Robin Chhabra, M. Reza Emami*
University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street Toronto, ON, M3H 5T6, Canada.

Abstract

This paper presents a generalized exponential formula for Forward and Differential Kinematics of open-chain multi-body systems with multi-degree-offreedom, holonomic and nonholonomic joints. The notion of lower kinematic pair is revisited, and it is shown that the relative configuration manifolds of such joints are indeed Lie groups. Displacement subgroups, which correspond to different types of joints, are categorized accordingly, and it is proven that except for one class of displacement subgroups the exponential map is surjective. Screw joint parameters are defined to parameterize the relative configuration manifolds of displacement subgroups using the exponential map of Lie groups. For nonholonomic constraints the admissible screw joint speeds are introduced, and the Jacobian of the open-chain multi-body system is modified accordingly. Computational aspects of the developed formulation for Forward and Differential Kinematics of open-chain multi-body systems are explored by assigning coordinate frames to the initial configuration of the multi-body system, employing the matrix representation of $S E(3)$ and choosing a basis for $s e(3)$. Finally, an example of a mobile manipulator mounted on a spacecraft, i.e., a six-degree-of-freedom moving base, elaborates the computational aspects.

Keywords: Exponential map, Lie groups, Open-chain multi-body system, Displacement subgroup, Holonomic/nonholonomic joint

[^0]
Operators.

L_{r}	Left composition/translation by r		
R_{r}	Right composition/translation by r		
K_{r}	Conjugation by r		
$A d_{r}$	Adjoint operator corresponding to r		
$a d_{\xi}$	adjoint operator corresponding to ξ		
$[\xi, \eta]$	Lie bracket or matrix commutator		
$d_{r} f$	Differential of the map f at the point r		
$T_{r} M$	Tangent space of the manifold M at the point r		
$T M$	Tangent bundle of the manifold M		
$\exp (\xi)$	Group/matrix exponential of ξ		
$\operatorname{Lie}(G)$	Lie algebra of the Lie group G		
$\operatorname{diag}\left(A_{1}, \ldots, A_{n}\right)$	Block diagonal matrix of the entries		
\ltimes	Semi-direct product of groups		
$\\|v\\|$	Euclidean norm of the vector v		
\tilde{v}	Skew-symmetric matrix corresponding to the vector v		
$R(\theta)$	2×2 rotation matrix for the angle θ		
$R(\theta, v)$	3×3 rotation matrix of a rotation for the angle θ,		
	about the vector v		

1. Introduction

The product of exponentials formula for Forward Kinematics of seriallink multi-body systems with revolute and/or prismatic joints was first introduced by Brockett in 1984 [1]. This formulation was further developed and its roots in Lie group and screw theory were illustrated by Murray et al. in 1994 [2]. One of the most important contributions of this method of multibody system modeling is the elimination of intermediate coordinate frames in the kinematic analysis of serial-link manipulators. Since then, a number of researchers have investigated the computational efficiency of this formulation [3], and have applied it to different robotic problems [4, 5, 6, 7, 8]. In 1995, Park et al. used this formulation to reformulate the dynamical equations of serial-link multi-body systems [9], and later in 2003 Müller et al. attempted to unify the kinematics and dynamics of open-chain multi-body systems with one degree-of-freedom (d.o.f.) joints [10].

The exponential map used in the product of exponentials formula is indeed the exponential map of Lie groups, which maps an element of corresponding Lie algebra to an element of the Lie group [11]. For a rigid body, this Lie group is $S E(3)$, which is called the configuration manifold, and the elements of its Lie algebra se(3) are the screws associated with the possible motions of a rigid body in 3-dimensional space [2]. In [12] a family of approximation formulas is presented that allow reconstructing large rigid body motions from a given velocity field, up to a desired order. Screw theory, which was first introduced by Ball in 1900 [13] and also appeared in the work of Clifford [14, 15], has been extensively investigated as a powerful means for the kinematic modeling of mechanisms [16, 17, 18, 19, 20, 21] and robotic systems [5, 22, 23, 24], by defining the notion of screw systems [25]. Moreover, the relationship between screw theory, Lie groups and projective geometry in the study of rigid body motion was elaborated in a paper by Stramigioli in 2002 [26]. He subsequently defined the notions of relative configuration manifold and relative screw to study multi-body systems [27]. In 1999 Mladenova also applied Lie group theory to the modeling and control of multi-body systems [28]. As opposed to the geometric nature of most of the above-mentioned works, her approach was mainly algebraic.

Based on a well-known theorem in the theory of Lie groups, any element of a connected Lie group can be written as product of exponentials of some elements of its Lie algebra. Accordingly, Wei and Norman introduced a product of exponentials representation for the elements of a connected Lie group [29], which was adopted by Liu [30] and Leonard et al. [31] to reformulate Kane's equations for multi-body systems and solve nonholonomic control problems on Lie groups, respectively. However, this is not computationally the most efficient way of parameterizing Lie groups, since this parameterization does not use the minimum number of exponentials of the Lie algebra elements (in the product of exponentials). Therefore, in terms of computational efficiency, investigating the surjectivity of the exponential map for Lie groups is valuable. For $S E(3)$, surjectivity of the exponential map is a direct consequence of Chasles' Theorem [2], which implies that any element of $S E(3)$ can be written as the exponential of at least one element of $s e(3)$. However, not much work has been done on the exponential parameterization of the Lie subgroups of $S E(3)$. Only for the one-parameter subgroups of $S E(3)$, which correspond to one-d.o.f. joints, the exponential map has been used to parameterize the relative configuration manifold that leads to the standard product of exponentials formula. In fact, it is going to be shown that the

Lie subgroups of $S E(3)$ correspond to the relative configuration manifolds of displacement subgroups [20, 32]. These joints are generally multi-d.o.f. holonomic joints. For generic multi-d.o.f. joints, Stramigioli in [27] briefly mentions that at each point the exponential map can be used as a local diffeomorphism between the relative configuration manifold and its tangent space. He later used this local diffeomorphism to introduce singularity-free dynamic equations of a generic open-chain multi-body system with holonomic and nonholonomic joints [33]. In the following sections, the necessary and sufficient conditions for surjectivity of the exponential map of the relative configuration manifolds of displacement subgroups are given, and under those conditions the corresponding manifolds are parameterized using the elements of their Lie algebras.

In this paper, as a natural extension of the product of exponentials formula, a generalized formulation for Forward and Differential Kinematics of open-chain multi-body systems with multi-d.o.f., holonomic and nonholonomic joints is formalized. Lie group theory and differential geometry are used in Section 2 to classify the multi-d.o.f. joints, and introduce screw joint parameters. In Section 3, exponential map of Lie groups is utilized for parameterization of the relative configuration manifolds of displacement subgroups, and the generalized exponential formula for Forward Kinematics of multi-body systems with displacement subgroups is formally derived. Using the differential of the Forward Kinematics map and an annihilator of the nonholonomic constraints matrix, a coordinate-independent formulation for the Differential Kinematics of an open-chain multi-body system with nonholonomic constraints is derived in Section 4. This formulation is indeed independent of the choice of coordinate chart and a basis for the Lie algebras. Section 5 introduces the computational tools for the utilization of the developed formulation in numerical modeling, and the paper is finalized by a case study in Section 6.

2. Holonomic and Nonholonomic Joints

A physical 3-dimensional (3D) space can be mathematically modeled as a 3D affine space, denoted by A, which is equipped with a vector space V, and a rigid body B is the closure of a bounded open subset of A. Considering a multi-body system $M S(N)=\left\{\left(A_{i}, B_{i}\right) \mid B_{i} \subset A_{i}, i=0, \ldots, N\right\}$ and two of its bodies, namely B_{i} and B_{j}, the space of all relative poses (position and orientation) of B_{i} with respect to B_{j} forms a smooth manifold P_{i}^{j}. When $i=$
j this manifold, which is the space of all possible coordinate transformations of A_{i}, inherits Lie group structure isomorphic to $S E(3)$ with the identity element e_{i} and the Lie algebra denoted by $\operatorname{Lie}\left(P_{i}^{i}\right)$. In the case of $i=j$, to simplify the notation only the lower index is used, e.g., $P_{i}:=P_{i}^{i}$. A relative motion of B_{i} with respect to B_{j} is a smooth curve $r_{i}^{j}:[0,1] \rightarrow P_{i}^{j}$, and the relative velocity at time t is the vector $v_{i}^{j}(t)=\left(d r_{i}^{j} / d t\right)(t) \in T_{r_{i}^{j}(t)} P_{i}^{j}$, where $T_{r_{i}^{j}(t)} P_{i}^{j}$ is the tangent space of P_{i}^{j} at the element $r_{i}^{j}(t)$. At each instant t, one can show that this vector induces a vector field X_{t} on A_{j} corresponding to the relative motion of B_{i} with respect to B_{j} such that $\forall a \in A_{j}$,

$$
\begin{equation*}
X_{t}(a)=\lim _{\delta \rightarrow 0} \frac{\exp \left(\delta\left(d_{r_{i}^{j}(t)} R_{r_{j}^{i}(t)}\right) v_{i}^{j}(t)\right)(a)-(a)}{\delta} ; \tag{1}
\end{equation*}
$$

where $R_{r_{j}^{i}(t)}: P_{i}^{j} \rightarrow P_{j}$ denotes the right composition map by $r_{j}^{i}(t)$. For a relative motion, if this vector field is independent of time, the relative motion is called relative screw motion. In other words, a relative screw motion is the curve on P_{i}^{j} corresponding to the flow of a left-invariant vector field on P_{j}. An interpretation of the Chasles' Theorem indicates that from any initial relative pose, a deliberate relative pose of B_{i} with respect to B_{j} can be reached by a relative screw motion. Therefore, P_{i}^{j} can be parameterized using the exponential map of Lie groups [2].

Given two rigid bodies of a multi-body system, B_{i} and B_{j}, a joint is a mechanism that restricts the relative motion of B_{i} with respect to B_{j}, and specifies a subset D_{i}^{j} of $T P_{i}^{j}$. A joint may be time dependant, called rheonomic joint, or time independent, which is called scleronomic joint. A special type of scleronomic joints, which is mostly considered in the literature, is when we have $D_{i}^{j} \subseteq T P_{i}^{j}$ being a distribution on P_{i}^{j} that corresponds to admissible directions of the relative velocity of B_{i} with respect to B_{j}. We only consider this category of joints in this paper. We also assume that the distribution D_{i}^{j} is non-singular in this paper. If D_{i}^{j} is involutive, i.e. closed under the Lie bracket of vector fields, the joint is called holonomic, otherwise, it is a nonholonomic joint. For any non-involutive distribution D_{i}^{j}, let \bar{D}_{i}^{j} be the involutive closure of D_{i}^{j}. The involutive closure of a distribution D_{i}^{j} is the smallest vector sub-bundle of $T P_{i}^{j}$ containing D_{i}^{j} that is closed under the Lie bracket of vector fields. Based on the global Frobenius Theorem [34], either D_{i}^{j} or \bar{D}_{i}^{j} (for a holonomic or nonholonomic joint) identifies a foliation of submanifolds of P_{i}^{j}. The leaf $Q_{i}^{j} \subseteq P_{i}^{j}$ that contains the initial relative pose of B_{i} with respect to $B_{j}, r_{i}^{j}(0)$, is called the relative configuration manifold.

The manifold Q_{i}^{j} is the space of all admissible relative poses considering the joint constraints. The dimension of this manifold, k, is called the number of d.o.f. of a joint, which is greater than or equal to the dimension of the joint distribution for a nonholonomic or holonomic joint, respectively.

