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Abstract

This paper develops a Nonlinear Model Predictive Control (NMPC) strat-

egy for robust tracking of multi-impulse smooth transfer trajectories in J2-

perturbed orbital environments. The reference trajectories are designed for

long-range rendezvous of servicing satellites with orbiting targets. In the

proposed NMPC, the control signals are velocity increments at the impulse

times, and the prediction horizon is variable due to the impulsive nature of

the reference trajectories. The reference control input and the impulse times

are pre-specified by the reference trajectory. Then, the NMPC calculates

the optimal correction control vector to track the trajectory with minimum

deviation and control effort, during the time between two consecutive im-

pulses. To arrive near the target at the end of the transfer, the optimization

in the last horizon is modified to be free-final-time, with an added soft con-

straint to minimize the final distance between the servicer and the target

satellite. To avoid singularities in the mean dynamics of the J2-perturbed
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servicer, the equinoctial orbital elements are used in the process model. We

also include the first-order long-periodic effects in this model. We investi-

gate the robustness of the proposed NMPC in a simulation environment that

additionally models: (i) the first-order short-periodic effects, (ii) a bounded

uncertain acceleration to capture unmodelled dynamics, and (iii) burning

time for satellite thrusters. Finally, an evolutionary optimization algorithm

is implemented and embedded in the controller to decrease the computational

complexity and to handle impulsive control inputs. Simulation results are

provided to illustrate the tracking effectiveness of the developed controller.

Keywords: On-orbit servicing, Long-range rendezvous, Multi-impulse

maneuver, Nonlinear Model Predictive Control, Optimal Tracking

Guidance, Genetic algorithm

1. Introduction

On-Orbit Servicing (OOS) missions have been playing a significant role

in space exploration. These missions include a range of services to operative

satellites (hereinafter called target), such as debris removal, refueling, repair-

ing, and assembly, to increase their efficiency and lifetime [1]. Such services

are often performed using a servicing satellite, called servicer. The phase of a

servicing mission that mostly contributes to fuel and time consumption is the

long-range rendezvous [2]. Hence, the guidance and control in the long-range

rendezvous phase must be comprehensively studied as one of the crucial steps

in improving the performance of OOS missions. Long-range rendezvous in

two-body context has been widely studied in the literature [3, 4] (and the

references therein). However, neglecting the effect of environmental pertur-
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bations results in inaccurate transfer trajectories that must be corrected by

using a control strategy.

Satellites in different orbital altitudes experience various disturbances due

to other celestial objects, Earth’s oblateness, Earth’s atmosphere, solar radi-

ation, etc. Among these, the most dominant one from the Low Earth Orbit

(LEO) regime to the Geostationary Earth Orbit (GEO) regime, which is a

highly populated region, is the Earth’s oblateness and especially the second

zonal term (J2) with orders of magnitude larger effects [5, 6]. The osculating

orbital elements refer to the time-varying orbital elements of a satellite in a

J2-perturbed environment that represent the true position and velocity of a

satellite. These elements poorly behave over time as a basis for prediction,

since their numerical integration is extremely slow. The effects of the J2

perturbation in the evolution of orbital elements are often divided into three

types of induced motion, namely secular drift, short periodic effect, and long

periodic effect [7]. Danielson et al. develop a semi-analytic approach using

the equinoctial orbital elements for satellite orbit prediction by analytically

integrating the periodic motions and finding the set of equations governing

the secular drift [8]. Gim et al. derive the state transition matrices between

the mean and osculating elements in both classical and equinoctial orbital

elements [9, 10], using the 1st order approximations of the long- and short-

periodic motions obtained in [11]. Interested readers are referred to [12] and

the references therein for more details about the recent developments in the

analysis of J2-perturbed orbits.

Designing optimization-based controllers for spacecraft established upon,

e.g., dynamic programming, model predictive control, optimal control the-
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ory, etc., is becoming popular due to the high efficiency demand in space

applications [13]. Also, their capability of being combined with other con-

trol schemes, e.g., adaptive methods [14] and disturbance observers [15],

demonstrates their flexibility and functionality. Among the optimization-

based control strategies, Model Predictive Control (MPC) methods are of

more interest due to their capability to handle mission related constraints

[13, 16, 17, 18, 19, 20]. The MPC is equally applicable to linear and nonlin-

ear systems, respectively referred to as Linear MPC (LMPC), and Nonlinear

MPC (NMPC). Despite being fast, the LMPC is not sufficient for trajectory

control in the long-range rendezvous missions, since the traveled orbital dis-

tance in these missions is large and the linear models fail to accurately capture

satellite dynamics [21]. The methods for solving the NMPC are mainly based

on nonlinear programming. The drawbacks of these gradient-based methods

are increasing the complexity and the probability of converging to a local op-

timum that can be tackled by implementing heuristic optimization algorithms

[22]. The efficacy of combining MPC with evolutionary algorithms has been

studied in different research areas [23, 24, 25]. Tian et al. study the problem

of cooperative search using a team of unmanned aerial vehicles and present

an approach which combines MPC theory with the Genetic Algorithm (GA)

to solve this problem [24]. The efficiency of solving MPC problems using GA

to control the attitude maneuver of a satellite is demonstrated in [26]. One

of the popular guidance approaches for space vehicles is reference trajectory

tracking. There are several recent studies which have shown the effectiveness

of the MPC in developing a reference tracking guidance method in real-time

[27, 28, 29]. Authors in [27] present an MPC scheme incorporating neural-
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dynamic optimization to achieve trajectory tracking of nonholonomic mobile

robots. Moreover, Chai et al. propose both LMPC and NMPC schemes to

solve the reconnaissance trajectory tracking problem [28]. The performance

of MPC in real-time applications is highly dependent on the accuracy of the

prediction model. Due to difficulties in providing an accurate model of a

system, there is a need to guarantee the robustness under high levels of mod-

eling uncertainty. One of the applicable approaches that ensures a Robust

MPC (RMPC) is to add a bounded uncertainty function to the dynamic

model [30, 31, 32]. A challenge in NMPC is that their closed-loop stability

is not guaranteed. However, as is proved in [33], the stability of NMPC is

guaranteed in the case of existing a fixed-final-state constraint.

