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Abstract 
This paper outlines a concurrent design methodology for multidisciplinary systems, which employs tools of 
fuzzy theory for the tradeoff in the design space. This methodology enhances communication between designers 
from various disciplines through introducing the universal notion of satisfaction and expressing the behaviour of 
multidisciplinary systems using the notion of energy. It employs membership functions and parametric 
connectives in fuzzy logic to formalize subjective aspects of design, resulting in the simplification of the multi-
objective constrained optimization of a design process. The methodology attempts to find a pareto-optimal 
solution for the design problem. In the primary phase of the methodology, a fuzzy-logic model is utilized to 
identify a region in the design space that contains the pareto-optimal design state, and a proper initial state is 
suggested for the optimization in the secondary phase, where the pareto-optimal solution is found. Finally, the 
impact of the designer’s subjective attitude on the design is adjusted based on a system performance by utilizing 
an energy-based model of multidisciplinary systems. As an application, it is shown that the design of a five-
degree-of-freedom industrial robot manipulator can be enhanced by using the methodology. 
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1. Introduction 

The demand for higher precision, speed and efficiency has given rise to concurrent methodologies for 

designing multidisciplinary systems. The emphasis is on the physical integration and communication 

amongst the subsystems in different physical domains, whereas traditional approaches rely on subsystem 

partitioning. However, the challenge is to consider a large number of design variables and attributes 

simultaneously (Cabrera et al. 2010), and to develop a unified multidisciplinary model that can evaluate 

the attributes concurrently in a design process.  

Researchers have developed different Multidisciplinary Design Optimization (MDO) formulations 

(Cramer et al. 1992 & 1994) suitable for various applications (Balling and Wilkinson 1997; Yokoyama et 

al. 2007; Martz and Neu 2009; Nosratollahi et al. 2010). A multidisciplinary design process normally 

leads to a multi-objective (each of which is called a design attribute) constrained optimization. In many 

MDO methods, a single-objective function is introduced that is a mapping from the space of all design 

variables and attributes to real numbers; hence the resulting multi-objective optimization problem is 

reduced to a single-objective constrained optimization. Some well-developed MDO formulations can be 

listed as Multidisciplinary Feasible (MDF), All-At-Once (AAO), Individual-Discipline Feasible (IDF) 

(Cramer 1994), Collaborative Optimization (CO) (Braun et al. 1996), and Concurrent Subspace 

Optimization (CSSO) (Bloebaum et al. 1992). Some of these MDO methods have been generalized to 

deal with multi-objective optimization in the design process; and since design problems often consist of 

competing design attributes, the outcome is a pareto-optimal solution (Huang et al. 2007). Further, a 

multidisciplinary design problem often involves subjective notions, besides the objective attributes. The 

subjectivity is mainly due to communication between designers (and customers) in different disciplines 

and their interpretation of design goals. Hence, any effective multidisciplinary design formulation should 

provide a communication means that can not only convey qualitative and subjective notions, but also 

formalize them rigorously. The underlying premise is to provide a common language for different 
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engineering disciplines and also devise a means for helping them to collaborate towards a common goal 

(Bradley 2010). Although MDO methods attempt to take into account the interconnection between 

subsystems, a majority of them do not employ a unified multidisciplinary modeling algorithm. This 

shortcoming usually reduces the efficiency of the communication between disciplines.  

This paper introduces a linguistic approach to Concurrent Design, named as Linguistic Concurrent 

Design (LCD) methodology, which addresses the above-mentioned issues based on the notions of 

satisfaction in the synthesis and energy in the analysis of multidisciplinary systems. The methodology 

utilizes tools of fuzzy theory, i.e., membership functions and parametric connectives, to systematically 

define some subjective aspects such as designer/customer’s preference and designer’s attitude that play a 

significant role in a design process, in addition to objective aspects in the form of design attributes. In 

order to adjust the subjective notions, the methodology examines the set of satisfactory design candidates 

against a performance supercriterion that is defined based on a holistic multidisciplinary model of the 

system. Further, the LCD formally reduces the multi-objective constrained optimization problem to three 

single-objective unconstrained optimizations. Consequently, not only does the LCD facilitate the 

communication between different disciplines, but it also results in a more practical solution for a multi-

objective, multidisciplinary design problem.  

In the field of engineering design, a number of concurrent design methodologies have also been 

introduced that attempt to take into account subjective aspects of design. For instance, Axiomatic Design 

theory (Suh 1998), which has been used in different applications (Bi et al. 2004; Li et al. 2011), 

formalizes a hierarchical approach to system design by considering subjective notions. Some other design 

methodologies employ fuzzy-logic tools to offer solutions to the conceptual and detailed phases of 

concurrent design problem (Wang 2001; Gheorghe et al. 2004; Dhingra et al. 1990; Otto and Antonsson 

1995; Dhingra and Rao 1995; Jones and Hua 1998; Chen and Ngai 2008; Chen and Ko 2009). As for 

conceptual phase of design, a fuzzy outranking preference model was developed to model the imprecise 

preference relation between design solutions (Wang 2001). In addition, fuzzy outranking index was 
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defined for different design criteria and they were aggregated with an adjustable strategy (by choosing a 

degree of optimism and aggressiveness) to find the best set of design solutions (Gheorghe et al. 2004).  

A notable example for detailed phase of concurrent design is the Method of Imprecision (MoI) that 

takes into account the imprecision in design (Otto and Antonsson 1995). This approach, which has been 

used in various engineering applications such as product planning (Chen and Ngai 2008; Chen and Ko 

2009), defines a set of designer’s preferences (Wood et al. 1992) for design variables and performance 

parameters to model the imprecision in design. It determines and maximizes the global performance (a 

function from the space of design variables and performance parameters to the real numbers) under one of 

the two conservative or aggressive design tradeoff strategies, and uses fuzzy connectives for tradeoff in 

the design space (Scott and Antonsson 1998). Although this methodology offers a number of advantages 

that are crucial in concurrent design, it does not distinguish the constraints from the goals in the 

aggregation process and simply considers two extreme designer attitudes that are not justified throughout 

the design process. To remedy these shortcomings, the LCD methodology, presented in this paper, a) 

divides the design attributes into two inherently different classes, namely wish and must attributes; and b) 

aggregates satisfactions defined for the design variables and attributes using parametric fuzzy 

connectives, so that the designer’s attitude, i.e. the connectives parameters, can be adjusted based on an 

objective supercriterion. 

A step-by-step formulation of the Linguistic Concurrent Design methodology is presented in Section 2. 

Section 3 discusses the application of the LCD to robot manipulators, where the efficacy of the 

methodology is illustrated through improving the design of a five-degree-of-freedom (d.o.f.) industrial 

robot manipulator, namely CRS CataLyst-5. It is shown that the system performance can be further 

improved by considering all design variables concurrently through the LCD methodology. Some 

concluding remarks are made in Section 4. 
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2. Linguistic Concurrent Design  

2.1. Formulation of Design Process 

A design problem consists of two sets: design variables },...,{ 1 nXXX ≡  and design attributes 

},...,{ 1 NAAA ≡  such that any design solution can be identified by vectors nT
nXX R∈≡ ],...,[ 1X  and 

T
NAA ],...,[ 1≡A NR∈ , respectively. In this paper vectors are denoted by bold letters. Design variables 

are to be assigned in the feasible ranges of design variables, namely design availabilities nDDD ××≡ ...1  

such that R⊂jD  (j=1,…,n) (normally Dj’s are intervals of R ), to satisfy the design requirements 

associated with the design attributes. For each design attribute iA  there is a mapping RR →n
iF :  that 

relates a design state X  to the attribute, i.e., )(Xii FA =  (i=1,…,N). These functional mappings can be of 

any form, such as closed-form equations, fuzzy rule-base, or sets of experimental or simulated data. A 

design process can be defined as a multi-objective optimization subject to a number of constraints on the 

design variables and attributes due to the design availabilities and design requirements specified by the 

customer. 

T
ND W

FF )](),...,([min 1 XX
X∈

   subject to   { }NNiGGF Wiii ,...,1,,)( +=⊂∈ RX ; (1) 

where WN  and WM NNN −≡  are the number of attributes that should be optimized and the number of 

constraints, respectively. In (1), it is assumed that the constraints in a design process are in the form of 

inequalities, and each Gi is an interval of real numbers that represents the inequalities corresponding to 

the design attribute Ai. 