One can define the submanifold $Q_{i} \subseteq P_{i}$ as the left composition of Q_{i}^{j} by $r_{j}^{i}(0)$, i.e., $Q_{i}=L_{r_{j}^{i}(0)}\left(Q_{i}^{j}\right)$, where $r_{i}^{j}(0) \circ r_{j}^{i}(0)=e_{j}$ and $r_{j}^{i}(0) \circ r_{i}^{j}(0)=e_{i}$. This submanifold consists of the identity element of P_{i} that corresponds to the $r_{i}^{j}(0) \in Q_{i}^{j}$. A local coordinate chart for a neighbourhood $W \subset Q_{i}$ of e_{i} is a diffeomorphism $\varphi: U \subset \mathbb{R}^{k} \rightarrow W$ such that $\varphi\left([0, \ldots, 0]^{T}\right)=e_{i}$. Therefore, any element $r_{i}^{j} \in L_{r_{i}^{j}(0)}(W) \subseteq Q_{i}^{j}$ can be parameterized by a $q \in U$, which is called the classic joint parameter, through the diffeomorphism $L_{r_{i}^{j}(0)} \circ \varphi$. A velocity vector $v_{i}^{j} \in T_{r_{i}^{j}} Q_{i}^{j}$ can also be identified by a k-dimensional vector $\dot{q} \in T_{q} U \cong \mathbb{R}^{k}$ by the linear isomorphism $\left(d_{\varphi(q)} L_{r_{i}^{j}(0)}\right)\left(d_{q} \varphi\right)$. Note that the coordinate chart φ induces a basis $\left\{\left.\left.\left(\frac{\partial}{\partial q_{b}}\right)\right|_{q} \right\rvert\, b=1, \ldots, k\right\}$ for $T_{\varphi(q)} W$, where q_{b} is the $b^{t h}$ element of q, and in this basis $d_{q} \varphi$ is the identity matrix, $i d_{k}$.

2.1. displacement subgroups

In this subsection, displacement subgroups are defined as a class of holonomic joints, and it is shown that their relative configuration manifolds are indeed connected Lie groups. In Proposition 2.2, the necessary and sufficient conditions for the surjectivity of the exponential map of these relative configuration manifolds are given. Based on this identification of displacement subgroups, a set of new joint parameters, called screw joint parameters, is introduced that can be physically interpreted as the initial classic joint speeds for a screw motion on the corresponding relative configuration manifold. Finally, the relationship between the screw joint parameters and the classic joint parameters is formalized in Theorem 2.3.

For a holonomic joint, define the distribution $D_{j}:=T_{r_{i}^{j}} R_{r_{j}^{i}(0)}\left(D_{i}^{j}\right) \subseteq T P_{j}$. Based on the definition of a holonomic joint, D_{j} is involutive, i.e., its space of sections is closed under the Lie bracket of vector fields on P_{j}. This bracket coincides with the definition of the Lie bracket [35] on $\operatorname{Lie}\left(P_{j}\right)$ if D_{j} is leftinvariant, i.e., $D_{j}\left(r_{j}\right)=T_{e_{j}} L_{r_{j}}\left(D_{j}\left(e_{j}\right)\right), \forall r_{j} \in P_{j}$. We denote the integral manifold of D_{j} containing e_{j} by $Q_{j} \subseteq P_{j}$. Particularly, $D_{j}\left(e_{j}\right)$, which is a linear subspace of $\operatorname{Lie}\left(P_{j}\right)$, is closed under the Lie bracket of $\operatorname{Lie}\left(P_{j}\right)$; hence $T_{e_{j}} Q_{j}=D_{j}\left(e_{j}\right)$ is a Lie sub-algebra of $\operatorname{Lie}\left(P_{j}\right)$.

Proposition 2.1. For a holonomic joint, if D_{j} (defined above) is left-invariant, its integral manifold containing e_{j}, i.e., $Q_{j} \subseteq P_{j}$, is a unique k-dimensional connected Lie subgroup of P_{j} with the Lie algebra $\operatorname{Lie}\left(Q_{j}\right)=D_{j}\left(e_{j}\right)$.
Note that, conversely, for any Lie subgroup $Q_{j}^{\prime} \subseteq P_{j}$, there exists a unique involutive distribution corresponding to a holonomic joint, by left translating $\operatorname{Lie}\left(Q_{j}^{\prime}\right)$ over P_{j} and right composing it with $r_{i}^{j}(0)$.
Definition 1. A holonomic joint is called displacement subgroup if the corresponding distribution D_{j} (defined above) on P_{j} is left-invariant.

Therefore, based on Proposition 2.1 and since $P_{j} \cong S E(3)$, different types of displacement subgroups are identified by the connected Lie subgroups of $S E(3)$, up to conjugation, which are tabulated in Table 1 [20, 25]. From this table, one can observe that the displacement subgroups consist of the six lower kinematic pairs, i.e., revolute, prismatic, helical, cylindrical, planar and spherical joints, and combinations of them. Therefore, in this joint categorization, the relative configuration manifolds of lower kinematic pairs are indeed subgroups of $S E(3)$. There also exist other types of holonomic joints, e.g., universal joint and higher kinematic pairs, which are not included in the category of displacement subgroups. However, the relative configuration manifolds of these joints are not subgroups of $S E(3)$. To parameterize the relative configuration manifolds of these joints one needs a product of exponentials of some elements of a basis for the tangent space of the relative configuration manifold at the identity element.

Proposition 2.2. The group exponential map $\exp : \operatorname{Lie}\left(Q_{j}\right) \rightarrow Q_{j}$ is surjective for all categories of displacement subgroups, except for a three-d.o.f. joint where a helical joint is combined with a two-d.o.f. prismatic joint such that the helical joint axis is perpendicular to the plane of the prismatic joint. This case is considered as two separate joints in the paper.

Since this proposition is proved by coordinate chart assignment, its proof is presented in Section 5.

Definition 2. Let φ be a coordinate chart for a neighbourhood of e_{i}, by Proposition 2.2 any relative configuration manifold Q_{i}^{j} of a displacement subgroup can be parameterized by vectors $s \in \mathbb{R}^{k}$, called screw joint parameters, such that every $r_{i}^{j} \in Q_{i}^{j} \subseteq P_{i}^{j}$ can be expressed as

$$
\begin{equation*}
r_{i}^{j}=\exp \left(\tau_{i}^{j} s\right) \circ r_{i}^{j}(0):=\exp \left(\left(A d_{r_{i}^{j}(0)}\right)\left(d_{e_{i}} \iota\right)\left(d_{0} \varphi\right) s\right) \circ r_{i}^{j}(0) \tag{2}
\end{equation*}
$$

Table 1: Categories of displacement subgroups

Dim. Subgroups of $S E(3) /$ displacement subgroups			
$\begin{aligned} 6 & \begin{array}{l} S E(3)=S O(3) \ltimes \mathbb{R}^{3} \\ \mathrm{free}^{a} \end{array} \end{aligned}$			
$\begin{array}{ll} 4 & S E(2) \times \mathbb{R} \\ & \text { planar+prismatic } b \end{array}$			
$3 \underset{\text { planar }}{S E(2)=S O(2) \ltimes \mathbb{R}^{2}}$	$\begin{aligned} & S O(3) \\ & \text { ball (spherical) } \end{aligned}$	\mathbb{R}^{3} 3-d.o.f. prismatic	$\begin{aligned} & H_{p} \ltimes \mathbb{R}^{2} \\ & \text { 2-d.o.f. prismatic } \\ & + \text { helical }^{c} \end{aligned}$
$\begin{array}{ll} 2 & S O(2) \times \mathbb{R} \\ & \text { cylindrical } \end{array}$	$\begin{aligned} & \mathbb{R}^{2} \\ & 2 \text {-d.o.f. prismatic } \end{aligned}$		
$1 S O(2)$ revolute	\mathbb{R} prismatic	H_{p} helical	
$\begin{array}{ll} 0 & \{e\} \\ & \text { fixed }^{a} \end{array}$			

${ }^{a}$ These two subgroups are the trivial subgroups of $S E(3)$.
${ }^{b}$ The axis of the prismatic joint is always perpendicular to the plane of the planar joint.
${ }^{c}$ The axis of the helical joint is always perpendicular to the plane of the 2-d.o.f. prismatic joint.
${ }^{d}$ The axis of the revolute and prismatic joints are always aligned.
where $\iota: Q_{i} \rightarrow P_{i}$ is the inclusion map.
Therefore, for a relative motion $r_{i}^{j}:[0,1] \rightarrow Q_{i}^{j}$ the relationship between (s, \dot{s}) and (q, \dot{q}), the classic joint parameters and their speed, can be summarized in the following theorem.
Theorem 2.3. For a displacement subgroup, consider a coordinate chart for $Q_{i}, \varphi: U \subset \mathbb{R}^{k} \rightarrow W$ such that $\varphi\left([0, \ldots, 0]^{T}\right)=e_{i}$, and a relative motion $r_{i}^{j}:[0,1] \rightarrow Q_{i}^{j}$ in the neighbourhood $W^{\prime}:=L_{r_{i}^{j}(0)}(W) \subseteq Q_{i}^{j}$ of $r_{i}^{j}(0)$. Then, $r_{i}^{j}(t)=\exp \left(\tau_{i}^{j} s(t)\right) \circ r_{i}^{j}(0)$ such that $s(0)=0$, and

$$
\begin{equation*}
q(s)=\varphi^{-1} \circ \exp \left(d_{0} \varphi s\right) \tag{3a}
\end{equation*}
$$

$$
\dot{q}(s, \dot{s})=Z(s) \dot{s}
$$

$$
\begin{equation*}
:=\left(d_{q(s)} \varphi\right)^{-1} d_{e_{j}} L_{\exp \left(d_{0} \varphi s\right)}\left(\int_{0}^{1} \exp \left(-x a d_{d_{0} \varphi s}\right) d x\right) d_{0} \varphi \dot{s} \tag{3b}
\end{equation*}
$$

where $\forall \eta \in \operatorname{Lie}\left(Q_{j}\right)$ ad $d_{\eta}: \operatorname{Lie}\left(Q_{j}\right) \rightarrow \operatorname{Lie}\left(Q_{j}\right)$ is an endomorphism of $\operatorname{Lie}\left(Q_{j}\right)$ such that $\forall \xi \in \operatorname{Lie}\left(Q_{j}\right) a d_{\eta}(\xi):=[\eta, \xi]$ [35]. The linear map $Z(s)$ is an isomorphism between $T_{0} \mathbb{R}^{k}$ and $T_{q} \mathbb{R}^{k}$ if and only if ad $d_{d_{0} \varphi s}$ has no eigenvalue in $\{2 \pi i \mathbb{Z} \mid i=\sqrt{-1}\}$.

Proof. For the relative motion $r_{i}^{j} \subset W^{\prime}$, let $r_{i}=L_{r_{j}^{i}(0)} \circ r_{i}^{j} \subset W$ be the corresponding curve on Q_{i}. This curve on P_{i} is $\iota \circ \varphi(q)=L_{r_{j}^{i}(0)} \circ R_{r_{i}^{j}(0)} \circ$ $\exp \left(\tau_{i}^{j} s\right)=K_{r_{j}^{i}(0)} \circ \exp \left(\tau_{i}^{j} s\right)$. Based on (2) and the fact that exponential map is compatible with the Lie group homomorphisms [35], in this case conjugation and inclusion map, $\iota \circ \varphi(q)=K_{r_{j}^{i}(0)} \circ K_{r_{i}^{j}(0)} \circ \iota \circ \exp \left(d_{0} \varphi s\right)=\iota \circ$ $\exp \left(d_{0} \varphi s\right)$. Therefore, (3a) is true since the inclusion map ι is an embedding, and φ is a diffeomorphism.

Differentiating (3a) with respect to the curve parameter results in

$$
\dot{q}=\left(d_{\exp \left(d_{0} \varphi s\right)} \varphi^{-1}\right)\left(d_{d_{0} \varphi s} \exp \right) d_{0} \varphi \dot{s}=\left(d_{q} \varphi\right)^{-1}\left(d_{d_{0} \varphi s} \exp \right) d_{0} \varphi \dot{s}
$$

For a Lie group G, it can be shown that the differential of the exponential map at $\xi \in \operatorname{Lie}(G)$ is [36]

$$
\begin{equation*}
d_{\xi} \exp =d_{e} L_{\exp (\xi)} \int_{0}^{1} \exp \left(-x a d_{\xi}\right) d x \tag{4}
\end{equation*}
$$

Hence, substituting (4) and (3a) in the above equation completes the proof for (3b).