The problem addressed in this paper is designing a real-time NMPC for a

constrained spacecraft trajectory tracking problem specifically proposed for

a long-range rendezvous mission. The trajectory that is used as the reference

in this paper is a multi-impulse smooth trajectory that we designed in the

context of two-body problem for chasing an orbiting target [4]. The objective

function of the proposed NMPC is a combination of control efforts and track-

ing errors related to the reference trajectory following and target chasing at

the final time. The optimization problems in the horizons before the last are

fixed-time problems without considering any terminal constraints. However,

to rendezvous with the target in an acceptable range, we solve a free-final-

time optimization problem in the final horizon with the terminal condition

of zero-distance from the target. To enhance the real-time performance of

the developed NMPC, we: (i) include a nonlinear process model consisting of

the well-behaved differential equations for secular drift and the analytic solu-
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tion of the 1st-order long-periodic motion, as the most dominant disturbing

effects in a long-range rendezvous; and (ii) embed a GA-based optimization

technique in the proposed impulsive NMPC. The motion is represented in

equinoctial orbital elements to avoid singularities in the dynamical equations

on circular and/or equatorial orbits. To robustly follow the reference trajec-

tory in J2-perturbed environments, a closed-loop system is constructed by

receiving position and velocity feedback from the servicer. Further, since the

impulsive controller is not achievable practically, we model the burning time,

which is the time where the thruster is on, in the process model. Finally, we

study the efficacy of the proposed GA-based NMPC in a numerical example.

To demonstrate the robustness of the controller in this example, we include

short-periodic effects and a bounded random acceleration, in addition to the

secular and long-periodic effects, in the dynamic simulation of the servicer.

The remaining sections of this paper are organized as follows. The math-

ematical model describing the J2 perturbation dynamics of a satellite repre-

sented in equinoctial orbital elements is given in Section 2. Then, a summary

of our previous paper in modelling a multi-impulse smooth trajectory to chase

a target [4] is given in Section 3. The developed NMPC architecture is then

presented in Section 4. Section 5 reports some simulation results in a case

study. Finally, Section 6 includes some concluding remarks.

2. Motion of Satellites in J2-Perturbed Orbits

In this section, we discuss the orbital motion of a satellite in exposure

to the J2 perturbation effects. First, the equinoctial orbital elements are

introduced, using which the dynamical equations of the perturbed satellites
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Figure 1: Local-vertical-local-horizontal and ECI reference frame

are never singular. The relationship between these elements, the classical

orbital elements, and the Cartesian elements is discussed. Accordingly, the

J2-perturbed motion of satellites is approximated with mean elements and

the first order of periodic effects.

2.1. Equinoctial Orbital Elements

There are different element sets for representing the orbital motion, e.g.,

the classical orbital elements (also known as Keplerian elements), equinoctial

elements, Cartesian state vectors, Hill variables, cylindrical coordinates, and

Deprit’s ideal elements [34]. In this paper, we interchangeably use classical

orbital elements, equinoctial elements, and Cartesian position and velocity

vectors with respect to Earth-Centered Inertial (ECI) reference frame (this

frame is denoted by ℑ in Fig. 1). Herein, we explain the conversions between

these three sets of orbital elements. The Equinoctial Element (EE) set is

denoted by the vector x̂ = [â ĥ k̂ p̂ q̂ λ̂]T , which is constructed based

on the classical orbital elements as follows [35]
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â = a, ĥ = e sin(ω + Ω), k̂ = e cos(ω + Ω), (1)

p̂ = tan(ι/2) sin(Ω), q̂ = tan(ι/2) cos(Ω),

λ̂ = Ω+ ω +M. (2)

Here, a is the semi-major axis, e is the eccentricity, ω is the argument of

perigee, Ω is the Right Ascension of Ascending Node (RAAN), ι is the incli-

nation angle, and M is the mean anomaly. Conversely, the classical orbital

elements can be obtained from the EE by[8]:

a = â, e =

√
ĥ2 + k̂2, ι = 2arctan

√
p̂2 + q̂2, (3)

sinΩ =
p̂√

p̂2 + q̂2
, cosΩ =

q̂√
p̂2 + q̂2

, ω = ξ − Ω,

M = λ̂− ξ, (4)

where ξ is defined by

sin ξ =
ĥ√

ĥ2 + k̂2
, cos ξ =

k̂√
ĥ2 + k̂2

. (5)

The classical orbital elements then can be converted to the Cartesian

coordinates whenever required [36]:

r = QO, ṙ = QȮ,

O =
h2

µ

1

1 + e cos ν
[cos ν sin ν 0],

Ȯ =
µ

h
[− sin ν e+ cos ν 0], (6)

Q =


cosω cosΩ− sinω cos ι sinΩ − sinω cosΩ− cosω cos ι sinΩ sin ι sinΩ

cosω sinΩ + sinω cos ι cosΩ − sinω sinΩ + cosω cos ι cosΩ − sin ι cosΩ

sinω sin ι cosω sin ι cos ι

 ,

(7)
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where ν is the true anomaly and is a function of the mean anomaly M , µ

is the gravitational constant of the Earth ( ≈ 398601.2 km3s−2), h is the

orbital specific angular momentum h =
√

µa(1− e2), and Q in (7) is the

transformation matrix from the orbital frame (z-axis perpendicular to orbital

plane, x-axis pointing to periapsis of the orbit) to the ECI. We denote the set

of position and velocity vectors in the Cartesian coordinates by the vector

X = [rT ṙT ]T .

2.2. Approximation of Osculating Orbital Motion in EE

It is beneficial to describe the motion of a spacecraft in terms of mean

orbital elements as it best describes the secular growth by removing the

periodic effects, so the long-term behaviour of the spacecraft motion is im-

mediately evident [37]. One way of describing the satellite’s mean motion is

to use the classical orbital elements. Despite its being intuitive, the space-

craft dynamics represented by the classical orbital elements is singular for

circular and/or equatorial orbits. The singularity can be avoided by using

equinoctial elements that can be converted into Classical elements, as shown

in (1) and (3). We denote the mean equinoctial orbital elements by the vector

x = [a h k p q λ]T . Note that to show the mean EE we simply drop

the hat from the osculating EE. The dynamics of the mean orbital elements

of a spacecraft without any control input can be formulated as [38]:

ẋi = nδi6 +
6∑

j=1

(xi,xj)
∂R
∂xj

, (8)

where xi is the ith element of the vector x (i = 1, · · · , 6), n =
√

µ
a3

is the

Kepler (mean) mean motion, δi6 is the Kronecker delta which is equal to one
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only when i = 6 and is zero otherwise. Also, (xi,xj) is called the Poisson

matrix and its entries are called the Poisson brackets. The Poisson brackets

of the mean element x are defined by

(xi,xj) ≜
∂xi

∂r
· ∂xj

∂ṙ
− ∂xi

∂ṙ
· ∂xj

∂r
. (9)

It is evident that (xi,xi) = 0, (xi,xj) = −(xj,xi). Moreover, R is the mean

perturbing potential due to J2 represented in mean EE and is derived by

averaging the osculating perturbing potential (which is given in [8]):