Given a set of design variables, a set of design attributes and the design availabilities, the Linguistic 

Concurrent Design methodology first assigns satisfactions to the values of design variables and attributes 

based on the designer/customer’s preference reflected in the design availabilities and requirements. In the 

primary phase, the LCD uses a fuzzy-logic model of the system to define a linguistic fuzzy rule-base 

describing the satisfaction of designer/customer in order to find a region of the design space where a 
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pareto-optimal solution of (1) exists. This phase emulates the conceptual phase of design, and it also 

introduces a set of initial values for the optimization in the secondary phase. The secondary phase, which 

corresponds to the detailed phase of design, uses a proper aggregation of the satisfactions to obtain the 

overall satisfaction and transform the multi-objective constrained optimization in (1) to a single-objective 

unconstrained maximization of the overall satisfaction. It is shown that the optimum set of design 

variables for the resulting single-objective optimization is locally pareto-optimal for (1). A locally pareto-

optimal solution of (1) is a vector DO ∈X  such that it satisfies all of the constraints, and there does not 

exist any other feasible vector in a neighborhood of OX  that would decrease one component of 

T
NW

FF )](),...,([ 1 XX  without a simultaneous increase in at least one other component. The solution to 

the single-objective optimization depends on the choice of the aggregation parameters (corresponding to 

the parametric connectives) that model different designer’s attitude in aggregating the satisfactions, i.e., 

different tradeoff strategies in design. The closer the parametric t-norm and the generalized mean operator 

are to Tmin, the more conservative the design strategy is; and the farther they are from Tmin, the more 

aggressive the design strategy would be (Otto and Antonsson 1991). However, different designers may 

not have a consensus of opinion on the tradeoff in design. Therefore, in the last phase of the LCD the 

designer’s attitude is adjusted through enhancing a holistic system performance, called performance 

supercriterion, over the satisfactory design alternatives. Hence, the LCD methodology systematically 

breaks down the multi-objective constrained design optimization into three levels of single-objective 

unconstrained optimization, and incorporates features of both human subjectivity, i.e., 

designer/customer’s preference and designer’s attitude, and physical objectivity in the form of design 

attributes and performance supercriterion. 

In the following, the satisfaction for a design variable or attribute is first defined as a unified notion that 

corresponds to the availability of a design variable or the achievement level of a design attribute 

according to the corresponding design requirements specified by the customer and/or designer. Next, must 

and wish design attributes are introduced as two inherently different subsets of design attributes. And 
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finally, the overall satisfaction in design is defined as a proper aggregation of the satisfactions assigned to 

the design variables and attributes. 

Definition 1 (Satisfaction):  

a) A mapping ]1,0[: →R
jXµ  for the design variable jX  is called satisfaction if for any two different 

values R∈21 jj ,XX  one has )]()([ 21 jXjX XX
jj

µµ >  ][ 21 jj XX ⇔  or )]()([ 21 jXjX XX
jj

µµ =  

][ 21 jj XX ≈⇔ . The symbols   and ≈  denote strictly superior and as superior, respectively, which are 

interpreted based on the design availabilities. 

b) A mapping ]1,0[: →R
iAµ  for the design attribute Ai is called satisfaction if for any two different 

states of the design variables nR∈21, XX  one has )]()([ 21 XX iAiA FF
ii
 µµ > )]()([ 21 XX ii FF ⇔  

or )]()([ 21 XX iAiA FF
ii
 µµ = )]()([ 21 XX ii FF ≈⇔ , where   and ≈  are interpreted based on the 

design requirements. The symbol   is the composition operator. For brevity, in this paper the satisfaction 

for a design variable is denoted by )()( jXjj XXx
j

µ≡ , and the satisfaction for a design attribute is 

denoted by )()( XX iAi Fa
i
µ≡ . A value of one for a satisfaction corresponds to the ideal case or the 

most satisfactory situation. On the other hand, the value zero means the worst case or the least satisfactory 

design variable or attribute. ■ 

In the conceptual phase, design requirements are usually qualitative notions that imply the 

designer/customer’s criteria for design. These requirements are naturally divided into demands and 

desires. A designer would use engineering specifications to relate design requirements to a proper set of 

design attributes by defining Fi’s. Accordingly, in the LCD the design attributes are divided into two 

subsets, defined as: 

Definition 2 (Wish design attribute): A design attribute is called wish if it refers to 

designer/customer’s desire, i.e., its associated design requirement permits room for compromise, and it 

should be satisfied as much as possible. These attributes form a set denoted as },...,{ 1 WNWWW ≡  whose 



7 
 

corresponding vector T
N

T
N WW

FFWW )](),...,([],...,[ 11 XX≡  should be optimized.  ■ 

Definition 3 (Must design attribute): A design attribute is called must if it refers to 

designer/customer’s demand, i.e., the achievement of its associated design requirement is mandatory with 

no room for compromise. These attributes form a set denoted as },...,{ 1 MNMMM ≡ , and they should 

usually satisfy inequalities, i.e., R⊂∈≡ + iNii G)FM
W

X(  ),...,1( MNi = . ■ 

Therefore, the set of all design attributes A is the disjoint union of M and W, i.e.,  

,    and     φ=∩=∪ WMAWM  (2) 

and the vector A can be rearranged as T
NN MW

MMWW ],...,,,...,[ 11 . To distinguish between must and wish 

satisfactions, the satisfaction specified for a wish attribute Wi is denoted by )(Xiw  (i=1,…,NW), and the 

satisfaction corresponding to a must attribute Mi is )(Xim  (i=1,…,NM).  

The satisfactions are fuzzy membership functions over the universes of discourse of design variables 

and design attributes, and hence suitable fuzzy connectives can be utilized to aggregate the satisfactions.  

Definition 4 (Overall satisfaction): For a design state X, the overall satisfaction, as a global measure 

of design achievement, is the aggregation of wish and must satisfactions and the satisfactions for the 

design variables with the proper fuzzy connectives. A method of aggregating the satisfactions is proposed 

in the next sub-section. ■ 

2.2. A Method of Calculating the Overall Satisfaction 

In this sub-section, separate aggregation strategies are suggested for combining satisfactions 

corresponding to must and wish design attributes in order to introduce the overall must and wish 

satisfactions, and subsequently determine the overall satisfaction for a design state. 

 2.2.1. Aggregation of Must Design Attributes 

Must attributes correspond to those design requirements that are to be satisfied with no room for 

negotiation. That is, all design requirements associated with must attributes have to be fulfilled 

simultaneously. In addition, the designers’ attitude toward combining the must attributes is different. 



8 
 

Considering must satisfactions as fuzzy membership degrees, a β-parameterized fuzzy connective βΘ  

that is suitable for aggregating must satisfactions should satisfy the following properties, where ]1,0[∈ia  

and R∈β . Indeed, the parameter β controls the fashion of aggregation of the must satisfactions to model 

the designer’s attitude. 

MP1) Monotonicity, i.e.,  

),...,,...,(),...,,...,( 11 nknk aaaaaa ′Θ≥Θ ββ  when kk aa ′≥ , β,k∀ , and  

),...,(),...,( 11 nn aaaa ββ ′Θ≥Θ  when ββ ′≥ . 

MP2) Commutativity, i.e.,  

),...,,...,,...,(),...,,...,,...,( 11 njknkj aaaaaaaa ββ Θ=Θ , γ,,kj∀ . 

MP3) Continuity, i.e.,  

),...,,...,(),...,,...,(lim 11 nknkaa
aaaaaa

kk

ββ Θ=′Θ
→′

, β,k∀ , and  

),...,(),...,(lim 11 nn aaaa ββ

ββ
Θ=Θ ′

→′
. 

MP4) Idempotency, i.e.,  

),...,(),...,( 11 nn aaaa ββ Θ=Θ  when naa == ...1 , and  

MP5) Annihilation, i.e., 

0),...,0,...,( 1 =Θ naaβ  R∈∀β . 