In (3b), $Z(s)$ is defined as the composition of several linear operators, and it is invertible if and only if all of the linear operators are invertible. Since left translation is a global diffeomorphism and φ is a coordinate chart, it suffices to check the conditions under which $\Theta:=\int_{0}^{1} \exp \left(-x a d_{d_{0} \varphi s}\right) d x$ is invertible. For $z \in \mathbb{C}$, consider the solution of $\int_{0}^{1} \exp (-x z) d x$ that is equal to the entire holomorphic function $f(z)=\frac{1-\exp (-z)}{z}$ such that $f(0)=1$. Thus, the eigenvalues of Θ are equal to $\frac{1-\exp \left(-\lambda_{i}\right)}{\lambda_{i}}$, where λ_{i} 's are the eigenvalues of $a d_{d_{0} \varphi s}$. The Lie algebra endomorphism Θ is invertible if and only if it has no eigenvalues equal to zero, i.e., $\lambda_{i} \neq 2 \pi i \mathbb{Z}$ where $i=\sqrt{-1}$.

Last part of Theorem 2.3 also gives a condition for the size of the image of the coordinate chart associated with the screw joint parameterization. On $P_{j} \cong S E(3)$ this condition dictates that the coordinate chart cannot include elements of P_{j} corresponding to 2π radian rotation about an axis in A_{j}. Also, note that the integral term in (4) is equal to the identity map for abelian Lie groups, and in general this term corresponds to the non-commutativity of $\xi, \dot{\xi} \in \operatorname{Lie}\left(Q_{j}\right)$ with respect to the Lie bracket.

2.2. Nonholonomic displacement subgroups

A nonholonomic displacement subgroup is a displacement subgroup together with \bar{k} linearly independent constraints in the space of the speeds of the classic joint parameters that are not integrable, i.e., $C(q) \dot{q}=0$, where $C(q) \in \mathbb{R}^{\bar{k} \times k}$, and $C(q)$ is assumed to be a differentiable linear operator on Q_{i}. In other words, for the neighbourhood W of the initial relative pose $r_{i}^{j}(0), \forall q \in U \subset \mathbb{R}^{k} \dot{q} \in T_{q} \mathbb{R}^{k}$ should lie in the $\operatorname{ker}(C(q)) \cong \mathbb{R}^{k-\bar{k}}$ that can be considered as the range of another linear operator $\bar{C}(q)$, i.e., $C(q) \bar{C}(q)=0$. The $\bar{C}(q) \in \mathbb{R}^{k \times(k-\bar{k})}$ is a differentiable linear operator on Q_{i} of constant rank $k-\bar{k}$. This linear operator identifies a smooth non-involutive distribution on Q_{i}^{j} corresponding to the space of all admissible instantaneous relative velocities of the joint. Therefore, an admissible joint speed has the form $\dot{q}=\bar{C}(q) \dot{\bar{q}}$ $\forall \dot{\bar{q}} \in \mathbb{R}^{k-\bar{k}}$. Note that the representation of $\bar{C}(q)$ in the local coordinates is not unique, and it could be chosen such that the admissible classic joint speeds are collocated with the joint control forces and torque to simplify the dynamic analysis. Based on (3b) in Theorem 2.3 and considering the screw joint parameters, the space of all admissible screw joint speeds at s can be identified by

$$
\begin{equation*}
\dot{s}=\Sigma(s) \dot{\bar{s}}:=Z^{-1}(s) \bar{C}(q(s)) \dot{\bar{s}} . \quad \forall \dot{\bar{s}} \in \mathbb{R}^{k-\bar{k}} \tag{5}
\end{equation*}
$$

3. Forward Kinematics

Definition 3. An open-chain multi-body system is a multi-body system $M S(N)$ together with $N-1$ joints between the bodies, such that there exists a unique path between any two bodies of the multi-body system. In an open-chain multi-body system, bodies with only one neighbouring body are called extremities.

In robotics, the relative pose and velocity of the extremities with respect to a base body, labeled as B_{0} in $M S(N)$, is usually of interest. The base body is possibly an inertial observer.

Definition 4. A branch of an open-chain multi-body system is a chain of $m+1 \leq N$ bodies together with m joints that connects B_{0} to an extremity.

In this paper, an open-chain multi-body system is assumed to have n branches with both holonomic and nonholonomic multi-d.o.f. joints. In the branch \mathfrak{i}, joint \mathfrak{j} connects body $B_{\mathfrak{j}-1}$ to $B_{\mathfrak{j}}$. The branch configuration $r_{\mathfrak{i}}$
is defined as the collection of the relative poses of rigid bodies, i.e., $r_{i}:=$ $\left(r_{1}^{0}, \ldots, r_{m_{\mathrm{i}}}^{m_{\mathrm{i}}-1}\right) \in Q_{1}^{0} \times \ldots \times Q_{m_{\mathrm{i}}}^{m_{\mathrm{i}}-1}$.

Index the $\mathfrak{j}^{\text {th }}$ body of the branch \mathfrak{i} by $\mathfrak{j}_{\mathfrak{i}}$. Let $k_{\mathfrak{j}_{\mathfrak{i}}}$ be the number of d.o.f. of the joint \mathfrak{j} in the $\mathfrak{i}^{\text {th }}$ branch, for an initial branch configuration, the set of all screw joint parameters of the branch is denoted by $G_{i}:=$ $\left\{{ }^{\mathfrak{i}} s=\left[{ }^{\mathfrak{i}} s_{1}^{T}, \ldots,{ }^{\mathfrak{i}} s_{m_{\mathfrak{i}}}^{T}\right]^{T} \mid{ }^{\mathfrak{i}} s_{\mathfrak{j}} \in \mathbb{R}^{k_{\mathfrak{j}_{\mathfrak{i}}}} \mathfrak{j}=1, \ldots, m_{\mathfrak{i}}\right\}$. Forward Kinematics of the $\mathfrak{i}^{\text {th }}$ branch of an open-chain multi-body system is a smooth map $F K_{\mathfrak{i}}$ from the set of screw joint parameters of the branch to $P_{m_{i}}^{0}$ for an initial branch configuration that indicates the relative pose of the body $B_{m_{\mathrm{i}}}$ with respect to B_{0}, i.e., $F K_{\mathfrak{i}}: G_{\mathfrak{i}} \rightarrow P_{m_{\mathfrak{i}}}^{0}$ such that $F K_{\mathfrak{i}}\left({ }^{\mathfrak{i}} s\right):=r_{1}^{0} \circ \ldots \circ r_{m_{\mathfrak{i}}}^{m_{\mathfrak{i}}-1}$.

Theorem 3.1. For an open-chain multi-body system $M S(N)$ along with N holonomic and nonholonomic displacement subgroups, the generalized exponential formula for the Forward Kinematics map corresponding to the $\mathfrak{i}^{\mathfrak{t} h}$ branch can be formulated as

$$
\begin{equation*}
F K_{\mathfrak{i}}\left({ }^{\mathfrak{i}} s\right)=\exp \left({ }^{0} \tau_{1}^{0}{ }^{\mathbf{i}} s_{1}\right) \circ \ldots \circ \exp \left({ }^{0} \tau_{m_{\mathrm{i}}}^{m_{\mathrm{i}}-1 \mathfrak{i}} s_{m_{\mathrm{i}}}\right) \circ r_{m_{\mathrm{i}}}^{0}, \tag{6}
\end{equation*}
$$

where ${ }^{0} \tau_{\mathrm{j}}^{\mathrm{j}-1}=\left(A d_{r_{\mathrm{j}}^{0}(0)}\right)\left(d_{e_{\mathrm{j}}} \iota_{\mathrm{j}}\right)\left(d_{0} \varphi_{\mathrm{j}}\right), \iota_{\mathrm{j}}: Q_{\mathrm{j}} \rightarrow P_{\mathrm{j}}$ is the inclusion map, and φ_{j} is a coordinate chart for a neighbourhood of $e_{\mathfrak{j}} \in P_{\mathfrak{j}} \forall \mathfrak{j}=1, \ldots, m_{\mathfrak{i}}$.

Proof. Using the screw joint parameters and the definition of the Forward Kinematics map,

$$
F K_{\mathfrak{i}}\left({ }^{\mathfrak{i}} s\right)=\left(\exp \left(\tau_{1}^{0 \mathfrak{i}} s_{1}\right) \circ r_{1}^{0}(0)\right) \circ \ldots \circ\left(\exp \left(\tau_{m_{\mathrm{i}}}^{m_{\mathrm{i}}-1 \mathrm{i}} s_{m_{\mathrm{i}}}\right) \circ r_{m_{\mathrm{i}}}^{m_{\mathrm{i}}-1}(0)\right) .
$$

Due to the fact that $r_{\mathrm{j}}^{\mathrm{j}-1}(0)=r_{0}^{\mathrm{j}-1}(0) \circ r_{\mathrm{j}}^{0}(0)$, associativity of the composition operator, and compatibility of the exponential map with the conjugation map,

$$
\begin{array}{rll}
F K_{\mathfrak{i}}\left({ }^{\mathfrak{i}} s\right)=\exp \left(\tau_{1}^{0 \mathfrak{i}} s_{1}\right) \circ\left(r_{1}^{0}(0) \circ \exp \left(\tau_{2}^{1 \mathfrak{i}} s_{2}\right) \circ r_{0}^{1}(0)\right) & \circ & \ldots \\
\circ\left(r_{m_{\mathfrak{i}}-1}^{0}(0) \exp \left(\tau_{m_{\mathfrak{i}}}^{m_{i}-1}{ }_{i} s_{m_{\mathrm{i}}}\right) \circ r_{0}^{m_{\mathrm{i}}-1}(0)\right) & \circ & r_{m_{\mathrm{i}}}^{0}(0) \\
=\exp \left(\tau_{1}^{0 \mathfrak{i}} s_{1}\right) \circ \exp \left(A d_{r_{1}^{0}(0)}\left(\tau_{2}^{1 \mathfrak{i}} s_{2}\right)\right) \circ \ldots \circ \exp \left(A d_{r_{m_{\mathfrak{i}}-1}^{0}(0)}\right. & \left.\left(\tau_{m_{\mathrm{i}}}^{m_{\mathrm{i}}-1}{ }^{\mathfrak{i}} s_{m_{\mathrm{i}}}\right)\right) \circ r_{m_{\mathfrak{i}}}^{0}(0) .
\end{array}
$$

Substituting the definition of $\tau_{\mathfrak{j}}^{\mathfrak{j}-1}, \forall \mathfrak{j}=1, \ldots, m_{\mathfrak{i}}$, from (2) completes the proof.

Note that since Forward Kinematics is only a function of the relative poses, nonholonomic constraints do not appear in (6). Forward Kinematics of an
open chain multi-body system, $F K$, is defined as the collection of the relative poses of the extremities with respect to the base body B_{0}, i.e., $F K: G_{1} \times$ $\ldots \times G_{n} \rightarrow P_{m_{1}}^{0} \times \ldots \times P_{m_{n}}^{0}$ such that

$$
F K(s):=\left[\begin{array}{c}
F K_{1}\left({ }^{1} s\right) \\
\vdots \\
F K_{n}\left({ }^{n} s\right)
\end{array}\right]
$$

where $s=\left[{ }^{1} s^{T}, \ldots,{ }^{n} s^{T}\right]^{T}$.
For a serial-link multi-body system $M S(N)$ with one-d.o.f. revolute and/or prismatic joints, $s_{\mathfrak{j}}(t) \forall \mathfrak{j}=1, \ldots, N$ is a real number function, instead of a vector function. Based on the interpretation of the screw joint parameters given in the beginning of Subsection 2.1, $s_{\mathbf{j}}(t)$ is the constant speed of a classic joint parameter during a screw motion from 0 to $q_{\mathfrak{j}}(t)$, in the interval of $[0,1]$. Therefore, its number is equal to the corresponding classic joint parameter. Moreover, since the joint has only one d.o.f., the linear operator ${ }^{0} \tau_{\mathrm{j}}^{\mathrm{j}-1}$ reduces to the joint screw at the initial configuration, which corresponds to the axis of rotation for a revolute joint or the direction of translation for a prismatic joint [2, 25]. Consequently, it can be shown that in this special case the formulation for Forward Kinematics of an open-chain multi-body system is equivalent to the product of exponentials formula suggested by Brockett [1]. This relationship is further illustrated in the case study in Section 6.