R =
J(γ2 − 1

3
)

a3(1− h2 − k2)
3
2

, J =
3µR2

eJ2
4

, γ =
1− p2 − q2

1 + p2 + q2
. (10)

Here, Re is the equatorial radius of Earth ( ≈ 6371 km), and J2 is the

second zonal harmonic coefficient ( ≈ 1.0826 × 10−3). Having the fifteen

independent Poisson brackets for the mean EE [35] and ∂R
∂x

based on (10) [8],

(8) transforms to:

ẋ =



0

Jk[3γ2−1+2γ(pα−qβ)]

η1η42a
3

−Jh[3γ2−1+2γ(pα−qβ)]

η1η42a
3

− η3Jβγ
η1η42a

3

− η3Jαγ
η1η42a

3

J [(1+η2)(3γ2−1)+2γ(pα−qβ)]

η1η42a
3 + n


. (11)

Here,

η1 =
√
µa, η2 =

√
1− h2 − k2, η3 = 1 + p2 + q2,

α =− 2p

1 + p2 + q2
, β =

2q

1 + p2 + q2
. (12)
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To have a more precise dynamics for the motion of a satellite, the first order

of long- and short-periodic effects can be added to the mean motion. The

osculating equinoctial variables can be approximated as a function of the

mean variables as follows [9]:

x̂ ≈ x− J2R
2
e(x

(lp) + x(sp)), (13)

where x(lp) and x(sp) denote the first order long and short period variations

due to J2 and are obtained from the generating functions as discussed in [9,

11]. The time evolution of x(lp) and x(sp) based on the mean EE is presented

in Appendix A.

3. Multi-impulse Smooth Trajectories for Chasing Orbiting Tar-

gets

In this section, we aim to formulate a class of reference trajectories that

are used as the desired trajectory in the control design, in Section 4. We re-

view the class of planar smooth multi-impulse trajectories for chasing orbiting

targets in the long-range rendezvous phase of on-orbit servicing missions [4].

The trajectories are designed using classical orbital elements in the context

of the two-body problem. In [4], we also implemented a multi-objective con-

strained optimization to find the Pareto optimal trajectories amongst this

class of trajectories based on both control effort and transfer time.

In a given plane identified by known ι and Ω, in the three-dimensional

space, considering a central gravitational field, the satellite’s motion is fully

described by four orbital elements, i.e., a, e, ω, and ν. Using the polar coor-

dinates of the plane (r, θ), depicted in Fig. 2, ν can be replaced by θ = ν−ω
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Figure 2: Oblique ellipse parameters in polar coordinates of a plane

to introduce the vector p = [a, e, θ, ω]T as the set of planar orbital elements.

The parameters r, ν, θ, a, e, and ω are shown in Fig. 2, where the origin

is the Earth’s center. In this framework, the reference trajectory for long-

range rendezvous of a servicer can be developed by solving two problems

of smoothness and chasing. In (Shakouri), it is shown that the constraints

to generate N -impulse smooth trajectories between any two co-planar orbits

are:

fi1(pi,pi+1) := ei sin(θi + ωi) + eiei+1 sin(ωi − ωi+1)

− ei+1 sin(θi + ωi+1) = 0, (14)

fi2(pi,pi+1) := ai(1− e2i )[1 + ei+1 cos(θi + ωi+1)]

− ai+1(1− e2i+1)[1 + ei cos(θi + ωi)] = 0. (15)

Here, the vectors pi = [ai, ei, θi, ωi]
T , i = 1, · · · , N + 1, are the set of planar

orbital elements describing the full satellite trajectory starting from p1 and

ending at pN+1. Further, θi, for i = 1, · · · , N + 1, identifies the location

of the ith impulse. In the chasing problem, the co-planar orbital locations
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of a servicer and a target are given at the time t = 0, and the aim is to

find N -impulse smooth transfer trajectories for the servicer to intercept the

target at its point of entry to the target’s orbit. This problem can be solved

using [4]:

f3(p1, · · · ,pN+1) := (MT (0)−M+
N )

+
N∑
i=1

(
ai
aT

)
3
2 (M−

i −M+
i−1) = 0. (16)

Here, aT and MT denotes the semi-major axis and mean anomaly of the

target. Also, M+
i and M−

i are the mean anomalies of the sevicer at the ith

impulse in the (i + 1)st and ith orbit, respectively, which can be computed

as a function of the vectors pi and pi+1 [36]. Note that M+
0 is equal to the

servicer’s initial mean anomaly in its parking orbit. The set of equations in

(14)-(16) are highly nonlinear and can be solved using numerical algorithms,

such as Newton method [4]. Once we have a solution, the magnitude of the

velocity change at the ith impulse location ∆vi = ∥∆vi∥ is calculated based

on the orbital elements of the smooth transfer trajectory by

∆vi = v+i − v−i , (17)

where, v+i =
√

µ( 2
ri
− 1

ai+1
), v−i =

√
µ( 2

ri
− 1

ai
), and

ri =
ai(1− e2i )

1 + ei cos(θi + ωi)
. (18)

The velocity magnitude before and after the ith impulse are denoted by v−i

and v+i , respectively. The radius ri is the radial component of the location of

the servicer at the ith impulse in polar coordinates, based on (18). Note that
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at the ith impulse location, the direction of ∆vi is the same as the servicer’s

velocity direction due to the smoothness conditions.

In addition, for an N -impulse trajectory, the transfer time tf depends on

the intermediate orbital elements, and is calculated by

tf (p1, · · · ,pN) =
N∑
i=1

∆ti(pi, θi−1), (19)

∆ti(pi, θi−1) =
M−

i −M+
i−1√

µ
a3i

, i = 1, · · · , N. (20)

Beside the constraints on the shape of the transfer trajectories and the two

boundary conditions presented in (14)-(16), restrictions on the maximum

permitted velocity increment and the orbital elements corresponding to the

intermediate orbits can also be included in [4]. The latter restriction reduces

the risk of collision in populated orbital regions and ensures that the ser-

vicer remains within the LEO regime. Note that in formulating the problem

in (14)-(16) we did not consider any types of perturbations. In the next

section, we design a controller to compensate the error of neglecting the J2

perturbations.

4. Nonlinear Model Predictive Control

In the previous section, the trajectories were designed in the context of

the two-body problem without involving any disturbances. In this section,

we consider the following control problem to compensate for the errors of

neglecting the most dominant J2 perturbations in an orbit transfer.

Problem 4.1 (Tracking multi-impulse chasing trajectories). Given a desired

multi-impulse smooth trajectory for chasing a target, derived from (14)-(16),
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Figure 3: Impulsive control signals

find ∆vi at every impulse time ti such that the satellite’s trajectory under J2

perturbations remains close to the desired trajectory and the satellite arrives

near the target at the end of transfer.