Although any β-parameterized fuzzy connective βΘ  that satisfies MP1-5 properties can be used to 

aggregate must satisfactions, the authors choose the parameterized t-norm operator T(p) defined by the 

following equations (Emami et al. 1999), which satisfies MP1-5 properties, for the sake of performing 

computations. 

))1(),...,1((1),...,( 1
)(

1
)(

n
p

n
p aaSaaT −−−= . (3) 
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pp
n

p
n

p
n

p
n

p
n

pp
n

p bbbbbbbbbS /1
1122111

)( ]]...]])1()[1(..)[...[1([),...,( −−−− −+−++−+≡ , (4) 

where ]1,0[, ∈ii ba  and p>0. In the extreme cases, the pair of t-norm and t-conorm operators (T(p),S(p)) 

approaches Max-Min Operators  (Tmin,Smax) as +∞→p , Algebraic Product and Sum  (Tprod,Ssum) as 

1→p , and Drastic Product and Sum (TW,SW) as 0→p . The investigation on the effect of using 

different parameterized connectives in the LCD methodology is out of the scope of this paper. 

LCD-Axiom 1: Given must design attributes and their satisfactions, },...,1:),{( Mii NimM =∀ , and 

considering the satisfactions for design variables, },...,1:),{( njxX jj =∀ , the overall must satisfaction is 

the aggregation of satisfactions corresponding to the must attributes and design variables using the p-

parameterized class of t-norm operators defined by (3) and (4). Note that, availability of design variables 

is considered as a part of must attributes. The overall must satisfaction )()( Xp
Mµ  is quantified by 

0))(),...,(),(),...,(()( 111
)()( >= pXxXxmmT nnN

pp
M M

XXXµ . (5) 

Changing the value of p makes it possible to obtain different tradeoff strategies. Larger values of p would 

imply a more conservative attitude toward aggregating the must attributes. On the other hand, values of p 

closer to zero represent a more aggressive attitude.  ■ 

 2.2.2. Aggregation of Wish Design Attributes 

Definition 5 (Cooperative wish attributes): For a design state X, a subset of wish design attributes is 

called cooperative if the corresponding satisfactions vary in the same direction for equal infinitesimal 

positive perturbations of the design variables. Thus, wish attributes can be divided into two cooperative 

subsets: 

a) Positive-differential wish attributes: For a design state X, positive-differential subset of wish attributes 

contains those with non-negative perturbed satisfactions, i.e., 0)( ≥Xiwδ , as a result of equal 

infinitesimal positive perturbations of the design variables, i.e., 0...1 >=== εδδ nXX  for 0→ε . 

Therefore, 
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}0)(:{
1

≥
∂
∂

∈≡ ∑
=

+
n

j j

i
i X

w
WWW XX . (6) 

This subset consists of all wish design attributes that tend to reach a higher satisfaction when all design 

variables have equal infinitesimal increments. 

b) Negative-differential wish attributes: For a design state X, negative-differential subset of wish 

attributes contains those with negative perturbed satisfactions, i.e., 0)( <Xiwδ , as a result of equal 

infinitesimal positive perturbations of the design variables, i.e., 0...1 >=== εδδ nXX  for 0→ε . 

Therefore, 

} 0)(:{
1

<
∂
∂

∈≡ ∑
=

−
n

j j

i
i X

w
WWW XX . (7) 

This subset includes all wish attributes that tend to reach a lower satisfaction when all design variables 

have equal infinitesimal increments.  ■ 

As a result, for a design state X, W is the disjoint union of positive- and negative-differential subsets of 

wish attributes, i.e., 

.     and    φ=∩=∪ −+−+
XXXX WWWWW   (8) 

Since wish attributes are cooperative in each positive- or negative-differential subset, their 

corresponding design requirements can be fulfilled simultaneously. According to LCD-Axiom 1, a q-

parameterized class of t-norm operators can be used for aggregating satisfactions in either subset of wish 

attributes. Therefore, for a design state X, the overall positive- and negative-differential wish satisfactions 

are defined by 

0))(),...,(()( 1
)()( >≡

±± qwwT
W

N
qq

W
XXXµ ; (9) 

where ±WN  is the number of positive- or negative-differential wish attributes for a design state X. Note 

that, these numbers may vary by X. 

The two subsets of wish attributes cannot be improved simultaneously as their design requirements 
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compete with each other. Meanwhile, based on Definition 3, wish attributes need to improve as much as 

possible during the design process. Therefore, some compromise is necessary for aggregating their 

satisfactions, and a class of mean operators reflects the averaging and compensatory nature of their 

aggregation. 

Considering wish satisfactions as fuzzy membership degrees, a γ-parameterized fuzzy connective γΩ  

that is suitable for aggregating overall positive- and negative-differential wish satisfactions should satisfy 

the following properties, where ]1,0[, 21 ∈aa  and R∈γ . Indeed, the parameter γ controls the fashion of 

aggregation to model the designer’s attitude. 

WP1) Monotonicity, i.e.,  

),(),( 2121 aaaa ′Ω≥Ω γγ  when 11 aa ′≥ , R∈∀γ , and  

),(),( 2121 aaaa γγ ′Ω≥Ω  when γγ ′≥ . 

WP2) Commutativity, i.e.,  

),(),( 2121 aaaa γγ Ω=Ω , R∈∀γ . 

WP3) Continuity, i.e.,  

),(),(lim 2121 aaaa
kk aa

γγ Ω=′Ω
→′

, R∈∀γ , and  

),(),(lim 2121 aaaa γγ

γγ
Ω=Ω ′

→′
. 

WP4) Idempotency, i.e.,  

),(),( 2121 aaaa γγ Ω=Ω  when 21 aa = , and  

WP5) Compensation, i.e., 

2211 ),( aaaa ≤Θ≤ β  when 21 aa < , R∈∀β . 

Although any γ-parameterized fuzzy connective γΩ  that satisfies WP1-5 properties can be used to 

aggregate the overall positive- and negative-differential wish satisfactions, the authors choose the 
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generalized mean operator G(α) defined by the following equation (Yager and Filev 1994), which satisfies 

WP1-5 properties, for the sake of performing computations. 

α
ααα

/1

2121
)( )(

2
1),( 






 +≡ aaaaG ; (10) 

where ]1,0[, 21 ∈aa  and R∈α . The investigation on the effect of using different parameterized 

connectives in the LCD is out of the scope of this paper. 

LCD-Axiom 2: Given the overall positive- and negative-differential wish satisfactions )()( Xq
W +µ  and 

)()( Xq
W −µ , respectively, the overall wish satisfaction )(),( Xαµ q

W  can be calculated using the α-

parameterized generalized mean operator defined by (10), 

( ) ( )  )()(
2
1)(

1
)()(),( R.∈











 += −+ αµµµ

αααα XXX q
W

q
W

q
W   (11) 

This class of generalized mean operators is monotonically increasing with respect to α between Tmin and 

Smax operators, and therefore offers a variety of aggregation strategies from conservative to aggressive, 

respectively. The overall wish satisfaction is governed by two parameters q and α, which represent 

subjective tradeoff strategies. They can be adjusted to control the nature of aggregation. Larger values of 

α or smaller values of q represent a more optimistic (aggressive) attitude in the design process, and vice 

versa.  ■ 

 2.2.3. Aggregation of Overall Wish and Must Satisfactions 

The aggregation of all wish satisfactions can be considered as one must attribute, i.e., it has to be 

fulfilled with other must attributes with no compromise. Otherwise, in the design process a scenario may 

occur that the overall satisfaction is non-zero while the overall wish satisfaction is zero. In this situation, 

there exists at least one wish attribute that is not satisfied based on the design requirements, which is 

unacceptable from the customer’s point of view. Therefore, based on LCD-Axiom 1, the overall 

satisfaction )(),,( Xαµ qp  is quantified by aggregating the overall must and wish satisfactions with the p-
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parameterized class of t-norm operators defined by (3) and (4), i.e., 

))(),(()( ),()()(),,( XXX αα µµµ q
W

p
M

pqp T= . (12) 

In (12), three parameters, p, q and α, called attitude parameters, govern the overall satisfaction, and 

they represent various tradeoff strategies in aggregating must and wish attributes. 