4. Differential Kinematics

For the $\mathfrak{i}^{\text {th }}$ branch of an open-chain multi-body system, Differential Kinematics is a linear map that relates the speed of the screw joint parameters of the branch to the instantaneous relative twist of $B_{m_{i}}$ with respect to B_{0} and observed in A_{0}, i.e., expressed in the vector space associated with A_{0}, V_{0}. The corresponding linear operator ${ }^{0} J_{m_{i}}^{0}\left({ }^{i} s\right)$, called the Jacobian, for an initial branch configuration is ${ }^{0} J_{m_{\mathrm{i}}}^{0}\left({ }^{\mathrm{i}} s\right): T_{\mathrm{i}_{s}} G_{\mathrm{i}} \rightarrow \operatorname{Lie}\left(P_{0}\right)$ such that ${ }^{0} J_{m_{\mathrm{i}}}^{0}\left({ }^{\mathrm{i}} s\right):=\left(d_{F K_{\mathrm{i}}\left({ }^{\mathrm{i}}{ }^{\mathrm{s}}\right)} R_{\left(F K_{\mathrm{i}}\left({ }^{\mathrm{i}}{ }^{\mathrm{s}))^{-1}}{ }^{1}\right) d_{\mathrm{i}_{s}} F K_{\mathrm{i}} .\right.}\right.$.
Theorem 4.1. For an open-chain multi-body system $M S(N)$ along with N holonomic displacement subgroups, the generalized exponential formula for
the Jacobian of the branch \mathfrak{i} can be formulated as

$$
\left.\left.\begin{array}{rl}
{ }^{0} J_{m_{\mathfrak{i}}}^{0}\left({ }^{\mathfrak{i}} s\right)= & {\left[(\Delta _ { 1 } { } ^ { 0 } \tau _ { 1 } ^ { 0 }) \quad \left(\operatorname { e x p } \left(a d_{0} \tau_{1}^{0}{ }^{\mathfrak{i}} s_{1}\right.\right.\right.}
\end{array}\right) \Delta_{2}{ }^{0} \tau_{2}^{1}\right) \cdots .
$$

where $\Delta_{\mathrm{j}}:=\int_{0}^{1} \exp \left(x a d_{0 \tau_{\mathrm{j}}^{\mathrm{j}-1}\left(\mathrm{~s}_{\mathfrak{j}}\right)}\right) d x$ is an endomorphism of $\operatorname{Lie}\left(P_{0}\right)$.
Proof. Consider a curve ${ }^{\mathfrak{i}} s:[0,1] \rightarrow G_{\mathfrak{i}}$, such that $t \mapsto^{i} s(t)$, in the set of screw joint parameters of the branch \mathfrak{i}. Let $\gamma_{\mathfrak{j}}(t):=\exp \left({ }^{0} \tau_{\mathfrak{j}}^{\mathfrak{j}-1}{ }^{\mathrm{i}} s_{\mathfrak{j}}(t)\right) \forall \mathfrak{j}=$ $1, \ldots, m_{\mathrm{i}}$. Using (6) and the product rule for Lie groups,

$$
\begin{aligned}
& \left.\frac{d}{d t} F K_{\mathfrak{i}}{ }^{\mathfrak{i}}{ }^{1} s(t)\right)=d_{\mathrm{i}^{\mathrm{s}}(t)} F K_{\mathfrak{i}}{ }^{\mathrm{i}}{ }^{\mathrm{s}} \dot{ }(t)=\left(d_{\gamma_{1}} R_{\gamma_{2} \circ \ldots \circ \gamma_{m_{\mathrm{i}} \circ} \circ r_{m_{\mathrm{i}}}^{0}(0)}\right) \dot{\gamma}_{1} \\
& +\left(d_{\gamma_{2} \circ \ldots \circ \gamma_{m_{i}} \circ r_{m_{i}}^{0}(0)} L_{\gamma_{1}}\right)\left(d_{\gamma_{2}} R_{\gamma_{3} \circ \ldots \circ \gamma_{m_{\mathrm{i}}} \circ r_{m_{\mathrm{i}}}^{0}(0)}\right) \dot{\gamma}_{2}+\ldots \\
& +\left(d_{\gamma_{m_{i}} \circ r_{m_{i}}^{0}(0)} L_{\gamma_{1} 0 \ldots \circ \gamma_{m_{i}-1}}\right)\left(d_{\gamma_{m_{i}}} R_{r_{m_{i}}^{0}(0)}\right) \dot{\gamma}_{m_{i}} .
\end{aligned}
$$

By the definition of the Differential Kinematics map and rearranging the differential of the right and left composition maps,

$$
\begin{align*}
{ }^{0} J_{m_{\mathrm{i}}}^{0}\left({ }^{\mathrm{i}} s\right)^{\mathfrak{i}} \dot{s} & =\left(d_{\gamma_{1}} R_{\gamma_{1}^{-1}}\right) \dot{\gamma}_{1}+\left(d_{\gamma_{1} \circ \gamma_{2}} R_{\left(\gamma_{1} \circ \gamma_{2}\right)^{-1}}\right)\left(d_{\gamma_{2}} L_{\gamma_{1}}\right) \dot{\gamma}_{2}+\ldots \\
& +\left(d_{\gamma_{1} \circ \ldots \circ \gamma_{m_{\mathrm{i}}}} R_{\left(\gamma_{1} \circ \ldots \circ \gamma_{m_{\mathrm{i}}}\right)^{-1}}\right)\left(d_{\gamma_{m_{\mathrm{i}}}} L_{\gamma_{1} \circ \ldots \circ \gamma_{m_{i}-1}}\right) \dot{\gamma}_{m_{\mathrm{i}}} \tag{8}
\end{align*}
$$

Now, use (4) for the exponential map exp : $\operatorname{Lie}\left(P_{0}\right) \rightarrow P_{0}$, and the equality of operators [35]

$$
\begin{equation*}
A d_{\exp (\xi)}=\exp \left(a d_{\xi}\right), \quad \forall \xi \in \operatorname{Lie}\left(P_{0}\right) \tag{9}
\end{equation*}
$$

to calculate $\dot{\gamma}_{\mathfrak{j}}(t)=\left(d_{e_{0}} L_{\gamma_{\mathfrak{j}}}\right)\left(\int_{0}^{1} A d_{\exp \left(-x^{0} \tau_{\mathrm{j}}^{\mathrm{j}-1} \mathrm{i}_{\mathrm{s}_{\mathrm{j}}}\right)} d x\right){ }^{0} \tau_{\mathrm{j}}^{\mathfrak{j}-1 \mathfrak{i}^{\mathfrak{i}}} \dot{s}_{\mathfrak{j}}(t)$. Substitute $\dot{\gamma}_{\mathrm{j}}$ and use the identity $A d_{r}:=d_{r} R_{r-1} d_{e_{0}} L_{r} \forall r \in P_{0}$ in (8) to achieve

$$
\begin{align*}
& { }^{0} J_{m_{\mathfrak{i}}}^{0}\left({ }^{\mathfrak{i}} s\right)^{\mathfrak{i}} \dot{s}=A d_{\gamma_{1}}\left(\int_{0}^{1} A d_{\exp \left(-x^{0} \tau_{1}^{0}{ }^{\mathrm{i}} s_{1}\right)} d x\right){ }^{0} \tau_{1}^{0} \dot{s}_{1}+\ldots \\
& +A d_{\gamma_{1} \circ \ldots \circ \gamma_{m_{i}}}\left(\int_{0}^{1} A d_{\exp \left(-x^{0} \tau_{m_{\mathrm{i}}}^{m_{\mathrm{i}}-1} \mathfrak{i}_{\left.s_{m_{\mathrm{i}}}\right)} d x\right)^{0} \tau_{m_{\mathrm{i}}}^{m_{\mathrm{i}}-1 \mathfrak{i}^{\mathrm{i}}} \dot{s}_{m_{\mathrm{i}}} .} .\right. \tag{10}
\end{align*}
$$

Define $\Delta_{\mathfrak{j}} \forall \mathfrak{j}=1, \ldots, m_{\mathfrak{i}}$ as

$$
\begin{aligned}
\Delta_{\mathrm{j}}:=A d_{\gamma_{\mathrm{j}}}\left(\int_{0}^{1} A d_{\exp \left(-x^{0} \tau_{\mathrm{j}}^{\mathrm{j}-1} \mathrm{i}_{\left.s_{\mathrm{j}}\right)}\right.} d x\right) & =\int_{0}^{1} A d_{\exp \left((1-x)^{0} \tau_{\mathrm{j}}^{\mathrm{j}-1} \mathfrak{i}_{s_{\mathfrak{j}}}\right.} d x \\
& =\int_{0}^{1} \exp \left(x a d_{0 \tau_{\mathrm{j}}^{\mathrm{j}}-1 \mathrm{i}_{s_{\mathrm{j}}}}\right) d x
\end{aligned}
$$

where the first equality holds since $\left[x^{0} \tau_{\mathfrak{j}}^{\mathfrak{j}-1 \mathfrak{i}} s_{\mathfrak{j}},{ }^{0} \tau_{\mathfrak{j}}^{\mathfrak{j}-1}{ }^{\mathfrak{i}} s_{\mathrm{j}}\right]=0$, and the second equality is the consequence of a change of variable and using (9). Finally, by substituting Δ_{j} in (10) and employing the equality of operators in (9) one can show the desired expression for the Jacobian in (7).

For a serial-link multi-body system with one-d.o.f. revolute and/or prismatic joints, since $s_{\mathbf{j}}(t)$ is a real number function, ${ }^{0} \tau_{\mathfrak{j}}^{\mathbf{j}-1} s_{\mathfrak{j}}(t) \in \operatorname{Lie}\left(P_{0}\right)$ and ${ }^{0} \tau_{\mathrm{j}}^{\mathrm{j}-1} \dot{s}_{\mathrm{j}}(t) \in \operatorname{Lie}\left(P_{0}\right)$ commute, i.e., $\left[{ }^{0} \tau_{\mathrm{j}}^{\mathrm{j}-1} s_{\mathrm{j}},{ }^{0} \tau_{\mathrm{j}}^{\mathrm{j}-1} \dot{s}_{\mathrm{j}}\right]=0$, and hence Δ_{j} becomes the identity map. In this case, the developed formulation simplifies to the existing product of exponentials formula for Differential Kinematics $[2,25]$.