To address this problem, a Nonlinear Model Predictive Control (NMPC)

is proposed in this section. In most of the predictive control families, the

idea is to calculate a control sequence minimizing an objective function us-

ing a model to predict the process output at future time instants (horizon)

and applying the first control signal at each step (receding strategy) [39].

In the following, we introduce the nonlinear process model for the multi-

impulse trajectory tracking problem and the objective function that should

be minimized in the proposed NMPC. We also provide an optimization plat-

form based on the GA to compute control signals, and its applicability to

real-time problems is discussed in Section 5. The variable horizon that is

considered in this control problem is the time difference between every two

impulses denoted by Ti, i = 1, · · · , N (Fig. 3).
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4.1. Nonlinear Process Model

Consider the following discrete-input nonlinear system governing the evo-

lution of the mean EE for perturbed satellites:

ẋ(t) = A(x(t)) +
N∑
i=1

∂ϵ(x̂)

∂(x̂)
B(x̂(t))uiδ(t− ti). (21)

Here, x ∈ R6 is the state space vector and includes mean equinoctial orbital

elements, A : R6 → R6 is the nonlinear function of secular variation effects

induced by J2 perturbations given in (11), u ∈ R3 is the control input in

the spacecraft orbital frame, δ is the Dirac-delta function, ti is the time of

applying the ith control impulse, and N is the maximum number of con-

trol impulses. Also, ϵ(x̂) is a function that transforms osculating elements to

mean elements (x = ϵ(x̂) ), and can be approximated by a 6×6 matrix whose

diagonal elements are equal to 1 and the off-diagonal terms being of order

J2 or smaller [38]. Moreover, B in (22) is the 6× 3 control influence matrix

of Gauss’s variational equations that relates accelerations in the spacecraft

orbital frame to changes in the orbital elements [40]. In the control applica-

tion, it is acceptable to approximate the term ∂ϵ(x̂)
∂(x̂)

B(x̂(t)) with B(x(t)) that

is shown in (22).

B(x(t)) =

2
nη2

(k sinL− h cosL) 2W
nη2

0

−η2 cosL
na

η2

naW [h+ (1 +W ) sinL] − η2k
naW (p cosL− q sinL)

η2 sinL
na

η2

naW [k + (1 +W ) cosL] η2h
naW (p cosL− q sinL)

0 0 η2η3 sinL
2naW

0 0 η2η3 cosL
2naW

− η2

naW [W (h sinL+k cosL)
1+η2

+ 2η2] − η2

naW
1+W
1+η2

(h cosL− k sinL) − η2

naW (p cosL− q sinL)


,

(22)

where

W = 1 + k cosL+ h sinL, L = θ + ω + Ω. (23)

16



The impulsive control signal uiδ(t − ti)(as shown in Fig. 3) is the velocity

increment ∆vi over a small amount of time. As the impulsive control may

cause severe damages to the satellite’s equipment and it is not achievable

practically, we assume that the thruster is on for a certain amount of time.

This burn time ∆tburn is a function of satellite’s initial mass m0, thruster

T , specific thrust Isp, and an approximation of the magnitude of velocity

increment ∆vburn [36].

∆tburn =
m0Ispg0

T
(1− e

−∆vburn
Ispg0 ), (24)

where g0 ≈ 9.81msec−2 is the sea-level standard acceleration of gravity.

Also, for a typical servicer satellite T ≈ 10kN, Isp ≈ 300sec, and ∆vburn ≈

1kmsec−1 [36]. Then, the velocity increment will be a constant amount over

course of ∆tburn ≈ 30sec, and is simply calculated as ∆v = ∆tburnu.

The nonlinear process model that is considered for the evolution of the

satellite in J2 perturbed orbits includes the solution to (21) in addition to

the first order long periodic effects, i.e., (A.1).

x̂ ≈ x− J2R
2
e x

(lp), (25)

where x(lp) = [a(lp) h(lp) k(lp) p(lp) q(lp) λ(lp)]. Since the NMPC feedback control

law is most conveniently described in discrete time, a discrete-time formu-

lation of the equations of motion is obtained. Considering a sampling time

step Ts and a sampling instant j, by applying the Euler’s approximation to

the vehicle kinematics and dynamics, the discrete-time model can be formu-

lated as shown in Appendix B.The equations in Appendix B can then be

rewritten in a more compact form and the first-order long-periodic effect is
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added to form the discrete-time nonlinear process model:

x(j + 1) = f
(
x(j),u(j)

)
∈ R6,

x̂(j + 1) = x(j + 1)− J2R
2
e x

(lp)(j + 1). (26)

4.2. Objective Function

To find the objective function, we need the following set of information

provided by the desired multi-impulse trajectory (hereinafter called the ref-

erence trajectory): (i) the number of impulses N , (ii) the time of applying

each impulse (ti, i = 1, · · · , N), (iii) the prediction horizon Ti, i = 1, · · · , N ,

(iv) the ∆v from (17) and the resulted acceleration ud =
∆v

∆tburn
, and (v) the

conversion of the reference trajectory to the Cartesian coordinates (Xd(t)).

According to (26), the prediction of the dynamics conducted at the jth

time instant for τ time samples in the future is calculated as

x(j + τ + 1|j) = f
(
x(j + τ |j),u(j + τ |j)

)
,

x̂(j + τ + 1|j) = x(j + τ + 1|j)− J2R
2
e x

(lp)(j + τ + 1|j), (27)

where the notation j + τ |j indicates the predicted value of the variable at

the instant j + τ calculated at time instant j.

The proposed objective function for the NMPC includes a norm of error

between the desired and predicted satellite’s trajectory under J2 perturbation

using the process model and a norm of control signals. To formulate the

objective function, we use the Cartesian coordinates of the servicer and the

target, due to the required numerical uniformity in the optimization problem.