2.3. Primary Phase 

This sub-section details the primary phase of the LCD methodology as a systematic approach to the 

conceptual design of multidisciplinary systems, which provides an imprecise sketch of the final product 

and illustrates the decision-making environment. In order to capture the imprecision and fuzziness of the 

conceptual phase of design, a linguistic Multi-Input-Multi-Output (MIMO) fuzzy-logic model of the 

multidisciplinary system being designed is utilized in this phase, whose inputs and outputs are the feasible 

design variables and attributes, respectively. Such a model can be constructed from the expert knowledge, 

physical laws, empirical data or previous designs, which is discussed in many references (see (Yager and 

Filev 1994; Sugeno and Yasukawa 1993; Emami et al. 1998), for example) and it is not the scope of this 

paper. The system fuzzy model can be represented as: 

IF X1 is B11 AND…AND Xn is B1n THEN A1 is D11 AND…AND AN is D1N 

ALSO 

… (13) 

ALSO 

IF X1 is Br1 AND…AND Xn is Brn THEN A1 is Dr1 AND…AND AN is DrN, 

where Blj and Dli (i=1,…,N, j=1,…,n and l=1,…,r) are fuzzy sets on the universes of discourse of Xj and 

Ai (Wi or Mi), respectively, which can be labeled linguistically. Note that this model may contain only a 

subset of design variables whose impact on the design attributes is more significant or even well-

understood by the designer. The fuzzy-logic model also includes an inference mechanism for combining 

the rules and calculating the outputs for any set of input variables. For instance, Takagi-Sugeno-Kang 

(TSK) method (Sugeno and Yasukawa 1993) can be used that has shown high computational efficiency 
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for engineering systems. In the following, (13) is used to define a Multi-Input-Single-Output (MISO) 

fuzzy rule-base represented by (14) with overall satisfaction as the consequent and to introduce a set of 

suitable ranges of the design variables accordingly.  

IF X1 is B11 AND…AND Xn is B1n THEN μ is F1 

ALSO 

… (14) 

ALSO 

IF X1 is Br1 AND…AND Xn is Brn THEN μ is Fr, 

where μ is the overall satisfaction and Fl (l=1,…,r) are the fuzzy sets on μ, which can be labeled 

linguistically. This model represents a qualitative relationship between fuzzy (linguistic) values of the 

design variables and the overall satisfaction achieved in the design. Based on the definition of the overall 

satisfaction, the ultimate goal of design can be redefined as maximizing the overall satisfaction. 

Therefore, from this model the designer can choose the rule(s) with maximum consequent (overall 

satisfaction) as the most satisfactory rule(s), and define the antecedents of the corresponding rule(s) as the 

suitable ranges for the design variables. The design availabilities in the secondary phase are then properly 

modified by the suitable ranges. Moreover, a set of initial values for the secondary phase optimization can 

 
Fig. 1. Membership functions for a generic satisfaction s 
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be identified by defuzzifying the antecedents of the most satisfactory rule(s).  

The construction of the MISO fuzzy-logic model is dependent on the satisfactions 
iAµ ’s defined in the 

previous sub-section, and a reference set of q membership functions defined on the universe of discourse 

of each satisfaction, called reference qualitative satisfaction. As an example, the membership functions 

shown in Fig. 1 can be used for different values of the satisfaction 
iAµ . A step-by-step procedure of 

conducting the primary phase of the LCD methodology is presented as follows:  

Step 1) Given a reference qualitative satisfaction {E1,…,Eq} and the satisfaction 
iAµ  for each design 

attribute Ai (i=1,…,N),  

a) Compose 
iAµ  with {E1,…,Eq} to define a new reference qualitative satisfaction { qE,...,E1 ′′ } in the 

universe of discourse of Ai.  

qbAA iAbib i
,...,1)(E)(E ==′ µ . (15) 

b) Find the membership function in { qE,...,E1 ′′ } whose intersection with liD  is maximal. Denote the 

corresponding index to this membership function as },..,1{ qkli ∈  (l=1,…,r; i=1,…,N). ( liD  is the 

membership function of the attribute Ai in rule l of the system’s fuzzy model (13)). For the sake of 

computation, (amongst all well-known t-norm operators) the authors choose Tmin as the intersection 

operator to find the index lik . Other t-norm operators may be used to evaluate (16); however, the 

investigation on the effect of using different t-norm operators is not the concern of this paper. 

∫ ′=
∈

ilib
qb

li dATkS )D,E(max)( min
},...,1{

. (16) 

Fig. 2 illustrates Step 1 where lik =3. Consequently, one can form the following linguistic MIMO fuzzy-

logic model relating the design attributes to their satisfactions. 

A1 is D11 AND…AND AN is D1N THEN 
1Aµ  is )( 11

E k  AND…AND 
NAµ  is )( 1

E
Nk  

ALSO 

… (17) 
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ALSO 

A1 is Dr1 AND…AND AN is DrN THEN 
1Aµ  is )( 1

E
rk  AND…AND 

NAµ  is )(E
rNk . 

Step 2) Given the fuzzy rule-base in (17), in each rule defuzzify the consequent membership functions 

(using the Centre of Area (CoA) method (Yager and Filev 1994), for example) and then aggregate them 

using Tmin operator to obtain the overall satisfaction. The resulting rule-base relates the design attributes to 

the overall satisfaction. The reason for using Tmin operator is that in the conceptual phase of design the 

designer is often conservative to include as many design solutions as possible, and both parametric 

operators employed in the previous sub-section for aggregating satisfactions, i.e., T(p) and G(α), approach 

Tmin for a conservative strategy. As a result, for the lth rule in (17) one can find the membership function 

)(E
lik  whose centre of area is minimum for i=1,…,N. Denote the corresponding index to this membership 

function as },..,1{* qkl ∈ .  

∫
∫=

dss

dsss

b

b
b )(E

)(E
)E(CoA . (18) 

 

 
Fig. 2. An illustration of Step 1  
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))E(CoA),...,E(CoA()E(CoA )()(min)( 1* lNll
kkk T= . (19) 

Therefore, the resulting MISO fuzzy rule-base becomes:  

IF X1 is B11 AND…AND Xn is B1n THEN μ is )( *
1

E k  

ALSO 

… (20) 

ALSO 

IF X1 is Br1 AND…AND Xn is Brn THEN μ is )( *E
rk . 

Note that any aggregation strategy suggested in Sub-section 2.2 can be used instead of the conservative 

strategy to calculate the overall satisfaction at this step.  

Step 3) Defuzzify the consequents of (20) (by the CoA method, for example) to assign a crisp value to 

each rule representing the overall satisfaction. Find the l*th rule with maximum overall satisfaction. The 

antecedents of this rule define suitable ranges Cj for the design variables Xj. Finally, choose the initial 

value X0 for the secondary phase of design by defuzzifying the l*th rule antecedent membership functions 

(using the CoA method).  

))E(CoA),...,E(CoA(max)E(CoA )()(min
},...,1{)( 1*

* lNl
l

kk
rlk T

=
= . (21) 

T
nll )]B(CoA),...,B(CoA[ **10 =X . (22) 

Note that, depending on how much the membership functions of the reference qualitative satisfaction are 

distinguished from each other, there may be more than one rule having a maximum overall satisfaction, 

and the designer can then further refine these membership functions to come up with a single most 

satisfactory rule. 

The MISO fuzzy rule-base in (14) can be constructed using various methods of fuzzy-logic modeling. 

For instance, in the case study presented in the next section, where knowledge of the system is available 

from simulation and/or experimentation data, a systematic fuzzy-logic modeling approach presented in 
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(Emami et al. 1998) is adopted.  

2.4. Secondary Phase 

This sub-section details the secondary phase of the LCD methodology as an approach to the detailed 

design of multidisciplinary systems. By defining and aggregating the satisfactions for design variables 

and attributes in Sub-section 2.1&2, the design formulation in (1) is formally reduced to a single-

objective unconstrained maximization of the overall satisfaction. To find a region of the design space 

which contains the maximum of the overall satisfaction, suitable ranges of design variables were obtained 

in the primary phase. The satisfactions for the design variables are modified such that they become zero 

out of the ranges Cj’s. By using these satisfactions in the calculation of the overall satisfaction, as 

explained in Sub-section 2.2, one can employ any standard optimization method with the initial value X0 

obtained from the primary phase: 

))(),((max)( ),()()(),,( XXX
X

αα µµµ q
W

p
M

p
s

qp T
nR∈

= . (23) 

The solution Xs of (23) is called a satisfactory design alternative. In (23), various attitude parameters, i.e., 

p, q and α, result in different satisfactory design alternatives. Hence, Xs is implicitly a function of the 

attitude parameters. A set of satisfactory design alternatives that is generated by changing the attitude 

parameters is denoted by },0,:),,({ R∈>≡ αα qpqpC ss X . 