Based on the definition of the Differential Kinematics map, ${ }^{0} J_{m_{\mathrm{i}}}^{0}\left({ }^{\mathrm{i}} s\right)^{\mathrm{i}} \dot{s}$ is the twist of $B_{m_{\mathrm{i}}}$ with respect to B_{0} and expressed in A_{0}. This twist can be viewed in the affine space attached to the body \mathfrak{j} of the branch $\mathfrak{i}, A_{\mathfrak{j}_{\mathfrak{i}}}$, using the Adjoint operator, i.e.,

$$
\begin{equation*}
\left.{ }^{\mathrm{j}_{\mathrm{i}}} J_{m_{\mathrm{i}}}^{0}\left({ }^{\mathrm{i}} s\right)=A d_{r_{0}^{\mathrm{j}}\left({ }^{(}{ }^{\mathrm{i}} s\right)}{ }^{0} J_{m_{\mathrm{i}}}^{0}{ }^{\mathrm{i}} s\right), \tag{11}
\end{equation*}
$$

where according to (6) $r_{\mathrm{j}_{\mathrm{i}}}^{0}\left({ }^{\mathfrak{i}} s\right)=\exp \left({ }^{0} \tau_{1}^{0}{ }^{\mathfrak{i}} s_{1}\right) \circ \ldots \circ \exp \left({ }^{0} \tau_{\mathrm{j}}^{\mathfrak{j}-1}{ }^{\mathfrak{i}} s_{\mathfrak{j}}\right) \circ r_{\mathrm{j}_{\mathrm{i}}}^{0}(0)$. In addition, following the same calculations performed in the proof of Theorem 4.1, the Jacobian for the instantaneous relative twist of the body B_{j} with respect to $B_{\mathfrak{l}}$ in the $\mathfrak{i}^{\text {th }}$ branch of $M S(N)$ and observed in A_{0}, i.e., $\left.{ }^{0} J_{\mathfrak{j}}^{\mathfrak{l}}{ }^{\mathfrak{i}} s\right)$ $\mathfrak{j}>\mathfrak{l}>0$, can be determined to be the truncated version of the Jacobian in (7):

$$
\begin{align*}
& \left.{ }^{0} J_{\mathfrak{j}}^{\mathfrak{l}}{ }^{(}{ }^{\mathfrak{i}} s\right)=\left[\exp \left(a d_{0} \tau_{1}^{0}{ }^{i} s_{1}\right) \ldots \exp \left(a d_{0} \tau_{\mathfrak{l}}^{\mathfrak{l}-1}{ }^{i} s_{\mathfrak{l}}\right) \Delta_{\mathfrak{l + 1}}{ }^{0} \tau_{\mathfrak{l}+1}^{\mathfrak{l}} \quad \cdots\right. \\
& \left.\exp \left(a d_{\tau_{1}^{0} \mathrm{i}_{s_{1}}}\right) \ldots \exp \left(a d_{0_{\tau_{j-1}^{\mathrm{j}-2}}} \mathrm{i}_{\mathrm{s}_{\mathrm{j}-1}}\right) \Delta_{\mathrm{j}}^{0} \tau_{\mathrm{j}}^{\mathrm{j}-1}\right] . \tag{12}
\end{align*}
$$

In order to include the nonholonomic constraints in the Jacobian of the $\mathfrak{i}^{\text {th }}$ branch of $M S(N)$, one can define admissible screw joint speeds according
to (5). Therefore, the Jacobian in (7) can be modified to introduce the modified Jacobian for the $\mathfrak{i}^{\text {th }}$ branch of a multi-body system consisting of both holonomic and nonholonomic joints.

$$
\begin{equation*}
{ }^{0} \bar{J}_{m_{\mathrm{i}}}^{0}\left({ }^{\mathrm{i}} s\right):={ }^{0} J_{m_{\mathrm{i}}}^{0}\left({ }^{\mathrm{i}} s\right) \operatorname{diag}\left(\Sigma_{1}\left({ }^{(} s_{1}\right), \cdots, \Sigma_{m_{\mathrm{i}}}\left({ }^{\mathrm{i}} s_{m_{\mathrm{i}}}\right)\right) ; \tag{13}
\end{equation*}
$$

where $\operatorname{diag}\left(\Sigma_{1}\left({ }^{i} s_{1}\right), \cdots, \Sigma_{m_{\mathrm{i}}}\left({ }^{i} s_{m_{\mathrm{i}}}\right)\right)$ is the block diagonal matrix of its entries, and $\Sigma_{\mathfrak{j}}=i d_{k_{\mathrm{j}_{\mathrm{i}}}}$ for a holonomic joint. The modified Jacobian is a linear operator from the space of all admissible screw joint speeds, i.e., $\bar{G}_{\mathrm{i}}:=\left\{{ }^{\mathrm{i}} \dot{\bar{s}}=\left.\left[\dot{\bar{s}}_{1}^{T}, \ldots,,^{\mathrm{i}} \dot{\bar{s}}_{m_{\mathrm{i}}}^{T}\right]^{T}\right|^{\mathrm{i}} \dot{\bar{s}}_{\mathrm{j}} \in \mathbb{R}^{k_{\mathrm{i}}-\bar{k}_{\mathrm{j}_{\mathrm{i}}}}, \mathfrak{j}=1, \ldots, m_{\mathrm{i}}\right\}$, to $\operatorname{Lie}\left(P_{0}\right)$. For an open-chain multi-body system $M S(N)$, the modified Jacobian is defined as the collection of the modified Jacobians of the extremities with respect to the base body and observed in A_{0}, i.e., $\bar{J}(s) \dot{\bar{s}}:=\operatorname{diag}\left({ }^{0} \bar{J}_{m_{1}}^{0}\left({ }^{1} s\right), \ldots,{ }^{0} \bar{J}_{m_{n}}^{0}\left({ }^{n} s\right)\right) \dot{\bar{s}}$, where $\dot{\bar{s}}=\left[{ }^{1} \dot{\bar{s}}^{T}, \ldots,{ }^{n} \dot{\bar{s}}^{T}\right]^{T}$.

5. Coordinate Assignment

At the computational level, consider a base point O_{i} for the affine space A_{i} in a multi-body system $M S(N)$. Every point in this affine space can now be realized by a vector in $V_{i} \cong \mathbb{R}^{3}$ through the action of $\left(V_{i},+\right)$ on $A_{i}[37]$. Therefore, any relative pose $r_{i}^{j} \in P_{i}^{j}$ can be represented by an orientation preserving isometry, $H_{i}^{j}: V_{i} \rightarrow V_{j}$ such that $H_{i}^{j}:=\sigma_{O j} \circ r_{i}^{j} \circ\left(\sigma_{O_{i}}\right)^{-1} \in S E(3)$, where $\sigma_{O_{l}}: V_{l} \rightarrow A_{l}$ for $l=i, j$ is the map induced by the vector space action of V_{l} on A_{l}. A matrix representation of $S E(3)$ is the group of orientation preserving linear isometries of \mathbb{R}^{4} that preserve the plane $x_{4}=1$ [37], i.e.,

$$
S E(3) \cong\left\{\left.H_{i}^{j}=\left[\begin{array}{cc}
R_{i}^{j} & p_{i}^{j} \\
0_{1 \times 3} & 1
\end{array}\right] \right\rvert\, R_{i}^{j} \in S O(3), p_{i}^{j} \in \mathbb{R}^{3}\right\}
$$

where R_{i}^{j} is the rotation matrix whose columns are the elements of a basis for V_{i} expressed in terms of a basis for V_{j} and p_{i}^{j} is the position of the point $r_{i}^{j}\left(O_{i}\right)$ from O_{j} and expressed in V_{j}. In this representation, the Lie algebra of $S E(3)$ is denoted by

$$
s e(3) \cong\left\{\left.T_{i}^{j}=\left[\begin{array}{cc}
\tilde{\omega}_{i}^{j} & w_{i}^{j} \\
0_{1 \times 3} & 0
\end{array}\right] \right\rvert\, \tilde{\omega}_{i}^{j} \in \operatorname{so}(3), w_{i}^{j} \in \mathbb{R}^{3}\right\}
$$

where w_{i}^{j} is the relative velocity of the point $r_{j}^{i}\left(O_{j}\right)$ with respect to O_{j} and expressed in V_{j}. The element $\tilde{\omega}_{i}^{j} \in s o(3)$ can be identified by the column
matrix ω_{i}^{j} that is the relative angular velocity vector of B_{i} with respect to B_{j} and expressed in V_{j}.

By choosing a basis for se(3) as

$$
\begin{gathered}
\left\{e_{1}:=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], e_{2}:=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], e_{3}:=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right],\right. \\
\left.e_{4}:=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], e_{5}:=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], e_{6}:=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right\},
\end{gathered}
$$

and using the propositions presented in the sequel, one can perform the computations for Forward and Differential Kinematics in the matrix representation of $S E(3)$.

Proposition 5.1. For any element $\xi=\left[w^{T}, \omega^{T}\right]^{T} \in \operatorname{se}(3)$, where $\omega, w \in$ $\mathbb{R}^{3}, \omega \neq 0$, expressed in the basis $\left\{e_{1}, \ldots, e_{6}\right\}$,

$$
\exp (\xi)=\left[\begin{array}{cc}
\exp (\tilde{\omega}) & \left(i d_{3}-\exp (\tilde{\omega})\right) \frac{\tilde{\omega} w}{\|\omega\|^{2}}+\frac{\omega \omega^{T} w}{\|\omega\|^{2}} \tag{14}\\
0_{1 \times 3} & 1
\end{array}\right],
$$

where $\|\cdot\|$ is the Euclidean norm of \mathbb{R}^{3} and $\exp (\tilde{\omega})$ is evaluated using the Rodrigues' formula for the exponential of skew-symmetric matrices,

$$
\begin{equation*}
\exp (\tilde{\omega})=i d_{3}+\frac{\tilde{\omega}}{\|\omega\|} \sin (\|\omega\|)+\frac{\tilde{\omega}^{2}}{\|\omega\|^{2}}(1-\cos (\|\omega\|)) \tag{15}
\end{equation*}
$$

When $\omega=0, \exp (\xi)=\left[\begin{array}{cc}i d_{3} & w \\ 0_{1 \times 3} & 1\end{array}\right]$.
Proof. See Appendix A in [2].
Now, using the matrix representation of $S E(3)$ and the above proposition, the proof for Proposition 2.2 is presented.

Proof. (Proposition 2.2) In the matrix representation, the exponential map for a connected Lie subgroup of $S E(3)$ coincides with the restriction of the matrix exponential to the Lie sub-algebra corresponding to the subgroup.

Up to conjugation, all of the connected Lie subgroups of $S E(3)$ are listed in Table 1. Hence, to prove this proposition, it suffices to check the surjectivity of the exponential map for the matrix representation of each connected Lie subgroup, individually. Consider the following two lemmas.
Lemma 5.2. The exponential map of a compact, connected Lie group is surjective [36].
Lemma 5.3. For a vector space $\mathcal{V}, \operatorname{Lie}(\mathcal{V})=\mathcal{V}$ with zero Lie bracket, and the exponential map is the identity map, i.e., $\exp (v)=v, \forall v \in \mathcal{V}$.
Based on these lemmas and Chasles' Theorem [2], immediately the exponential maps corresponding to the subgroups $S O(2), S O(3), \mathbb{R}, \mathbb{R}^{2}, \mathbb{R}^{3}$ and $S E(3)$ are surjective. In addition, since $S O(2) \times \mathbb{R}$ is the direct product of two subgroups with surjective exponential maps, its own exponential map is also surjective. The subgroup H_{p} with $p \neq 0$ is a one dimensional subgroup of $S E(3)$ that can be represented as

$$
H_{p} \cong\left\{\left.\left[\begin{array}{cccc}
\cos (\theta) & -\sin (\theta) & 0 & 0 \tag{16}\\
\sin (\theta) & \cos (\theta) & 0 & 0 \\
0 & 0 & 1 & p \theta \\
0 & 0 & 0 & 1
\end{array}\right] \right\rvert\, \theta \in \mathbb{R}\right\}
$$

It is easy to check that the Lie algebra of H_{p} is

$$
\operatorname{Lie}\left(H_{p}\right)=T_{i d} H_{p}=\operatorname{span}_{\mathbb{R}}\left\{e_{p}:=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \tag{17}\\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & p \\
0 & 0 & 0 & 0
\end{array}\right]\right\}
$$