The equations that are needed to convert the EE to the classical orbital

elements and then to the Cartesian coordinates are given in (1) and (6),
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respectively. We denote the actual trajectory of the servicer at time t in

a perturbed orbit, represented in the Cartesian coordinate, by X̂(t). By

introducing the error vector δX = X̂ −Xd and the correction vector δu =

u−ud, the objective function for the NMPC to minimize the deviation from

the desired trajectory with minimum control effort at the time ti and in the

prediction horizon Ti+1 can be defined as

Fi(δX, δu) =

T̄i+1∑
τ=1

δXT (t̄i + τ |t̄i)QδX(t̄i + τ |t̄i)

+

T̄i+1−1∑
τ=1

δuT (t̄i + τ |t̄i)Rδu(t̄i + τ |t̄i). (28)

Here, we have t̄i =
ti
Ts
, T̄i+1 =

Ti

Ts
for i = 1, · · · , N−2. Note that δX(t̄i+τ |t̄i)

and δu(t̄i + τ |t̄i) are the prediction of the error vector δX and the correction

vector δu based on the nonlinear process dynamics (27) and converted into

the Cartesian coordinate. Also, Q ∈ R6×6 and R ∈ R3×3 are symmetric

positive definite matrices. The discrete time horizon over which Fi is mini-

mized is τ = 1, ..., T̄i+1. Note that the objective function Fi does not include

the first interval T1 and the time instants between impulses, since there is

no control signal to compensate the deviation from the desired trajectory at

the times other than ti. That makes the objective function to be calculated

N−2 times at the sampling instants t̄i. Therefore , to guarantee following the

reference trajectory with minimum control effort in the time intervals Ti+1

(i = 1, · · · , N − 2), the following fixed-final-time constrained optimization is
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solved at time ti:

δu∗ = argmin
δu

Fi(δX, δu), for i = 1, · · · , N − 2

subject to: (i) (27) with the initial condition

X̂(t̄i|t̄i) = X̂(ti),

and (ii) ∥u(j + τ + 1|j)∥ ≤ umax, (29)

where umax stands for the upper bound of the input vector. However, this

optimization in TN does not promise arriving at the target at the final time

of transfer, which is the main goal in the long-range rendezvous mission, con-

sidered in this paper. Therefore, we add the (soft) constraint of zero distance

between the servicer and the target at the final time to provide the chasing

capability of the servicer. This constraint is augmented in the cost function

with a large penalty constant absorbed into a weighting matrix. Moreover,

since the resulting optimization problem may become over-constrained or

difficult to solve while the final time is fixed, we consider the final time tf

or equivalently TN among the design variables in the final horizon. Hence,

the optimization problem in the final horizon becomes a free-final time con-

strained problem to ensure the chasing capability of the servicer. Denoting

δXT = X̂ −XT , where XT is the target’s state trajectory in the Cartesian

coordinate, we define the objective function at the time tN−1 in the final
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horizon TN as

FN−1(δX, δu) =

T̄N∑
τ=1

δXT (t̄N−1 + τ |t̄N−1)QδX(t̄N−1 + τ |t̄N−1)+

T̄N−1∑
τ=1

δuT (t̄N−1 + τ |t̄N−1)Rδu(t̄N−1 + τ |t̄N−1)

+ δXT
T (t̄N−1 + tN |t̄N−1)HδXT (t̄N−1 + tN |t̄N−1), (30)

where H ∈ R6×6 is a symmetric positive definite matrix. Note that Q, H,

and R are the weighting matrices to distinguish between the importance of

following the desired path, penalizing the control, and catching the target

satellite. The NMPC trajectory tracking algorithm minimizes the objective

function subject to the dynamic constraints, path constraints, and terminal

condition over the prediction horizon τ = 1, 2, ..., T̄N . Then, the following

free-final-time constrained optimization in the last horizon must be solved at

the time tN−1:

(δu∗, t∗N) = arg min
δu,tN

FN−1(δX, δu),

subject to: (i) (27) with the initial condition

X̂(t̄N−1|t̄N−1) = X̂(tN−1), and

(ii) ∥u(j + τ + 1|j)∥ ≤ umax. (31)

The optimization problem given by (29) and (31) should be solved at ti

(i = 1, · · · , N − 1), thereby calculating the optimal tN and the constant

optimal control signals over the course of ∆tburn. The last control signal

uN is reserved to match the servicer’s and target’s velocities at the time
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of intersecting the target to complete the rendezvous mission. The overall

NMPC algorithm and architecture are shown in Algorithm 1 and Fig. 4,

respectively. As can be seen from Fig. 4, the state and control reference, i.e.,

Xd and ud, are obtained based on equations derived in the previous section.

The closed-loop tracking guidance law is then achieved based on the designed

NMPC. The NMPC optimization problem in (29) and (31) is solved using

a genetic algorithm approach, which will be discussed in Section 4.3. The

control input u(t) is then calculated by combining the reference control ud

and the correction control vector δu∗(t).

To investigate the performance of the proposed controller and show its

robustness against unmodelled dynamics, in this paper we include a realis-

tic dynamic simulation for the servicer in the control loop. In addition to

secular and 1st order long-periodic effects, the short-periodic effects and a

bounded random uncertainty that is one order of magnitude smaller than

the J2 perturbations are simulated (see Fig. 4). To feedback the actual ser-

vicer states, the last calculated states of the servicer in the plant’s dynamics

in the current horizon is used as the initial states for the nonlinear process

model of NMPC in (21) for the next horizon.

4.3. GA-based Optimization

The performance of the NMPC mainly depends on the implemented op-

timization algorithm. To solve the optimization problem defined in (29) and

(31), we implement a single-objective GA. This GA method is a guided ran-

dom search algorithm with the capability of exploring the diverse regions of

the solution space. The employed GA method is explained in the flowchart

depicted in Fig. 5. In the following, we elaborate the steps of the algorithm
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Algorithm 1: Nonlinear Model Predictive Control.
Require: Servicer’s initial location x0, Reference trajectory and control Xd and ud,

target’s trajectory XT , N , Ti, i = 1, · · · , N − 1, and sampling time Ts.

1. tN =∞, j = 1, i = 2.

2. x(j) = x0.

while j ≤ t̄N do

if j = t̄i then

if i ̸= N − 1 then

δu(j)←GA
(
F
(
δX(j), δucandidate(j)

)
, Ti

)
δX(j) is the feedback from the

plant’s dynamics to the control’s dynamics.

3. i← i+ 1.

else

[δu(j), tN ]←GA
(
F
(
δX(j), δucandidate(j), tNcandidate

))
.

else

4. δu(j)← 0.

5. u(j)← δu(j) + ud(j)±O(J2/10).

6. x(j + 1)← x(j) + Ts

(
A(x(j)) + I6×6B(x(j))uT (j)

)
.

7. x̂(j + 1)← x(j + 1)− J2R
2
e

(
xlp(j + 1) + xsp(j + 1)

)
. Calculating the plant’s

dynamics.

8. x(j) is converted to X(j).

9. δX(j)← X(j)−Xd(j).

10. j ← j + 1.

return Real control signal u, Real state space X, and new transfer time tN .
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Figure 4: Block diagram of the closed-loop system

to find the optimal solutions in the proposed NMPC.