Proposition: The solution to (23) is locally pareto-optimal for (1). In other words, the design state Xs 

that maximizes the overall satisfaction (a single function) is the locally unique pareto-optimal solution for 

the multi-objective, constrained optimization presented in (1). 

Proof: The local pareto-optimality of the solution is a direct result of the way that the satisfactions are 

defined and aggregated throughout Sub-section 2.1&2. Assume that Xs is not locally pareto-optimal. 

Then, nR∈∃ 1X  such that 

NiFF sii ,...,1)()( 1 =∀XX  , 

particularly, there exists an i0 such that 
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).()(
00 1 sii FF XX   

According to Definition 1, 

)()(
00 1 sii aa XX ≥ , 

Hence, if 
0iF  corresponds to a must attribute, due to the monotonicity of the t-norm operator in (5), 

)()( )(
1

)(
s

p
M

p
M XX µµ ≥ . 

Similarly, if 
0iF  corresponds to a wish attribute, due to the monotonicity and continuity of both the t-

norm and the generalized mean operators in (11), 

)()( ),(
1

),(
s

q
W

q
W XX αα µµ ≥ . 

Finally, the monotonicity of the t-norm in (12) leads to 

)()( ),,(
1

),,(
s

qpqp XX αα µµ ≥ . 

Obviously, the above equation contradicts with the fact that )(),,(
s

qp Xαµ  is the maximum. ■ 

2.5. Performance Supercriteria 

In the last phase of the LCD methodology, the best design needs to be selected from the set of 

satisfactory design alternatives Cs through the optimization of a proper criterion. In the previous design 

stages, decision making was biased by the designer/costumer’s preference (satisfaction membership 

functions) and designer’s attitude (aggregation parameters). Hence, in this phase of design the outcome 

must be checked against a supercriterion that is defined based on a system performance. Indeed, such a 

supercriterion adjusts the designer’s attitude based on the physical performance of the system. As the 

synergy in the concurrent design of multidisciplinary systems necessitates, a suitable supercriterion for 

such systems should take into account interconnections between the subsystems and consider the system 

as a whole.  

Although multidisciplinary systems consist of various subsystems in different physical domains, the 

universal concept of energy and energy exchange is common to all of their subsystems. Therefore, an 
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energy-based model can deem all subsystems together with their interconnections and introduce generic 

design criteria suitable for concurrent design. A successful attempt in this direction was the introduction 

of bond graphs in the early 60s (Paynter 1961). Bond graphs are domain-independent graphical 

descriptions of dynamic behaviour of physical systems. In this modeling strategy all components are 

recognized by the energy they supply or absorb (source or sink elements: Se, Sf), store or dissipate 

(storage elements: I, C, or dissipative elements: R), and reversibly or irreversibly transform (transformer 

elements: TF, gyrator elements: GY, and distributing elements: 0- (zero), 1- (one) junctions, or 

irreversible transducer elements: RS). In many references (for example, (Breedveld 2004; Borutzky 

2009)) bond graph model of multidisciplinary systems is constructed for analysis, which is not the scope 

of this paper, whereas in (Chhabra and Emami 2011) this model is utilized for defining three design 

criteria, which are briefly reviewed in sequel.  

 2.5.1. Energy 

A multidisciplinary system is designed to perform a certain amount of work on its environment while 

input energy is supplied to it. Based on the first law of thermodynamics, the supplied energy SE(X) does 

not completely convert into the effective work EW(X). A portion of SE(X) is stored or dissipated in the 

system elements and transacted with the environment through physical constraints or external fields. This 

cost energy CE(X) in any system is the overhead energy for performing the effective work. Therefore, 

CE(X) can be defined as a supercriterion, coined as energy supercriterion, which should be minimized. 

Based on the principle of conservation of energy, for a pre-defined effective work (i.e., EW is independent 

of X), 

),()( XX CEEWSE +=  (24) 

which shows minimizing the supplied energy is equivalent to minimizing the energy supercriterion. 

Therefore, by minimizing the supplied energy with respect to the attitude parameters the best design can 

be achieved in Cs. That is, by changing the attitude parameters different satisfactory design alternatives 

are achieved whose corresponding value of energy criterion is optimized. 



21 
 

)),,((min)),,((
,0,

*** αα
α

qpSEqpSE sqp
XX *

R∈>
= . (25) 

In the bond graph representation, the supplied energy is the energy that is added to the system at the 

source elements that are distinguishable by eS  and fS  (source of effort and flow) with the bonds coming 

out of them. For a time interval [0,tf], where tf is the final time for a bond graph simulation, SE(Xs) can be 

calculated by integrating the supplied power at all source elements in time (Chhabra and Emami 2011). 

 2.5.2. Entropy 

Based on the second law of thermodynamics, after a slight perturbation of the supplied energy, an 

energy system reaches its equilibrium state once the entropy generation of the system approaches its 

maximum. While the system moves toward the equilibrium, its capability of performing effective work on 

the environment reduces continuously. Therefore, the less the work loss of a system, the higher its 

aptitude is to do effective work. In the bond graph modeling, this work loss is equal to the irreversible 

heat exchange )),(( XXeqirr tQ  at the dissipative elements, i.e., R elements, where teq is defined as follows 

(Chhabra and Emami 2011): given a unit step change of the supplied energy, the equilibrium time )(Xeqt  

is the time instant after which the rate of change of dissipative heat remains below a small threshold ε, 

i.e., 

}),(:{)( 00 ε<
∂

∂
>∀= XX t

t
Q

tttInft irr
eq . (26) 

The )),(( XXeqirr tQ  can also be considered as a performance supercriterion, and it is called entropy 

supercriterion. Using this supercriterion, the best design can be attained in the set of optimally 

satisfactory solutions by 

)).,,(),((min)),,(),((
,0,

*** αα
α

qptQqptQ sseqirrqpeqirr XXXX **
R∈>

=  (27) 

This criterion is usually used in the design of thermal systems (Bejan et al. 1996). 

 2.5.3. Agility 

For multidisciplinary systems whose response time is a crucial factor, the rate of energy transmission 
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through the system, or agility, can be a measure of design. Thus, the supercriterion is defined as the time 

that the system takes to reach a steady state after a unit step change of some or all input parameters. In the 

language of bond graphs, a system is in the steady state when the rate of change of introversive dynamic 

 
Fig. 3. The Linguistic Concurrent Design flowchart 
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energy ),( XtK  is zero. The introversive dynamic energy is defined as the energy stored in the I elements 

of the system. This energy is equivalent to the kinetic energy of masses in mechanical systems or the 

energy stored in inductors in electrical systems  Given a unit step change of input variables, the response 

time, denoted by T(X), is the time instant after which the rate of change of introversive dynamic energy 

remains below a small threshold δ, i.e., 

}),(:{)( 00 δ<
∂
∂

>∀= XX t
t
KtttInfT . (28) 

As a design supercriterion, when the response time reaches its minimum value with respect to attitude 

parameters the best design is attained in Cs, i.e., 

)),,((min)),,((
,0,

*** αα
α

qpTqpT sqp
XX *

R∈>
= . (29) 

The complete flowchart of the LCD methodology is presented in Fig. 3.  

3. Application to Robot Manipulators 

In this section, the LCD methodology is implemented to develop an efficient design architecture for 

generic serial-link robot manipulators, as an example of multidisciplinary engineering systems. For the 

primary phase, existence of a database is assumed based on the existing design of similar systems. 