Therefore, based on (14),

$$
\forall H=\left[\begin{array}{cccc}
h_{11} & h_{12} & 0 & 0 \\
h_{21} & h_{22} & 0 & 0 \\
0 & 0 & 1 & h_{34} \\
0 & 0 & 0 & 1
\end{array}\right] \in H_{p}
$$

there exists $\theta=h_{34} / p$ such that $\exp \left(\theta e_{p}\right)=H$. For

$$
S E(2)=S O(2) \ltimes \mathbb{R}^{2} \cong\left\{\left.\left[\begin{array}{cccc}
\cos (\theta) & -\sin (\theta) & 0 & x \tag{18}\\
\sin (\theta) & \cos (\theta) & 0 & y \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \right\rvert\, \theta \in \mathbb{S}^{1}, x, y \in \mathbb{R}\right\}
$$

the corresponding Lie algebra is $\operatorname{span}_{\mathbb{R}}\left\{e_{1}, e_{2}, e_{6}\right\}$. Based on Lemma 5.3,

$$
\forall H=\left[\begin{array}{cccc}
1 & 0 & 0 & h_{14} \\
0 & 1 & 0 & h_{24} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \in S E(2)
$$

$\exp \left(h_{14} e_{1}+h_{24} e_{2}\right)=H$, and otherwise for a general element of $S E(2)$,

$$
H=\left[\begin{array}{cccc}
h_{11} & h_{12} & 0 & h_{14} \\
h_{21} & h_{22} & 0 & h_{24} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \in S E(2)
$$

there exists $\theta=\operatorname{atan} 2\left(h_{21}, h_{11}\right)$, where, based on (14), one has

$$
\begin{align*}
& \exp \left(\theta e_{6}+\left(\frac{\theta h_{24}}{2}+\frac{\theta h_{14}}{2} \cot \left(\frac{\theta}{2}\right)\right) e_{1}+\left(\frac{\theta h_{24}}{2} \cot \left(\frac{\theta}{2}\right)-\frac{\theta h_{14}}{2}\right) e_{2}\right) \\
& =\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]} \\
{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]}
\end{array}\right], \tag{19}
\end{align*}
$$

where

$$
\begin{align*}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right] } & =\left[\begin{array}{ccc}
1-\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & 1-\cos (\theta) & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -\frac{1}{\theta} & 0 \\
\frac{1}{\theta} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\frac{\theta h_{24}}{2}+\frac{\theta h_{14}}{2} \cot \left(\frac{\theta}{2}\right) \\
\frac{\theta h_{24}}{2} \cot \left(\frac{\theta}{2}\right)-\frac{\theta h_{14}}{2} \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
h_{14} \\
h_{24} \\
0^{\prime}
\end{array}\right] . \tag{20}
\end{align*}
$$

Hence, the exponential map of $S E(2)$ is surjective, and since $S E(2) \times \mathbb{R}$ is the direct product of two subgroups with surjective exponential maps, its own exponential map is also surjective.

In the case of

$$
H_{p} \ltimes \mathbb{R}^{2} \cong\left\{\left.\left[\begin{array}{cccc}
\cos (\theta) & -\sin (\theta) & 0 & x \tag{21}\\
\sin (\theta) & \cos (\theta) & 0 & y \\
0 & 0 & 1 & p \theta \\
0 & 0 & 0 & 1
\end{array}\right] \right\rvert\, \theta, x, y \in \mathbb{R}\right\}
$$

the Lie algebra is equal to $\operatorname{span}_{\mathbb{R}}\left\{e_{p}, e_{1}, e_{2}\right\}$. If $\theta \in\{2 \pi \mathbb{Z}\} \backslash\{0\}$, then

$$
H=\left[\begin{array}{cccc}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & p \theta \\
0 & 0 & 0 & 1
\end{array}\right] \in H_{p} \ltimes \mathbb{R}^{2}
$$

and there does not exist any $\tau \in \operatorname{span}_{\mathbb{R}}\left\{e_{p}, e_{1}, e_{2}\right\}$ such that $\exp (\tau)=H$. Therefore, for $H_{p} \ltimes \mathbb{R}^{2}$ the exponential map is not surjective.

The following proposition presents closed form formulae for $\exp \left(a d_{x i}\right)$, for any $\xi \in s e(3)$, and its integral that are used in the Differential Kinematics of open-chain multi-body systems with displacement subgroups.

Proposition 5.4. For any element $\xi=\left[w^{T}, \omega^{T}\right]^{T} \in$ se(3), where $\omega, w \in \mathbb{R}^{3}$ and $\omega \neq 0$, expressed in the basis $\left\{e_{1}, \ldots, e_{6}\right\}$,

$$
\begin{gather*}
a d_{\xi}=\left[\begin{array}{cc}
\tilde{\omega} & \tilde{w} \\
03 \times 3 & \tilde{\omega}
\end{array}\right] \\
\exp \left(a d_{\xi}\right)=\left[\begin{array}{cc}
\exp (\tilde{\omega}) & \frac{1}{\|\omega\|^{2}}[[\tilde{\omega}, \tilde{w}], \exp (\tilde{\omega})]+\left.\frac{\partial}{\partial \mu}\right|_{\mu=1} \exp \left(\frac{\tilde{\omega} \omega^{T} w}{\|\omega\|^{2}} \mu\right) \\
0_{3 \times 3} & \exp (\tilde{\omega})
\end{array}\right] \tag{22}
\end{gather*}
$$

where $[\cdot, \cdot]$ is the matrix commutator, $\exp (\tilde{\omega})$ is evaluated using (15) and,

$$
\int_{0}^{1} \exp \left(x a d_{\xi}\right) d x=\left[\begin{array}{cc}
M_{1} & M_{2} \tag{23}\\
0_{3 \times 3} & M_{1}
\end{array}\right]
$$

where,
$M_{1}=i d_{3}+\frac{\tilde{\omega}}{\|\omega\|^{2}}(1-\cos (\|\omega\|))+\frac{\tilde{\omega}^{2}}{\|\omega\|^{2}}\left(1-\frac{1}{\|\omega\|} \sin (\|\omega\|)\right)$, and
$M_{2}=\frac{1}{\|\omega\|^{2}}\left[[\tilde{\omega}, \tilde{w}], M_{1}\right]-\frac{\tilde{\omega}}{\omega^{T} w}+\left(\frac{\tilde{\omega}}{\omega^{T} w}-\frac{\tilde{\omega}^{2}}{\|\omega\|^{2}}\right) \cos \left(\frac{\omega^{T} w}{\|\omega\|}\right)+\left(\frac{\tilde{\omega}}{\|\omega\|}+\frac{\tilde{\omega}^{2}}{\|\omega\| \omega^{T} w}\right) \sin \left(\frac{\omega^{T} w}{\|\omega\|}\right)$.
For the case $\omega=0$,

$$
\exp \left(a d_{\xi}\right)=\left[\begin{array}{cc}
i d_{3} & \tilde{w} \\
0_{3 \times 3} & i d_{3}
\end{array}\right]
$$

and

$$
\int_{0}^{1} \exp \left(x a d_{\xi}\right) d x=\left[\begin{array}{cc}
i d_{3} & \tilde{w} / 2 \\
0_{3 \times 3} & i d_{3}
\end{array}\right] .
$$

Proof. Case 1) When $\omega=0$,

$$
a d_{\xi}=\left[\begin{array}{cc}
0_{3 \times 3} & \tilde{w} \\
0_{3 \times 3} & 0_{3 \times 3}
\end{array}\right]
$$

Using the Taylor expansion of the matrix exponential, $\exp \left(a d_{\xi}\right)=\sum_{i=0}^{\infty}\left(a d_{\xi}^{i} / i!\right)$, and the fact that $a d_{\xi}$ is nilpotent of degree two, i.e., $a d_{\xi}^{i}=0$ for $i \geq 2$, it is easy to show the result.

Case 2) To prove the result for $\omega \neq 0$, the following lemma is required.
Lemma 5.5. $\forall \omega, w \in \mathbb{R}^{3}$ and $\tilde{\omega} \in \operatorname{so}(3)$,
(i) $\tilde{\omega}^{2}=\omega \omega^{T}-\|\omega\|^{2} i d_{3}[2]$,
(ii) $\tilde{\omega}^{3}=-\|\omega\|^{2} \tilde{\omega}[2]$,
(iii) $\tilde{\omega} w=-\tilde{w} \omega=\omega \times w$,
(iv) $\widetilde{\omega w}=[\tilde{\omega}, \tilde{w}]$.

The proof for the above lemma is a straight forward computation. Now, consider the Adjoint operator corresponding to the element $H, A d_{H}$, for

$$
H=\left[\begin{array}{cc}
i d_{3} & \frac{-\tilde{\omega} w}{\|\omega\|^{2}} \\
0_{1 \times 3} & 1
\end{array}\right] \in S E(3),
$$

and its action on $\xi \in \operatorname{se}(3)$. Based on Lemma 5.5,

$$
\begin{aligned}
\xi^{\prime}: & =A d_{H} \xi=\left[\begin{array}{cc}
i d_{3} & -\frac{[\tilde{\omega}, \tilde{w}]}{\|\omega\|^{2}} \\
0_{3 \times 3} & i d_{3}
\end{array}\right]\left[\begin{array}{l}
w \\
\omega
\end{array}\right]=\left[\begin{array}{c}
w-\tilde{\omega} \tilde{w} \frac{\omega}{\|\omega\|^{2}}+\tilde{w} \tilde{\omega} \frac{\omega}{\omega} \frac{\| \|^{2}}{\omega}
\end{array}\right] \\
& =\left[\begin{array}{c}
w+\left(\omega \omega^{T}-\|\omega\|^{2} i d_{3}\right) \frac{w}{\|\omega\|^{2}} \\
\omega
\end{array}\right]\left[\begin{array}{c}
\frac{\left(\omega^{T} w\right) \omega}{\|\omega\|^{2}} \\
\omega
\end{array}\right]=:\left[\begin{array}{c}
h \omega \\
\omega
\end{array}\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\exp \left(a d_{\xi^{\prime}}\right)=\sum_{i=0}^{\infty} \frac{a d_{\xi^{\prime}}^{i}}{i!}=\sum_{i=0}^{\infty} \frac{1}{i!}\left[\begin{array}{cc}
\tilde{\omega}^{i} & i(h \tilde{\omega})^{i} \\
0_{3 \times 3} & \tilde{\omega}^{i}
\end{array}\right] & =\left[\begin{array}{cc}
\exp (\tilde{\omega}) & \sum_{i=1}^{\infty} \frac{(h \tilde{\omega})^{i}}{(i-1)!} \\
0_{3 \times 3} & \exp (\tilde{\omega})
\end{array}\right] \\
& =\left[\begin{array}{cc}
\exp (\tilde{\omega}) & \left.\frac{\partial}{\partial \mu}\right|_{\mu=1} \exp (h \tilde{\omega} \mu) \\
0_{3 \times 3} & \exp (\tilde{\omega})
\end{array}\right] .
\end{aligned}
$$

According to the definition of the adjoint operator, one has the equality of operators $a d_{\xi}=A d_{H^{-1}} a d_{\xi^{\prime}} A d_{H}$. Based on this equality and the facts that $A d_{H^{-1}}=\left(A d_{H}\right)^{-1}$ and $\exp \left(A B A^{-1}\right)=A \exp (B) A^{-1}, \forall A, B \in \mathbb{R}^{n \times n}$ and A invertible, $\exp \left(a d_{\xi}\right)=A d_{H^{-1}} \exp \left(a d_{\xi^{\prime}}\right) A d_{H}$. A straightforward calculation proves the first part of the proposition. For the second part of the proposition,

$$
\begin{aligned}
& \int_{0}^{1} \exp \left(x a d_{\xi}\right) d x \\
& =\int_{0}^{1}\left[\begin{array}{cc}
\exp (x \tilde{\omega}) & \frac{1}{x^{2}\|\omega\|^{2}}[[x \tilde{\omega}, x \tilde{\omega}], \exp (x \tilde{\omega})]+\left.\frac{\partial}{\partial \mu}\right|_{\mu=1} \exp (x h \tilde{\omega} \mu) \\
0_{3 \times 3} & \exp (x \tilde{\omega})
\end{array}\right] d x .
\end{aligned}
$$

Since the matrix commutator is a bilinear operator, and the integral operator and partial derivative can commute,

$$
\begin{aligned}
& \int_{0}^{1} \exp \left(x a d_{\xi}\right) d x \\
& =\left[\begin{array}{cc}
\int_{0}^{1} \exp (x \tilde{\omega}) d x & \frac{1}{\|\omega\|^{2}}\left[[\tilde{\omega}, \tilde{\omega}], \int_{0}^{1} \exp (s \tilde{\omega}) d x\right]+\left.\frac{\partial}{\partial \mu}\right|_{\mu=1} \int_{0}^{1} \exp (x h \tilde{\omega} \mu) d x \\
0_{3 \times 3} & \int_{0}^{1} \exp (x \tilde{\omega}) d x
\end{array}\right] .
\end{aligned}
$$

Using (15) and substituting $h=\frac{\omega^{T} w}{\|\omega\|^{2}}$, one can show the second part of the proposition.