4.3.1. Initialization

The three design variables δux, δuy and δuz, which are the elements of

the vector δu in the Cartesian coordinate, must be initialized for Z number

of population at the time ti, i ̸= N−1. Population refers to a set (Z number)

of design variables, which include the correction vector δu that is selected

to be a small random vector in the initialization phase, and it is added to

the desired control input ud(ti). For the last horizon, the time of catching

the target specified TN is another design variable beside δu, to minimize the

distance between the two satellites. For initializing this variable, we add a

small random number to the transfer time we already have from the reference

trajectory.
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Figure 5: Single-objective genetic optimization architecture

4.3.2. Objective Function Evaluation

The next step is to evaluate the objective function for the initialized de-

sign variables. The objective function in the horizons Ti, i ̸= N , is derived

by (28), which measures the deviation of the servicer from the reference tra-

jectory and the total control effort. Beside that, the objective function in

the last interval also measures the distance of the servicer from the target at

the final time tf (which is among the initialized design variables). This per-

formance criterion is prioritized through multiplying it by a large weighting

matrix in (30).

4.3.3. Binary Tournament Selection

In any step of the optimization that we need to select parents, we use

binary tournament selection method. In this method, two individuals are

randomly chosen from the population and the one with the lower objective
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function is kept in the process. To select other parents, we repeat the same

procedure.

4.3.4. Arithmetic Crossover

Crossover is an inheritance operator, that causes the children to have

attributes from all parents. Initially, a crossover rate (between 0 and 1)

is fixed that is the indicator of the execution probability of this operator.

During the optimization, each time that the crossover operator is called, a

random number between 0 and 1 is generated. If this number is smaller

than the crossover rate, then this operator is executed. During crossover, a

random vector β (4-dimensional for the last horizon and 3-dimensional for

other horizons) whose elements are between 0 and 1 is generated, based on

which we define the children yc
1,y

c
2 of the two selected parents by the binary

tournament selection, yp
1,y

p
2.

yc
1 = β ∗ yp

1 + (1− β) ∗ yp
2,

yc
2 = β ∗ yp

2 + (1− β) ∗ yp
1, (32)

where y is a vector of all design variables (δu and TN), the operator ∗ refers

to the element-wise multiplication of two vectors, and the vector 1 is the 3-

or 4-dimensional vector whose elements are all equal to 1.

4.3.5. Mutation

In the iteration 1 ≤ d ≤ D, where D is the maximum number of iter-

ations, a number of individuals are randomly selected based on the binary

tournament selection to be mutated with a probability, to explore the search

region. A mutation probability distribution is fixed at the initialization phase
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Figure 6: Mutation probability distribution

of the GA. This distribution allows the mutation operator to execute with a

higher probability at the beginning of the optimization, which leads to avoid-

ing convergence to local optima. In this paper, the mutation probability PM

in the iteration d is defined by (see Fig. 6)

PM(d) = PM0(1 + cos
πd

D
),

where PM0 is a parameter, fixed at the beginning of the optimization loop.

Each time that the mutation operator is called for an individual, 3 random

numbers (or 4 random numbers for the last horizon) between 0 and 1 are

generated. If any of these numbers is smaller than PM(d), then the corre-

sponding design variable in the individual is randomly reassigned within its

bounds

4.3.6. Replacement

After applying the crossover and mutation operators on the current popu-

lation, Z ′ children are generated and added to the current population. After

evaluating the objective function of this new Z ′ individuals, they should be

replaced with Z ′ number of the members of the old population to have a

fixed number of individuals at each iteration. The replacement operation is
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similar to the binary selection except that the higher objective function is

chosen and replaced with the better offspring.

4.3.7. Termination Criteria and Convergence

In an optimization, several termination criteria can be considered: (i)

maximum number of iterations, (ii) maximum number of iterations with

no improvement, (iii) maximum allowed CPU time, and (iv) reaching an

admissible fitness. Further, the convergence of a single objective heuristic

algorithm is proved by a decreasing behaviour of the evaluated objective

function over the course of iterations (for a minimization problem). In this

paper, minimizing the objective function is numerically studied to ensure

the convergence of the optimization in a case study. Further, the maximum

number of iterations is considered as a termination criterion.

5. Numerical Example

In this section, we aim to evaluate the efficacy of the proposed nonlinear

control strategy presented in Section 4 using a 5-impulse smooth reference

trajectory (N = 5). In the following case study, the initial and final co-planar

orbits are assumed to be in the plane specified by the inclination of ι = 5

deg and RAAN of Ω = 10 deg. These orbits are defined based on the planar

orbital elements as:

aS = 7000 km, eS = 0.05, ωS = 10 deg, θS(0) = 270 deg

aT = 7500 km, eT = 0, θT (0) = 0 deg

Table 1 summarizes the co-planar 5-impulse smooth reference trajectory
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Table 1: Information summary of the reference trajectory

Orbit

number i

a [km] e ω

[deg]

Ti

[sec]

|∆vi|

1 7000 0.05 10 89.7 0.213

2 6640 0.06 −46.47 1885 0.255

3 6410 0.026 −37.41 2809 0.146

4 7930 0.174 108.13 1156 0.812

5 6390 0.173 −175.8 451.3 0.66

6 7500 0 60 - -

considered in this study to catch the target from the servicer’s parking orbit.

The trajectory is described based on the (planar) classical orbital elements

of the intermediate orbits, the time between each impulses Ti, and the mag-

nitude of the velocity increment at the time of each impulse ∆vi. Fig. 7

depicts the reference trajectory in the plane of the orbits. The cyan star and

the small red square show the initial locations of the servicer and target, and

the black circles are the impulse locations. In the reference trajectory, the

servicer catches the target at the final time tf = 6391 sec.

In the NMPC, the weighting matrices appearing in Fi, for i = 1, · · · , 3,

corresponding to the trajectory error and control correction are designed to

be Q = I6×6 and R = 10I3×3, respectively. For the last horizon, we design

these matrices to be Q = 0.01I6×6 and R = 0.1I3×3, and the weighting

matrix corresponding to the final distance from the target is selected to be

H = 10I6×6. Note that the weighting/penalty matrix H is designed orders of

magnitude larger than the other two matrices to emphasise the importance

of catching the target in the last interval. The time between each impulse

Ti is the prediction horizon for the NMPC. The time of impulse (control
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action) ti, i = 1, · · · , 4, can be obtained from Ti in Table 1, and for i = 5

the optimal time of the last impulse is calculated as part of the optimization

of F4. Moreover, the sampling time Ts, which is used to calculate the time

instants t̄i, is set to be Ts = 0.1 sec.