Accordingly, a fuzzy-logic modeling approach presented in (Emami et al. 1998) is adopted to construct 

the linguistic MISO fuzzy-logic rule-base in (14). In order to evaluate the design attributes in the 

secondary phase a robot simulation package is integrated with the LCD methodology, consisting of 

forward and inverse kinematics, and a recursive Lagrange-Euler inverse dynamics. A generic bond graph 

model of a serial-link manipulator is also utilized to calculate the performance supercriterion a detailed 

description of which is presented in (Chhabra and Emami 2011). The resulting design architecture, shown 

in Fig. 4, is employed to concurrently improve the design of a five d.o.f. industrial manipulator, namely 

CRS-CataLyst 5, to follow a number of pre-defined trajectories, including step, ramp, pick-and-place, and 

periodic, subject to one kilogram payload at the end-effector.  
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The LCD process is divided into five major steps: a) choosing the design variables and attributes, b) 

assigning satisfactions, c) primary phase, d) secondary phase, and e) performance supercriterion. In the 

following, these steps are detailed for improving the existing design of CRS-CataLyst 5. 

3.1. Design Variables and Attributes 

The kinematic, dynamic and control parameters of a five d.o.f. manipulator with rotary joints are 

considered as the design variables. Kinematic parameters of the robot, i.e., its geometry, are defined based 

on standard Denavit-Hartenberg convention (Denavit and Hartenberg 1955). Length li, offset di, and twist 

 

Fig. 4. The LCD design architecture for serial-link robot manipulators 
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αi (Fig. 5) are deemed as the kinematic design variables of the ith link. To take into account dynamic 

parameters, each link is modeled as an L-shaped circular cylinder along the link length and offset. The 

radius of the corresponding cylinder ri as a design variable specifies dynamic parameters of the ith link, 

i.e., mass, moment of inertia and the position of the centre of mass, knowing the density of link material. 

A schematic of a five d.o.f. serial-link manipulator is depicted in Fig. 5. From the control point of view, a 

PI position controller with velocity feedback and feedforward is considered for each joint. Hence, the 

control design parameters for the ith joint consist of proportional Pi, integral Inti, velocity feedback Kvfb,i 

and velocity feedforward Kvff,i gains. Consequently, this design problem deals with forty design variables, 

in total, to identify the best kinematic, dynamic and control design parameters for a five d.o.f. serial-link 

manipulator. 

In the LCD methodology, design attributes are divided into must and wish attributes. As must attributes, 

a number of constraints are considered in the case study, which are listed below:  

M1) Design availabilities, i.e., a set of inequalities for the design variables Xj’s,  

 
 

 
li ≡ The length of common normal between Zi-1 and Zi along Xi

  
αi ≡ The angel between Zi-1 and Zi measured about Xi  

di ≡ The distance from Xi-1 to Xi measured along Zi-1 
θi ≡ The angel between Xi-1 and Xi measured about Zi-1

 
 

Fig. 5.  The CRS CataLyst-5 manipulator, its schematic and link coordinate frames and D-H parameters 
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maxmin
jjj XXX ≤≤      ( j=1,…,40). (30) 

M2) Joint restrictions, i.e., a set of inequalities for the ith joint variable at instant t, );( Xtiθ ,  

maxmin );( iii t θθθ ≤≤ X        (i=1,…,5).  (31) 

M3) Torque restrictions, i.e., a set of inequalities for the absolute torque of the joint i at instant t, 

);( Xtiτ ,  

max);( ii t ττ ≤X        (i=1,…,5). (32) 

M4) The restriction on the farthest point of the end-effector reachable workspace, i.e., max)( RiRi ≤X .  

The considered wish design attributes are:  

W1) The end-effector overall position error Etot(X). The average of the end-effector position error over 

the set of Nt pre-defined end-effector trajectories at instant t is 

∑
=

−+−+−=
tN

m
mdmmdmmdm

t
av tztztytytxtx

N
tE

1

2
,

2
,

2
, ))();(())();(())();((1);( XXXX ; (33) 

where ))(),(),(( ,,, tztytx mdmdmd  are the desired coordinates of the end-effector in the mth pre-defined 

trajectory at instant t and ));(),;(),;(( XXX tztytx mmm  are the actual coordinates of the end-effector 

following the mth pre-defined trajectory at instant t. The time average of );( XtEav  is considered as the 

end-effector overall position error, i.e., 

∫= ft
av

f
tot dttE

t
E

0
);(1)( XX . (34) 

where tf is the final simulation time. 

W2) The robot manipulability Man(X), 

∫ ∑ 









=

=

f
tt N

m

m

tf
dttcond

Nt
Man

0
1

0 ));((11)( XJX ; (35) 

where ));(( 0 XJ tcond m  is the condition number of the Jacobian matrix of the five d.o.f. serial-link 



27 
 

manipulator with respect to the base coordinate frame at time t for the mth pre-defined trajectory. At the 

singular points this condition number approaches infinity, and its minimum value is one (Bi and Zhang 

2001). 

W3) The structural length index of the manipulator QL(X),  

∑
=

+=
5

1

3 )(/)()(
i

iiL VolldQ XX ; (36) 

where Vol(X) is the workspace volume, and it is numerically computed based on an algorithm presented 

in (Ceccarelli et al. 2005). 

W4) The average of the overall required torque at time t on the pre-defined end-effector trajectories 

);( Xttotτ , 

∑∑
= =

=
tN

m i

m
i

t
tot t

N
t

1

5

1
);(1);( XX ττ ; (37) 

where );( Xtm
iτ  is the required torque for the joint i at time t in the mth pre-defined end-effector trajectory. 

The above-mentioned design attributes are further detailed in (Chhabra and Emami 2009; Emami and 

Chhabra 2010). 

3.2. Satisfaction Assignment 

Satisfactions are defined as fuzzy membership functions over the range of values of the design 

variables and attributes. The must attributes (including the availability constraints) should often satisfy 

inequalities while wish attributes should be as satisfactory as possible. With the help of fuzzy set theory, 

the LCD methodology redefines the notions of inequality and optimization, and attempts to turn their 

strict binary nature into a flexible behaviour. A form of fuzzy membership functions is the trapezoidal 

function that is utilized in this case study to define satisfactions for the design variables and attributes (see 

Fig. 6). These functions are identified by their four corners that are specified by the designer based on the 

design availabilities and requirements, and the designer/customer’s interpretation of inequality and 

optimization. The first and last points of the trapezoid corresponding to a must satisfaction are the 
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minimum and maximum values of the inequality, respectively. The middle points are chosen such that the 

definition of the inequality is neither too fuzzy nor too crisp, and it obeys the design requirements. For a 

wish satisfaction that needs to be minimized, the last point (of the trapezoid) is the maximum allowable 

value of the attribute, and as the attribute decreases the satisfaction approaches to one. The middle point is 

selected based on the designer/customer’s interpretation of the notion of minimum. All acceptable ranges 

of values corresponding to the design variables and attributes in this case study are listed in Table I.  

3.3. Primary Phase 

The primary phase of the LCD methodology attempts to sketch the final design and search for a pareto-

optimal design solution, and introduces the initial values for the optimization in the secondary phase. In 

this case study, the five d.o.f. robot manipulator is modeled by a set of fuzzy IF-THEN rules using the 

Table I. Accepted ranges of design variables and attributes 
i 1 2 3 4 5 

ri (mm) [0,200] [0,200] [0,200] [0,200] [0,200] 
li (mm) [0,500] [0,500] [0,500] [0,500] [0,500] 
di (mm) [0,500] [0,500] [0,500] [0,500] [0,500] 
αi (ᴼ) [-180,180] [-180,180] [-180,180] [-180,180] [-180,180] 
θi (ᴼ) [-180,180] [-110,10] [-100,70] [-110,110] [-180,180] 
|τi| (N.m) [0,5.5] [0,16.2] [0,5.5] [0,4.8] [0,2.4] 
Ri(m) [0,0.87] 
Etot [0,2] 
Man [1,24] 

QL [0,1.6] 
τtot (N.m) [0,16.5] 

Control Gains [0.01,1000] 

 

 
Fig. 6. Satisfactions defined on design variables and attributes 
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system knowledge extracted from a computer simulation of CRS-CataLyst 5. A MISO fuzzy rule-base 

was obtained from this model with the overall satisfaction as its consequent. A method of fuzzy-logic 

modeling presented in (Emami et al. 1998) is employed to build the rule-base. First, Fuzzy C-Means 

(FCM) clustering method (Bezdek 1981) is used to introduce membership functions on the universe of 

discourse of overall satisfaction that leads to 20 rules (clusters) for the system under study. Secondly, the 

22 significant antecedents (design variables), which are shown in Table II, are identified by a non-

significance measure (Emami et al. 1998). Finally, the output membership functions are projected to the 

input space to define the antecedent membership functions using line fuzzy clustering (Emami et al. 