6. Case Study

In this section, the kinematic analysis of a mobile manipulator moving on a spacecraft is performed to elaborate the computational aspects of the proposed formulation for Forward and Differential Kinematics of open-chain multi-body systems. The spacecraft can be considered as a six-d.o.f. moving base for the mobile manipulator that is shown in Figure 1. The multi-body system $M S(6)=\left\{\left(B_{i}, A_{i}\right) \mid i=0, \ldots, 6, B_{i} \subset A_{i}\right\}$ consists of two branches and six joints. The first branch consists of B_{0} to B_{5}. The second branch contains B_{6} and joint six is its last joint. Joint one is a free joint, the second joint is a nonholonomic three-d.o.f. planar joint, the next joint is a three-d.o.f. spherical joint and the rest of the joints are one-d.o.f. revolute joints. The coordinate frames assigned to A_{0}, \ldots, A_{6} at the initial configuration are shown in Figure 2. In the sequel, the joint parameters are specified, and Forward and Differential Kinematics maps of $M S(6)$ are determined. Note that, in the following, a basis for V_{j} at the initial configuration is denoted by $\left\{\hat{X}_{\mathrm{j}}, \hat{Y}_{\mathrm{j}}, \hat{Z}_{\mathrm{j}}\right\}$,

Figure 1: A mobile manipulator on a six d.o.f. moving base
and the linear operator ${ }^{0} \tau_{\mathrm{j}}^{\mathrm{j}-1}$ in the chosen coordinates is represented by the matrix ${ }^{0} T_{j}^{j-1}$.

6.1. Forward Kinematics

The first joint is a six-d.o.f. holonomic joint between B_{0} and B_{1}. The classic joint parameters are $q_{1}=\left[x_{1}, y_{1}, z_{1}, \theta_{1, x}, \theta_{1, y}, \theta_{1, z}\right]^{T}$, where $\left[x_{1}, y_{1}, z_{1}\right]^{T}$ is the position of $H_{1}^{0}(t)\left(O_{1}\right)$ with respect to $H_{1}^{0}(0)\left(O_{1}\right)$ and expressed in V_{0}, and $\left[\theta_{1, x}, \theta_{1, y}, \theta_{1, z}\right]^{T}$ is the rotation angles of V_{1} with respect to the axes of V_{1} at the initial configuration. Therefore, the local coordinate chart φ_{1} for Q_{1} is

$$
\varphi_{1}\left(q_{1}\right)=\left[\begin{array}{cc}
R\left(\theta_{1, x}, \hat{X}_{1}\right) R\left(\theta_{1, y}, \hat{Y}_{1}\right) R\left(\theta_{1, z}, \hat{Z}_{1}\right) & {\left[x_{1}, y_{1}, z_{1}\right]^{T}} \\
0_{1 \times 3} & 1
\end{array}\right]
$$

where $R(\theta, \hat{W})$ is the 3×3 rotation matrix corresponding to θ radian rotation about the vector \hat{W}. For this coordinate chart, any element of $\operatorname{Lie}\left(P_{0}\right)$ corresponding to the relative pose of B_{1} with respect to B_{0} is parameterized with the screw joint parameters $s_{1}=\left[s_{1,1}, \ldots, s_{1,6}\right]^{T}$, such that

$$
{ }^{0} T_{1}^{0} s_{1}=\left(A d_{H_{1}^{0}(0)}\right)\left(d_{i d_{6} \iota_{1}}\right)\left(d_{0} \varphi_{1}\right) s_{1}
$$

Figure 2: Coordinate frames assigned to A_{0}, \ldots, A_{6} at the initial configuration

With some basic calculations one can show that
$\left.\frac{\partial \varphi_{1}}{\partial x_{1}}\right|_{0}=e_{1},\left.\frac{\partial \varphi_{1}}{\partial y_{1}}\right|_{0}=e_{2},\left.\frac{\partial \varphi_{1}}{\partial z_{1}}\right|_{0}=e_{3},\left.\frac{\partial \varphi_{1}}{\partial \theta_{1, x}}\right|_{0}=e_{4},\left.\frac{\partial \varphi_{1}}{\partial \theta_{1, y}}\right|_{0}=e_{5}$, and $\left.\frac{\partial \varphi_{1}}{\partial \theta_{1, z}}\right|_{0}=e_{6}$,
which coincides with the basis selected for $\operatorname{se}(3) \cong \operatorname{Lie}\left(P_{1}\right)$. For this joint since $Q_{1}=P_{1}, d_{i d_{6} \iota_{1}}$ and $d_{0} \varphi_{1}$ are equal to the identity matrix. In the basis $\left\{e_{1}, \ldots, e_{6}\right\}$,

$$
\forall H_{i}^{j}(0)=\left[\begin{array}{cc}
R_{i}^{j}(0) & p_{i}^{j}(0) \\
0_{1 \times 3} & 1
\end{array}\right]
$$

the Adjoint operator can be represented by the matrix [27]

$$
A d_{H_{i}^{j}(0)}=\left[\begin{array}{cc}
R_{i}^{j}(0) & \tilde{p}_{i}^{j}(0) R_{i}^{j}(0) \\
0_{3 \times 3} & R_{i}^{j}(0)
\end{array}\right] .
$$

Therefore, ${ }^{0} T_{1}^{0} s_{1}=A d_{H_{1}^{0}(0)} s_{1}$.
Joint number two is a three-d.o.f. nonholonomic joint between B_{1} and B_{2}. The classic joint parameters can be chosen as $q_{2}=\left[x_{2}, y_{2}, \theta_{2, z}\right]^{T}$, where $\left[x_{2}, y_{2}, 0\right]^{T}$ is the position of $H_{2}^{1}(t)\left(O_{2}\right)$ with respect to $H_{2}^{1}(0)\left(O_{2}\right)$ and expressed in V_{2}, and $\theta_{2, z}$ is the rotation angle of V_{2} about \hat{Z}_{2}. Hence, the local coordinate chart φ_{2} for Q_{2} is

$$
\varphi_{2}\left(q_{2}\right)=\left[\begin{array}{cc}
R\left(\theta_{2, z}\right) & R\left(\theta_{2, z}\right)\left[x_{2}, y_{2}\right]^{T} \\
0_{1 \times 2} & 1
\end{array}\right]
$$

where $R\left(\theta_{2, z}\right)$ is the 2×2 rotation matrix for $\theta_{2, z}$. For this coordinate chart, any element of $\operatorname{Lie}\left(P_{0}\right)$ corresponding to the relative pose of B_{2} with respect to B_{1} is parameterized by the screw joint parameters $s_{2}=\left[s_{2,1}, s_{2,2}, s_{2,3}\right]^{T}$, such that

$$
{ }^{0} T_{2}^{1} s_{2}=\left(A d_{H_{2}^{1}(0)}\right)\left(d_{i d_{3} \iota_{2}}\right)\left(d_{0} \varphi_{2}\right) s_{2}
$$

where

$$
\left.d_{i d_{3}} \iota_{2} \frac{\partial \varphi_{2}}{\partial x_{2}}\right|_{0}=e_{1},\left.d_{i d_{3}} \iota_{2} \frac{\partial \varphi_{2}}{\partial y_{2}}\right|_{0}=e_{2}, \text { and }\left.d_{i d_{3}} \iota_{2} \frac{\partial \varphi_{2}}{\partial \theta_{2, z}}\right|_{0}=e_{6}
$$

Thus,

$$
{ }^{0} T_{2}^{1} s_{2}=A d_{H_{2}^{0}(0)}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 1
\end{array}\right]^{T} s_{2}
$$

The third joint is a three-d.o.f. holonomic joint between B_{2} and B_{3}. The classic joint parameters are $q_{3}=\left[\theta_{3, x}, \theta_{3, y}, \theta_{3, z}\right]^{T}$, and the local coordinate chart for Q_{3} is $\varphi_{3}\left(q_{3}\right)=R\left(\theta_{3, x}, \hat{X}_{3}\right) R\left(\theta_{3, y}, \hat{Y}_{3}\right) R\left(\theta_{3, z}, \hat{Z}_{3}\right)$. The elements of $\operatorname{Lie}\left(P_{0}\right)$ corresponding to the relative poses of B_{3} with respect to B_{2} are parameterized by the screw joint parameters $s_{3}=\left[s_{3,1}, s_{3,2}, s_{3,3}\right]^{T}$, such that

$$
{ }^{0} T_{3}^{2} s_{3}=A d_{H_{3}^{0}(0)}\left[\begin{array}{c}
0_{3 \times 3} \\
i d_{3}
\end{array}\right] s_{3} .
$$

Joint 4 is a one-d.o.f. revolute joint, its classic joint parameter is $q_{4}=\theta_{4, z}$, and the local coordinate chart for Q_{4} is $\varphi_{4}\left(q_{4}\right)=R\left(\theta_{4, z}\right)$. The line in $\operatorname{Lie}\left(P_{0}\right)$ corresponding to the relative pose of B_{4} with respect to B_{5} is parameterized by the screw joint parameter s_{4}, such that

$$
{ }^{0} T_{4}^{3} s_{4}=A d_{H_{4}^{0}(0)}[0, \ldots, 1]^{T} s_{4}
$$

By a simple calculation

$$
{ }^{0} T_{4}^{3}=\left[\begin{array}{c}
p_{4}^{0}(0) \times{ }^{0} \hat{Z}_{4} \\
{ }^{0} \hat{Z}_{4}
\end{array}\right]
$$

where ${ }^{0} \hat{Z}_{4}$ is the joint screw axis expressed in V_{0}. Hence, ${ }^{0} T_{4}^{3} s_{4}$ coincides with the argument of the exponential map in the existing product of exponentials formula for a revolute joint [1, 2, 25]. Similarly, for the fifth and sixth joints

$$
\begin{aligned}
& { }^{0} T_{5}^{4} s_{5}=A d_{H_{5}^{0}(0)}[0, \ldots, 1]^{T} s_{5} \\
& { }^{0} T_{6}^{4} s_{6}=A d_{H_{6}^{0}(0)}[0, \ldots, 1]^{T} s_{6}
\end{aligned}
$$

respectively.
Therefore, based on (6), the Forward Kinematics map corresponding to $M S(6)$ is

$$
F K(s)=\left[\begin{array}{l}
\exp \left({ }^{0} T_{1}^{0} s_{1}\right) \ldots \exp \left({ }^{0} T_{5}^{4} s_{5}\right) H_{5}^{0}(0) \\
\exp \left({ }^{0} T_{1}^{0} s_{1}\right) \ldots \exp \left({ }^{0} T_{6}^{4} s_{6}\right) H_{6}^{0}(0)
\end{array}\right],
$$

where \exp is the matrix exponential for $S E(3)$ that can be evaluated by (14) and $s=\left[s_{1}^{T}, \ldots, v_{6}^{T}\right]^{T}$.

According to the calculation performed in the case of joint four, for a serial-link multi-body system with revolute and/or prismatic joints, where the multi-body system consists of one branch, the above formulation for $F K$ reduces to the existing product of exponentials formula.