The parameters of the genetic algorithm used in the NMPC architecture

are designed as explained in the following. The typical value of the crossover

rate used in the literature is [0.8, 0.95] [41], and for constant mutation func-

tions the rate is selected to be reciprocally proportional to the number of

design variables, which is almost 0.3 in our case study. Hence, the crossover

rate and PM0 are chosen 0.8 and 0.3, respectively. Based on an investiga-

tion conducted on the optimization time and the quality of the produced

solutions, the number of population and the maximum number of iterations

are obtained to be Z = 20 and D = 100 for the GA before the last horizon,

and Z = 100, D = 200 for the last horizon. Further, another termination

criterion for the optimizations is to have a constant objective value (within

a defined tolerance) for 50 consecutive iterations. Fig. 8 shows the obtained

control signals in the Cartesian coordinates, after solving (29) and (31) using

the GA. As one can observe, the control signal is a constant acceleration over

the burning time ∆tburn = 30 sec. In addition, in the last horizon we also find

the optimal tN to be 7266.4 sec, which indicates that the actual trajectory

must be almost 14.6 min longer than the reference trajectory to catch the

target. In Fig. 8, the control input at the final time tN is obtained to match

the velocity of the servicer with that of the target over ∆tburn.

The trajectory of the servicer is simulated under the secular and first

order long-periodic and short-periodic effects induced by J2, and bounded
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random accelerations included to capture other types of perturbations with

one order of magnitude smaller effects comparing to the J2 perturbation.

The reference trajectory along with the actual trajectory of the servicer in

three-dimension are shown in Fig. 9, and their projections onto the x-y-plane

are observed in Fig. 10.

The difference between the velocity increment vectors of the perturbed

trajectory and the reference are shown in Fig. 11. The magnitudes of the

velocity increment vectors at each impulse for the simulated trajectory are

also shown in Table 2. Comparing the total velocity increment (control

effort) for these two trajectories, the total velocity increment of the perturbed

trajectory is slightly greater than that of the reference trajectory for 0.468

km/sec. This increment in the control effort is predictable since the controller

has to compensate for the perturbing effects. As can be interpreted from Figs.

9-10, the servicer follows the trajectory before the 4th impulse. However, in

the last horizon after the 4th impulse, servicer deviates from the reference.

This is because of prioritizing catching the target to following the reference

trajectory by giving more weight to the termination criterion in the last

horizon. Due to the randomness of the added perturbation in the simulation,

we computed the actual trajectory under the obtained optimal control input

multiple times. The average distance between the two satellites at the final

time of mission is calculated to be almost 4 km, with this distance changing

in the range [3, 5] km. Table 2 summarizes the averaged classical orbital

elements in each intermediate orbit to compare with those corresponding to

the reference trajectory. The classical orbital elements are averaged since

they change over time due to the J2 effects (especially the short-periodic
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Figure 7: Reference multi-impulse smooth trajec-

tory
Figure 8: Control input generated by NMPC

Figure 9: 3-D transfer trajectory
Figure 10: Projected 2-D transfer trajectory onto

xy-plane

Figure 11: Velocity increment differences from

the reference (ordered sequentially in x, y, z di-

rections from top to bottom)
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effect).

Table 2: Information summary of the simulated trajectory
Orbit
number i

ā [km] ē ω̄
[deg]

Ti

[sec]
|∆vi|

1 7000 0.05 10 89.7 0.216
2 6680 0.051 67.03 1885 0.300
3 6450 0.029 -2.38 2809 0.530
4 6680 0.0451 186.93 1156 0.661
5 7820 0.121 -31.52 1326.6 0.852
6 7500 0 60 - -

Although the stability of the NMPC is guaranteed when there is a ter-

minal zero-state constraint [33], it is worth studying the performance of the

optimizer at each prediction horizon. The convergence of single-objective evo-

lutionary algorithms is shown using a decreasing behaviour of the objective

function versus the number of objective function evaluations. In this regard,

Figs. 12-15 show the convergence of the GA when optimizing Fi, i = 1, · · · , 4.

The distance from the target with respect to the number of objective function

evaluations in the last interval is also given in Fig. 16. This figure indicates

that the algorithm can converge to an acceptable distance from the target

despite starting from an initial guess resulting in a very large distance. The

GA method used in the NMPC scheme proposed in this paper is applicable

in real time problems where the time between two impulses is longer than the

corresponding optimization time. The average time to calculate the design

variables (δu and TN) before each impulse is around 6 minutes (on a PC with

Core-i5 CPU and 12 GB of RAM) in the presented example, where the av-

erage time between two impulses is approximately 24 minutes. Note that by

compromising the required accuracy, we can reduce the average optimization

time to calculate the design variables.
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Figure 12: Convergence study for F1 Figure 13: Convergence study for F2

Figure 14: Convergence study for F3 Figure 15: Convergence study for F4

Figure 16: Distance from the target
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6. Conclusion

In this paper, a robust NMPC model was developed and applied to solve

the online optimal tracking in a long-range rendezvous problem in J2 per-

turbed environments. The reference trajectory was a multi-impulse smooth

transfer trajectory designed in the two-body context that we proposed in our

previous work [4]. The control signals were non-zero constant accelerations

over the burning time ∆tburn, since the impulsive control signal damages the

satellites’ structure.For the real-time servicer dynamics, secular, 1st order

long-periodic, and 1st order short periodic effects induced by J2 perturbation

were considered. Further, to compensate for the error of neglecting other

types of perturbations, a bounded random acceleration with one order of

magnitude smaller effects comparing to the J2 perturbation was added to

the control signal. The optimization method applied in this paper was based

on the GA that was designed to find the impulsive controllers and the fi-

nal time in the final horizon. The objective functions of the unconstrained

fixed-final-time optimization problems defined before the final horizon were

the measure of deviation from the reference trajectory and the desired con-

trol input. To satisfy the chasing requirement, the optimization in the final

horizon was a free-final-time problem with a terminal constraint.