1998). The TSK inference mechanism is used to evaluate this model. In each rule, the overall satisfaction 

is presented by the centre of area of the consequent membership function, and the rule with the highest 

satisfaction is selected. The antecedent and consequent membership functions of the most satisfactory rule 

are depicted in Table II. In addition, the initial values for the optimization in the secondary phase, which 

are stated in Table IV, are identified by defuzzifying the antecedent membership functions. The initial 

values of the non-significant variables do not influence the secondary phase significantly; hence, their 

initial values are selected based on the existing design of CRS-CataLyst 5.  

TABLE II. Antecedent and consequent memberships of the most satisfactory rule 
 (a, b, c, and d are the left-to-right corners of the trapezoidal function.) 

Xj 
Antecedent Parameters 

a b c d 
r1 (mm) 6.531E+1 6.561E+1 6.561E+1 6.607E+1 
r2 (mm) 2.768E+1 2.776E+1 2.776E+1 2.836E+1 
r3 (mm) 2.404E+1 2.406E+1 2.410E+1 2.458E+1 
r5 (mm) 1.000E+1 1.004E+1 1.025E+1 1.051E+1 
α1 (ᴼ) -9.327E+1 -8.984E+1 -8.909E+1 -8.846E+1 

l1 (mm) -9.279E-4 3.108E-3 3.370E-2 1.278E-1 
l2 (mm) 2.539E+2 2.539E+2 2.542E+2 2.577E+2 
d2 (mm) 0.000E+0 0.000E+0 4.355E-3 1.567E-1 
α3 (ᴼ) -4.074E-3 -2.763E-5 2.800E-3 5.546E-3 

d3 (mm) 0.000E+0 2.584E-3 4.820E-2 2.292E-1 
α4 (ᴼ) -9.299E+1 -9.001E+1 -8.869E+1 -8.548E+1 

l5 (mm) 9.976E-8 1.000E-7 1.001E-7 1.024E-7 
P1 1.993E+1 1.999E+1 2.100E+1 2.100E+1 

Kvfb,1 3.998E+1 4.035E+1 4.156E+1 4.251E+1 
Kvff,1 4.278E+1 4.449E+1 4.504E+1 4.549E+1 

P2 2.200E+1 2.200E+1 2.215E+1 2.275E+1 
Kvfb,2 3.742E+1 3.859E+1 4.140E+1 4.271E+1 
Kvff,2 4.740E+1 4.753E+1 4.800E+1 4.972E+1 
Kvfb,3 2.298E+1 2.362E+1 2.470E+1 2.503E+1 
Kvff,3 3.256E+1 3.291E+1 3.352E+1 3.413E+1 

P5 9.878E+0 9.939E+0 1.009E+1 1.028E+1 
I5 9.863E-2 9.937E-2 1.010E-1 1.031E-1 
µ 2.761E-1 2.783E-1 2.818E-1 2.838E-1 
µ* 0.280 
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3.4. Secondary Phase 

In the secondary phase, for each design state the robot simulation is first run for different trajectories 

specified in the design problem, and the required data are saved for post-processing. The must and wish 

design attributes, defined in M1-4 and W1-4, are then computed for the design state, and satisfactions are 

evaluated using the membership functions shown in Fig. 6. Assuming small changes in the design 

variables in the successive optimization steps, the total differential of wish satisfactions are estimated 

using the satisfactions calculated in two consecutive steps of the optimization. The positive- and negative-

differential wish attributes are specified, accordingly, and finally wish and must satisfactions are 

aggregated based on the procedure explained in Sub-section 2.2 to compute the overall satisfaction for the 

design state. This phase of design involves the maximization of the overall satisfaction starting with an 

initial design state determined in the primary phase. Although CRS-CataLyst 5 has already been 

optimized using the conventional design methodologies, it is shown in this section that one can further 

enhance the performance of this multidisciplinary system using the LCD methodology through 

considering all design variables concurrently. The function fminsearch in the MATLAB® optimization 

toolbox is employed for performing the single-objective optimization. This function uses a derivative-free 

search algorithm based on simplex method that is suitable for handling discontinuity, sharp corners and 

noise in the objective function. Based on the definition of the overall satisfaction, the optimum design 

variables depend on the attitude parameters p, q and α.  

3.5. Performance Supercriterion 

In this phase of design, the energy supercriterion that is defined in Sub-section 2.5.1 is minimized over 

the set of satisfactory design alternatives. In the design loop, this supercriterion is determined for each 

satisfactory design candidate using a bond graph model of a five d.o.f. serial-link manipulator including 

its joint modules and controllers, which is illustrated in Fig. 7. In this figure, the flows and efforts are 

distinguished based on their location at the corresponding power bond. The symbol on the right-hand-side 

(at the bottom) of a vertical (horizontal) power bond is effort and the one on the left-hand-side (at the top) 
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of a vertical (horizontal) power bond is flow. A step-by-step construction of the bond graph model of a 

multidisciplinary system is detailed in (Borutzky 2009), and a complete description of the model shown in 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Bond graph representation of (a) a serial link manipulator, and (b) an electric motor; 
 (c) the controller block diagram 
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Fig. 7 can be found in (Chhabra and Emami 2011). The bond graph model of the mechanical subsystem 

of the robot manipulator is derived based on the power and motion exchange between the constituents of 

the physical system, which result in an alternative representation of system dynamics to the Newton-Euler 

formulation for a generic serial link manipulator (Kamopp et al. 2006). The boundary conditions are zero 

angular and linear velocities (flow) at the base and constant force and zero moment (effort) at the end 

effector.  

The bond graph representation of the electric motors consists of two physical domains, i.e., electrical 

and mechanical. A gyrator element, using the torque coefficient of the motor 
imK  as the gyrator ratio, 

relates these two domains. The electrical part includes a voltage supply Vi, a motor driver that is modeled 

by an amplification gain, and a simple RL circuit (
imr  and 

iml  are the resistor and inductor coefficients). 

The mechanical domain consists of the motor shaft moment of inertia 
imj , viscous friction at the 

bearings µi, and transmission system with ratio iη . The actuators parameters of the CRS CataLyst-5 have 

been used in this simulation, as listed in Table III.  

The energy criterion of the manipulator for a pre-defined end-effector trajectory is the time integral of 

the inner product of flow and effort at the source elements. In this case study, energy flows to the system 

through the constant voltage electric sources of the joint motors. Hence, the total energy consumption of 

the system as the supercriterion is calculated by 

∑∑ ∫
= =






=

t
f

N

m i

t
s

m
ii

t
s dtqptIV

N
q;pSE

1

5

1
0

),,,;(1),,( αα XX ; (38) 

where ),,,;( αqptI s
m
i X  is the current at the ith electric source while the manipulator is following the mth 

Table III. CRS CataLyst-5 motor parameters used in the simulation  

 
Vi 

(V) 

imr
(Ohm) 

iml
(mH) 

imK  
(N.m/A)

 imj
(g.cm2) 

iη  iµ  
(N.m.s/rad) 

Link 1 4 3.3 3 0.2587 68 1/72 0.0001 
Link 2 3.6 1.8 2.5 0.4414 300 1/72 0.0001 
Link 3 3.6 1.8 2.5 0.4414 300 1/72 0.0001 
Link 4 4 3.3 3 0.2587 68 1/19.6 0.0001 
Link 5 4 3.3 3 0.2587 68 1/9.8 0.0001 
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pre-defined end-effector trajectory, and Xs∈Cs is a satisfactory solution of design identified in the 

secondary phase. By minimizing this criterion over Cs the best design is achieved, i.e., 

),,(min),,( *** αα q;pSEq;pSE sCX ss

XX *
∈

= . (39) 

The bond graph model of the robot manipulator was programmed in MATLAB® Simulink and a 

gradient-based, constrained non-linear optimization algorithm, called fmincon, was employed to optimize 

the energy supercriterion. In each optimization loop, the designer’s attitude parameters are changed and 

the energy criterion is evaluated for a satisfactory design candidate by calculating the power transmission 

at the constituents of the system.  