6.2. Differential Kinematics

Based on Proposition 5.1 and 5.4, the Jacobian maps of B_{5} and B_{6} with respect to B_{0} and expressed in V_{0}, i.e., ${ }^{0} J_{5}^{0}(s)$ and ${ }^{0} J_{6}^{0}(s)$, can be determined as 6×14 matrices. The nonholonomic constraints at the second joint can be expressed in terms of the classical joint parameters as

$$
C_{2}\left(q_{2}\right) \dot{q}_{2}=[0,1,0] \dot{q}_{2}=0
$$

which indicates that the mobile base cannot drift side way. The annihilator of C_{2} can be selected to be

$$
\bar{C}_{2}\left(q_{2}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]^{T}
$$

and therefore using (3b) and (5)

$$
\Sigma_{2}\left(s_{2}\right)=\left[\begin{array}{cl}
\frac{\sin \left(s_{2,3}\right)}{s_{2,3}} & s_{2,2} \frac{\left(\cos \left(s_{2,3}\right)+s_{2,3} \sin \left(s_{2,3}\right)-1\right)}{s_{2,3}^{2}}+s_{2,1} \frac{\left(\cos \left(s_{2,3}\right)+\sin \left(s_{2,3}\right) / s_{2,3}\right)}{s_{2,3}} \\
\frac{\left(\cos \left(s_{2,3}\right)-1\right)}{s_{2,3}} & s_{2,1} \frac{\left(1-\cos \left(s_{2,3}\right)-s_{2,3} \sin \left(s_{2,3}\right)\right)}{s_{2,3}^{2}}+s_{2,2} \frac{\left(\cos \left(s_{2,3}\right)-\sin \left(s_{2,3}\right) / s_{2,3}\right)}{s_{2,3}} \\
0 & 1
\end{array}\right] .
$$

Note that when $s_{2,3}=0$,

$$
\Sigma_{2}\left(s_{2}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
s_{2,2} / 2 & -s_{2,1} / 2 & 1
\end{array}\right]^{T}
$$

Finally, according to (13) the modified Jacobian of the multi-body system $M S(6)$ becomes

$$
\bar{J}(s)=\left[\begin{array}{cc}
0 \\
\bar{J}_{5}^{0}(s) & 0_{6 \times 13} \\
0_{6 \times 13} & 0{ }^{0} \bar{J}_{6}^{0}(s)
\end{array}\right]
$$

which can be calculated as a 12×26 matrix using Proposition 5.1 and 5.4.

7. Conclusion

An extension of the product of exponentials formula for Forward and Differential Kinematics of generic open-chain multi-body systems with multid.o.f., holonomic and nonholonomic joints was formalized using Lie group theory and differential geometry. Towards this goal, multi-d.o.f. joints were classified and the notion of displacement subgroup was generalized. It was shown that the relative configuration manifolds of such joints were Lie groups, and the exponential map was surjective for all types of displacement subgroups except for one type. The screw joint parameters were defined, and their relationship with the classic joint parameters was formalized. The nonholonomic constraints in the Pfaffian form were considered on displacement subgroups, and by introducing admissible screw joint speeds the Jacobian of an open-chain multi-body system was modified, accordingly. The proposed generalized exponential formulation for Forward and Differential Kinematics is independent of the intermediate coordinate assignment to the bodies and the choice of the joint parameterization and a basis for the Lie algebra of the relative configuration manifold. The computational aspects of the developed formulation were explored through an example where Forward and Differential Kinematics of a mobile manipulator mounted on a spacecraft were calculated.

8. Acknowledgements

The authors would like to thank Professor Yael Karshon from the Department of Mathematics, University of Toronto. This work has been conducted under her co-supervision as part of Robin Chhabra's Ph.D. research.

References

[1] R.W. Brockett, Robotic manipulators and the product of exponentials formula, In: Fuhrmann, P. (Ed.) Mathematical Theory of Networks and Systems (Lecture Notes in Control and Information Sciences) 58, 1984, pp. 120-129.
[2] R.M. Murray, Z. Li, S.S. Sastry, A mathematical introduction to robotic manipulation. first ed., CRC Press Inc., New York, 1994.
[3] F.C. Park, Computational aspects of the product-of-exponentials formula for robot kinematics, IEEE Trans. Autom. Control 39(3)(1994) 643-647.
[4] F.C. Park, D.J. Pack, Motion control using the product-of-exponentials kinematic equations, Proc. IEEE Intl. Conf. Robot. Auto., Sacramento(1991) 2204-2209.
[5] M. Cui-hua, F. Xun, L. Cheng-rong, Z. Zhong-hui, Kinematics analysis based on screw theory of a humanoid robot, J. China Univ. Min. Tech. 17(1)(2007) 49-52.
[6] R. He, Y. Zhao, Shunian Yang, Shuzi Yang, Kinematic-parameter identification for serial-robot calibration based on POE formula, IEEE Trans. Robot. 26(3)(2010) 411-423.
[7] A. Perez, J.M. McCarthy, Clifford algebra exponentials and planar linkage synthesis equations, J. Mech. Design 127(2005) 931-940.
[8] A. Perez-Gracia, J.M. McCarthy, Kinematic synthesis of spatial serial chains using Clifford algebra exponentials, P. I. Mech. Eng. C-J. Mec. 220(2006) 953-968.
[9] F.C. Park, J.E. Bobrow, S.R. Ploen, A Lie group formulation of robot dynamics, Int. J. Robot. Res. 14(6)(1995) 609-618.
[10] A. Müller, P. Maißer, A Lie group formulation of kinematics and dynamics of constrained MBS and its application to analytical mechanics, Multibody Syst. Dyn. 9(4)(2003) 311-352.
[11] A. Müller, Group theoretical approaches to vector parameterization of rotations, J. Geom. Symmetry Phys. 19 (2010) 43-72.
[12] A. Müller, Approximation of finite rigid body motions from velocity fields, Z. Angew. Math. Mech. (ZAMM) 90(6) (2010) 514-521.
[13] R.S. Ball, A treatise on the theory of screws, first ed., Cambridge University Press, Cambridge, 1900.
[14] W.K. Clifford, Preliminary sketch of biquaternions, P. Lond. Math. Soc. 4(1873) 381-395.
[15] W.K. Clifford, Further note on biquaternions, Mathematical Papers (1882) reprinted Chelsea Publishing, New York, 1968, pp. 385-396.
[16] J. Loncaric, Geometrical analysis of compliant mechanisms in robotics, Ph.D. Thesis, Division of Applied Sciences, Harvard University, U.S.A., 1985.
[17] H. Lipkin, J. Duffy, On Ball's mapping of the two-system of screws, Mech. Mach. Theory $21(6)(1986)$ 499-507.
[18] C.G. Gibson, K.H. Hunt, Geometry of screw systems-1, Mech. Mach. Theory 25(1)(1990) 1-10.
[19] C.G. Gibson, K.H. Hunt, Geometry of screw systems-2, Mech. Mach. Theory 25(1)(1990) 11-27.
[20] J.M. Hervé, The Lie group of rigid body displacements, a fundamental tool for mechanism design, Mech. Mach. Theory 34(5)(1999) 719-730.
[21] M. Borri, L. Trainelli, C. Bottasso, On representations and parameterizations of motion, Multibody Syst. Dyn. 4(2000) 129-193.
[22] E. Staffetti, Kinestatic analysis of robot manipulators using the Grassmann-Cayley algebra, IEEE Trans. Robot. Autom. 20(2)(2004) 200210.
[23] A. Wolf, M. Shoham, Screw theory tools for the synthesis of the geometry of a parallel robot for a given instantaneous task, Mech. Mach. Theory 41(6)(2006) 656-670.
[24] J. Gallardo-Alvarado, Kinematics of a hybrid manipulator by means of screw theory, Multibody Syst. Dyn. 14(3-4)(2005) 345-366.
[25] J.M. Selig, Geometric methods in robotics, second ed., Springer, New York, 2005.
[26] S. Stramigioli, B. Maschke, C. Bidard, On the geometry of rigid-body motions: the relation between Lie groups and screws, P. I. Mech. Eng. C-J. Mec. 216(2002) 13-23.
[27] S. Stramigioli, Modeling and IPC control of interactive mechanical systems: a coordinate-free approach, first ed., Springer, London, 2001.
[28] C.D. Mladenova, Applications of Lie group theory to the modeling and control of multibody systems, Multibody Syst. Dyn. 3(4)(1999) 367-380.
[29] J. Wei, E. Norman, On global representations of the solution of linear differential equations as a product of exponentials, P. Am. Math. Soc. 15(1964) 327-334.
[30] X. Liu, A Lie group formulation of Kane's equations for multibody systems, Multibody Syst. Dyn. 20(1)(2008) 29-49.
[31] N.E. Leonard, P.S. Krishnaprasad, Motion control of drift-free leftinvariant systems on Lie groups, IEEE Trans. Autom. Control 40(9)(1995) 1539-1554.
[32] R.S. Hartenberg, J. Denavit, Kinematic Synthesis of Linkages, first ed., McGraw-Hill Book Company, New York, 1964.
[33] V. Duindam, S. Stramigioli, Singularity-free dynamic equations of openchain mechanisms with general holonomic and nonholonomic joints, IEEE Trans. Robot. 24(3)(2008) 517-526.
[34] J.M. Lee, Introduction to smooth manifolds, second ed., Springer, New York, 2006.
[35] A. Jr. Kirillov, An introduction to Lie groups and Lie algebras, first ed., Cambridge University Press, New York, 2008.
[36] J.J. Duistermaat, J.A.C. Kolk, Lie Groups, first ed., Springer, Berlin, 2000.
[37] M. Berger, Geometry I, first ed., Springer, Berlin, 2009.

Figure 1: A mobile manipulator on a six d.o.f. moving base

Figure 2: Coordinate frames assigned to A_{0}, \ldots, A_{6} at the initial configuration

Figure 1: A mobile manipulator on a six d.o.f. moving base

Figure 2: Coordinate frames assigned to A_{0}, \ldots, A_{6} at the initial configuration

Table 1: Categories of displacement subgroups

Dim. Subgroups of $S E(3) /$ displacement subgroups			
$\begin{aligned} & 6 \quad \begin{array}{l} S E(3)=S O(3) \ltimes \mathbb{R}^{3} \\ \text { free }^{a} \end{array} \end{aligned}$			
$\begin{array}{ll} 4 & S E(2) \times \mathbb{R} \\ & \text { planar }+ \text { prismatic }^{b} \end{array}$			
	$\begin{aligned} & S O(3) \\ & \text { ball (spherical) } \end{aligned}$	$\begin{aligned} & \mathbb{R}^{3} \\ & 3 \text {-d.o.f. prismatic } \end{aligned}$	$\begin{aligned} & H_{p} \ltimes \mathbb{R}^{2} \\ & \text { 2-d.o.f. prismatic } \\ & + \text { helical }^{c} \end{aligned}$
$\begin{array}{ll} 2 & S O(2) \times \mathbb{R} \\ \text { cylindrical } \end{array}$	$\begin{aligned} & \mathbb{R}^{2} \\ & 2 \text {-d.o.f. prismatic } \end{aligned}$		
$1 \quad S O(2)$ revolute	\mathbb{R} prismatic	H_{p} helical	
$0 \quad\{e\}$ fixed a			

${ }^{a}$ These two subgroups are the trivial subgroups of $S E(3)$.
${ }^{b}$ The axis of the prismatic joint is always perpendicular to the plane of the planar joint.
${ }^{c}$ The axis of the helical joint is always perpendicular to the plane of the 2-d.o.f. prismatic joint.
${ }^{d}$ The axis of the revolute and prismatic joints are always aligned.

[^0]: *Corresponding Author: Tel.: +1 416946 3357, Fax: +1 4169467109
 Email addresses: chhabrar@utias.utoronto.ca (Robin Chhabra), emami@utias.utoronto.ca (M. Reza Emami)