The simulation results for a case, where the reference was a 5-impulse

smooth trajectory, indicated that the proposed NMPC was able to follow the

reference and catch the target with a final distance of about 4 km. This is an

acceptable distance for the long-range rendezvous since the main goal of these

missions is to just arrive at the target’s orbit. Moreover, the transfer time and

the control effort of the optimally controlled trajectory are slightly greater
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(15 min and 0.468 km/sec, respectively) comparing to those of the reference

trajectory. Finally, the convergence analysis shown in Figs. 12-16 indicated

that the GA was well suited for the proposed NMPC. We have studied the

proposed control scheme in at least 3 case studies to follow trajectories with 3

and 5 impulses. In these cases, the GA-based NMPC method was successful

in performing impulsive trajectory following and arriving at a prespecified

distance from the target satellite [42]. Therefore, it is effective to use the

developed guidance algorithm for impulsive control signals to solve the online

long-range rendezvous optimal trajectory tracking problems.
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Appendix A. The First Order Long- and Short-Periodic Effects

a(lp) = 0,

λ(lp) =

(
ζ1ζ2

8a2η4(1 + η)σ2
2(σ

2
3 − σ2

1)
2

){
4η2(σ2

3 − σ2
1)Θ + (1 + η)Π

}
,
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L(lp) = λ(lp) −
(

Θ

4a2η4(1 + η)σ2
2

)
×

{
ζ1ζ2[3(1 + η) + 2η2] + (1 + η)[2(τ1ζ2 + τ2ζ1) + ϵ21τ1τ2]

}
,

h(lp) = −
(

1

8a2η4σ2
2(σ

2
3 − σ2

1)
2

)
×

{
2η2(qζ2 − pζ1)(σ

2
3 − σ2

1)
2Θ+ kζ1ζ2Π

}
,

k(lp) = −
(

1

8a2η4σ2
2(σ

2
3 − σ2

1)
2

)
×

{
2η2(qζ1 + pζ2)(σ

2
3 − σ2

1)
2Θ+ hζ1ζ2Π

}
,

p(lp) = −
(

σ3

16a2η4σ2(σ2
3 − σ2

1)
2

)
×
{
5qσ2

2ζ1ζ2 + (kζ2 + hζ1)(σ
2
3 − σ2

1)
2Θ

}
,

q(lp) = −
(

σ3

16a2η4σ2(σ2
3 − σ2

1)
2

)
×
{
5p2σ

2
2ζ1ζ2 − (kζ1 − hζ2)(σ

2
3 − σ2

1)
2Θ

}
.

(A.1)

a(sp) = −
(
(σ2

3 − 2σ2
1)

aη6σ2
2

)[
(1 + ϵ2)

3 − η3
]
,

λ(sp) = −
(

ϵ3(σ
2
3 − 2σ2

1)

2a2η4(1 + η)σ2
2(σ

2
3 − σ2

1)
2

)[
(1 + ϵ2)(2 + ϵ2) + η2

]
−
(
3(3σ2

3 − 2σ2
1)

2a2η4σ2
2

)
[(L− Λ) + ϵ3],

L(sp) = λ(sp) +

(
ϵ3(σ

2
3 − 2σ2

1)

2a2η4(1 + η)σ2
2

)[
(1 + ϵ2)

2 + η(1 + η)
]
,

h(sp) = −
(

h(σ2
3 − 2σ2

1)

2a2η2(1 + η)σ2
2

)
−

(
(σ2

3 − 2σ2
1)

2a2η4σ2
2

)
×

{
h(1 + ϵ2) + [η2 + (1 + ϵ2)(2 + ϵ2)] sinL

}
−

(
3k(3σ2

3 − 2)

2a2η4σ2
2

[(L− λ) + ϵ3]

)
,
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k(sp) = −
(

k(σ2
3 − 2σ2

1)

2a2η2(1 + η)σ2
2

)
−
(
(σ2

3 − 2σ2
1)

2a2η4σ2
2

)
×{

k(1 + ϵ2) + [η2 + (1 + ϵ2)(2 + ϵ2)] cosL
}

+

(
3h(3σ2

3 − 2)

2a2η4σ2
2

[(L− λ) + ϵ3]

)
,

p(sp) =

(
3qσ3

2a2η4σ2

)
[(L− λ) + ϵ3],

q(sp) = −
(

3pσ3

2a2η4σ2

)
[(L− λ) + ϵ3]. (A.2)

Here,

Θ = 1 +
5σ2

3

2(σ2
3 − σ2

1)

Π = 28− 150σ2
1 + 290σ4

1 − 215σ6
1 + 60σ8

1 − 7σ10
1

η =
√

(1− h2 − k2), ϵ1 =
√
k2 + h2,

ϵ2 = k cosL− h sinL, ϵ3 = k sinL− h cosL,

σ1 =
√

q2 + p2, σ2 = 1 + σ2
1, σ3 = 1− σ2

1,

τ1 = q cosL+ p sinL, τ2 = q sinL− p cosL

ζ1 = qk + ph, ζ2 = qh− pk.

Appendix B. Discrete-Time Equations for Mean Equinoctial Ele-

ments

a(j + 1) = a(j) + Ts

( 2

nη2
(k(j) sinL(j)− h(j) cosL(j))ur +

2W (j)

n(j)η2(j)
uθ

)
,
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h(j + 1) = h(j) + Ts

( 3µJ2R
2
ek(j)

4η42(j)η1(j)a
3(j)

(3γ2(j)− 1+

2γ(j)(p(j)α(j)− q(j)β(j)))− η2(j) cosL(j)
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ur

+
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n(j)a(j)W (j)
[h(j) + (1 +W (j)) sinL(j)]uθ−

η2(j)k(j)

n(j)a(j)W (j)
(p(j) cosL(j)− q(j) sinL(j))uh

)
,

k(j + 1) = k(j) + Ts

(
− 3µJ2R

2
eh(j)

4η42(j)η1(j)a
3(j)

(3γ2(j)− 1+

2γ(j)(p(j)α(j)− q(j)β(j))) +
η2(j) sinL(j)

n(j)a(j)
ur

+
η2

n(j)a(j)W (j)
[k(j) + (1 +W (j)) cosL(j)]uθ

+
η2h

n(j)a(j)W (j)
(p(j) cosL(j)− q(j) sinL(j))uh

)
,

p(j + 1) = p(j) + Ts

(
− 3µJ2R

2
eq(j)η3(j)β(j)γ(j)

4η42(j)η1(j)a
3(j)

+
η2(j)η3(j) sinL(j)

2n(j)(j)a(j)W (j)
uh

)
,

q(j + 1) = q(j) + Ts

(
− 3µJ2R

2
eq(j)η3(j)α(j)γ(j)

4η42(j)η1(j)a
3(j)

+
η2(j)η3(j) cosL(j)

2n(j)a(j)W (j)
uh

)
,

λ(j + 1) = λ(j) + Ts

(
− 3µJ2R

2
e

4η42(j)η1(j)a(j)
3
((3γ(j)2 − 1)

(η2(j) + 1)− 2γ(j)(p(j)α(j)− q(j)β(j))) + n(j)

− η2(j)

n(j)a(j)W (j)

[
W (j)(h(j) sinL(j) + k(j) cosL(j))

1 + η2(j)
+ 2η2(j)]ur

− η2(j)

n(j)a(j)W (j)

1 +W (j)

1 + η2(j)
(h(j) cosL(j)

− k(j) sinL(j))uθ −
η2(j)

n(j)a(j)W (j)
(p(j) cosL(j)

− q(j) sinL(j))uh
)
. (B.1)
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