3.6. Discussion of Results  

The initial and final design solutions of CRS CataLyst-5 are presented in Table IV. Since the design 

problem was to improve the existing design of a system, whose design has already been refined 

conventionally, some of the design variables did not change from their initial values notably. The 

Table IV. Initial and final design solutions  
 ri (mm) li (mm) 
 i=1 i=2 i=3 i=4 i=5 i=1 i=2 i=3 i=4 i=5 

Initial 65.6 27.9 24.2 10.0 10.0 0.0 255.2 254.0 0.0 0.0 
Final 65.9 28.0 23.0 10.1 10.2 0.0 257.9 255.1 0.0 0.0 

 di (mm) αi (ᴼ) 
 i=1 i=2 i=3 i=4 i=5 i=1 i=2 i=3 i=4 i=5 

Initial 254.0 0.0 0.0 0.0 0.0 -90.4 0.0 0.0 -89.3 0.0 
Final 255.1 0.0 0.0 0.0 0.0 -90.6 0.0 0.0 -89.5 0.0 

 Pi Inti 

 i=1 i=2 i=3 i=4 i=5 i=1 i=2 i=3 i=4 i=5 
Initial 20.48 22.26 13.00 12.00 10.05 0.100 0.100 0.150 0.200 0.101 
Final 20.73 22.35 13.07 12.04 10.08 0.100 0.101 0.152 0.201 0.101 

 Kvfb,i Kvff,i 

 i=1 i=2 i=3 i=4 i=5 i=1 i=2 i=3 i=4 i=5 
Initial 41.11 39.67 24.08 23.65 22.40 44.38 48.25 33.29 25.00 23.00 
Final 40.55 39.68 24.12 23.71 22.52 45.04 48.39 33.37 25.07 23.08 

 [p,q,α] SE (J) 
Initial [10.00,1.50,0.50] 8.2850 
Final [9.56,1.69,0.50] 7.8049 

 Wish Design Attributes 
 Etot Man QL 

τtot(tk) (N.m) 
 k=1 k=2 k=3 k=4 k=5 k=6 k=7 

Initial 2.1948 19.5192 1.3049 14.0631 12.1214 13.0851 12.1373 12.1434 13.1062 12.1474 
Final 0.6757 18.7397 1.2982 13.3135 11.3882 12.3080 11.4063 11.4128 12.3297 11.4165 

 Wish Satisfactions 

 
Etotµ  Manµ  LQµ  )( ktot tτµ  

 k=1 k=2 k=3 k=4 k=5 k=6 k=7 
Initial 0.000 0.738 0.747 0.591 1.000 0.828 1.000 1.000 0.823 1.000 
Final 0.417 0.754 0.877 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 Overall Must Satisfaction (
)( p

Mµ ) Overall Satisfaction (
),,( α

µ
qp

) 

Initial 0.418 0.278 
Final 0.592 0.572 
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minimum modifications are observed in the non-significant design variables that were identified in the 

primary phase of the LCD. However, for the dynamic parameters, the radius of the third link has changed 

most notably by almost 5%. Also, for the kinematic parameters the length of the second and third links 

have changed by nearly 1% and -0.5%, respectively. For the link offsets, only the first link shows a 

considerable adjustment. None of the twist variables have significantly changed. Considering these 

modifications, the masses of the first three links have been adjusted by -1.3%, -1.8% and +9%, 

respectively. All control gains have been slightly modified by 0.3 to 1.5% to enhance the system 

performance.  

An improvement in all wish attributes is noticeable in Table IV, which indicates that the existing design 

was not a pareto-optimal solution for the design attributes described in M1-4 and W1-4. Hence, the LCD 

methodology was able to enhance the system performance in terms of the designer/customer’s preference 

by effectively considering all design variables concurrently and employing a concurrent synthesis and 

analysis strategy, which considers interconnection between different disciplines. The most important wish 

design attribute is the end-effector overall position error Etot defined by (34). From Table IV, a significant 

improvement in Etot is achieved, i.e., the final value of Etot is almost 3.25 times smaller than its initial 

value. For instance, Fig. 8(a) demonstrates that for a pick-and-place end-effector trajectory, which was 

considered as one of the pre-defined trajectories in the design process, the final design solution follows 

the desired trajectory with less error at all times, comparing to the initial design solution. In this figure the 

x, y, and z components of the end-effector trajectory are shown separately. According to the 

designer/customer’s preference, the corresponding wish satisfaction has reached to 0.417 from the initial 

value of zero. The manipulability measure indicates how close to singularity the manipulator 

configuration is while following different pre-defined trajectories. The ideal value for this wish design 

attribute is one. Table IV shows 4% improvement for this attribute. The structural length index of the 

manipulator as a wish design attribute has been slightly improved, as well, which shows that the final 

manipulator can cover a bigger workspace with a less overall amount of material. The average of the 
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overall required torque in the manipulator for pre-defined end-effector trajectories is shown in Table IV at 

seven different times, each of which is considered as a wish design attribute. All of them have decreased 

by almost 6-7%, which means that the final manipulator consumes less energy. For example, Fig. 8(b) 

demonstrates that for a pick-and-place trajectory the torque at the first three joints is always less than the 

corresponding torque for the initial design solution. Further, the overall must satisfaction has also 

increased, which indicates an improvement in satisfying the constraints and design availabilities; 

therefore, the final design is more fault-tolerant.  

 
(a) 

 
(b) 

 
Fig. 8. Performance comparison of the initial and final design solutions in terms of  

(a) following a pick-and-place end-effector trajectory, and (b) torque at the first three joints (from left to right) 
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All satisfactory design alternatives were checked against a purely-objective supercriterion, as part of 

the LCD methodology, to adjust the designer’s attitude in the aggregation process and confirm the 

designer/customer’s preference. The energy supercriterion introduced in Sub-section 2.5.1 was used to 

finalize the design process. The state with the minimum energy consumption was picked as the final 

design. According to Table IV, the energy consumption has decreased by nearly 6%, which is consistent 

with the change of the total input torque in the manipulator. Comparing the final designer’s attitude with 

the initial parameters shows a 5% decrease in the must aggregation parameter p. This change indicates 

that the designer was initially slightly conservative in aggregating must attributes. Hence, instead of 

focusing on the least satisfactory must attribute, the designer should give more weight to the other must 

satisfactions, as well. In terms of wish satisfaction aggregation, the value of α did not change 

significantly, i.e., the designer was able to appropriately compromise between the two competitive wish 

attribute subsets. On the other hand, parameter q has been adjusted by 13% increase, which means the 

initial designer’s attitude was too aggressive (optimistic) for the aggregation of the cooperative wish 

attributes. Thus, the designer should not try to enhance all cooperative wish attributes at once, and should 

instead focus more on improving the minimum attribute. Overall, this case study shows that 

implementation of the LCD can not only result in a system with a better performance, but it also helps the 

designer gain a better understanding of his/her actions.  

4. Conclusion 

A concurrent design methodology for multidisciplinary systems was formalized that effectively 

employs notions of fuzzy logic and fuzzy set theory, such as membership functions, fuzzy connectives 

and fuzzy-logic modeling, to systematically take into account subjective aspects of design and offer a 

practical approach to the multidisciplinary design problem. Its implementation to the design of robot 

manipulators was illustrated through a case study involving the re-design of a five d.o.f. industrial 

manipulator. It was shown that an existing design based on traditional methodologies can be further 

improved by considering the notions of satisfaction in the synthesis and energy in the analysis, and 
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accordingly taking into account all design variables concurrently. The LCD methodology is naturally 

divided into three phases. The primary phase, which emulates the conceptual phase of design, considers 

all possible design solutions and qualitatively searches for a region of the design space that corresponds to 

the highly satisfactory design attributes. The secondary phase that is analogous to the detailed phase of 

design attempts to locally find the most satisfactory design solutions. Finally, a performance 

supercriterion determined through a bond graph model of the system is used to adjust the designer’s 

attitude and find the ultimate design solution based on a system performance.  
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