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Abstract

This paper studies the geometry behind nonholonomic Hamilton’s equation
to present a two-stage reduction procedure for the dynamical equations of
nonholonomic open-chain multi-body systems with multi-degree-of-freedom
joints. In this process, we use the Chaplygin reduction and an almost sym-
plectic reduction theorem. We first restate the Chaplygin reduction theorem
on cotangent bundle for nonholonomic Hamiltonian mechanical systems with
symmetry. Then, under some conditions we extend this theorem to include a
second reduction stage using an extended version of the symplectic reduction
theorem for almost symplectic manifolds. We briefly introduce the displace-
ment subgroups and accordingly open-chain multi-body systems consisting
of such joints. For a holonomic open-chain multi-body system, the relative
configuration manifold corresponding to the first joint is a symmetry group.
Hence, we focus on a class of nonholonomic distributions on the configura-
tion manifold of an open-chain multi-body system that is invariant under
the action of this group. As the first stage of reduction procedure, we per-
form the Chaplygin reduction for such systems. We then introduce a number
of sufficient conditions for a reduced system to admit more symmetry due
to the action of the relative configuration manifolds of other joints. Under
these conditions, we present the second stage of the reduction process for
nonholonomic open-chain multi-body systems with multi-degree-of-freedom
joints. Finally, we explicitly derive the reduced dynamical equations in the
local coordinates for an example of a two degree-of-freedom crane mounted
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on a four-wheel car to illustrate the results of this paper.

Keywords: Nonholonomic open-chain multi-body system, Chaplygin
reduction, almost symplectic manifold, nonholonomic Hamiltonian
mechanical system

Operators.

Lr Left composition/translation by r
Rr Right composition/translation by r
Adr Adjoint operator corresponding to r
adξ adjoint operator corresponding to ξ
[ξ, η] Lie bracket or matrix commutator
Tmf Tangent map corresponding to the map f at the element m
T ∗mf Cotangent map corresponding to the map f at the element m
TmM Tangent space of the manifold M at the element m
TM Tangent bundle of the manifold M
T ∗mM Cotangent space of the manifold M at the element m
T ∗M Cotangent bundle of the manifold M
exp(ξ) Group/matrix exponential of ξ
Lie(G) Lie algebra of the Lie group G
Lie∗(G) Dual of the Lie algebra of the Lie group G
Gµ Coadjoint isotropy group for µ ∈ Lie∗(G)
n Semi-direct product of groups
� ·, · � Euclidean metric
‖v‖h Norm of the vector v with respect to the metric h
〈·, ·〉 Canonical pairing of the elements of tangent and cotangent space
LX Lie derivative with respect to the vector field X
ξM Vector field on the manifold M induced by the infinitesimal

action of ξ ∈ Lie(G)
ιXΩ Interior product of the differential form Ω by the vector field X
X(M) Space of all vector fields on the manifold M
Ω2(M) Space of all differential 2-forms on the manifold M
dΩ Exterior derivative of the differential form Ω
dH Exterior derivative of the function H
M/G Quotient manifold corresponding to a free and proper action

of the Lie group G
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1. Introduction

Eliminating the nonholonomic constraints in the dynamical equations of
nonholonomic Hamiltonian and Lagrangian systems is helpful to better un-
derstand the inherent behaviour of such systems, design controllers, and de-
velop accurate simulation packages. A historic example is the work of Chap-
lygin in 1911, where he eliminated the Lagrange multipliers for nonholonomic
Lagrangian systems with cyclic parameters [1]. This result was extended to
the Lagrangian mechanical systems with non-abelian symmetry by Koiller in
1992 [2]. On the Hamiltonian side, van der Schaft and Maschke [3] eliminated
the Lagrange multipliers by projecting Hamilton’s equation onto a submani-
fold of the cotangent bundle corresponding to the nonholonomic distribution.
They worked with the Poisson structure of the cotangent bundles.

In this paper, by reducing the dynamical equations we mean expressing
the differential equations representing a (Lagrangian or Hamiltonian) system
on a manifold whose dimension is less than the original phase space of the
system, by restricting to a submanifold of the phase space or quotienting a
group action. In the following, we first review the existing reduction theories
for nonholonomic Hamiltonian and Lagrangian mechanical systems. Then,
we state the contributions of this paper.

1.1. Background

From a geometric point of view, a Hamiltonian system is a vector field
on a symplectic manifold (i.e., the phase space) that satisfies Hamilton’s
equation. If this system is invariant under a group action [4], and there is
a conserved quantity (momentum) for the system, then we can perform the
symplectic reduction [4, 5]. For a mechanical system, the phase space is the
cotangent bundle of the configuration manifold T ∗Q that admits a canonical
symplectic 2-form, which is Ωcan := −dp ∧ dq in coordinates. The Hamilto-
nian in this case is the summation of the kinetic and potential energy. Let G
be a Lie group. The cotangent lift of its proper action on Q is symplectic. If
the Hamiltonian of the system is also invariant under this action, the group
G is called the symmetry group of the mechanical system, and the system
is called a Hamiltonian mechanical system with symmetry [6, 4]. Cotan-
gent bundle also admits a canonical Poisson bracket {·, ·}. For a mechanical
system with symmetry, the Poisson bracket is also invariant under the cotan-
gent lifted action. As a result, the Poisson bracket on T ∗Q descends to a
Poisson bracket on the quotient manifold (T ∗Q)/G. This process is called
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Poisson reduction [4, 7]. Momentum map is the main difference of the Pois-
son and symplectic reductions. This approach unifies the Euler-Poincaré
and Lagrange-Poincaré equations for mechanical systems with symmetry [4].
Both of the above-mentioned reduction theories were developed and extended
to Lagrangian systems in the 1990s [8, 9, 10]. Since during a reduction process
the trivial behaviour of a mechanical system due to symmetry is eliminated,
the system behaviour in the reduced phase space is more explicit. These
theories are also helpful for extracting coordinate-independent control laws
for mechanical systems with symmetry [7, 11].

A nonholonomic mechanical system with symmetry is a mechanical sys-
tem with symmetry together with a G-invariant distribution D. This dis-
tribution is a linear sub-bundle of TQ, where the velocity of the physical
trajectories of the system should lie. Generally, this distribution is non-
involutive, and it is the result of kinematic nonholonomic constraints such
as rolling without slipping. If D is involutive, we say that the constraints
are holonomic. The distinguishing characteristics of nonholonomic systems
(comparing to holonomic systems) are that (i) they satisfy the Lagrange-
d’Alembert principle instead of the Hamilton principle [12], and (ii) the mo-
mentum is not generally conserved for them.

A Chaplygin system is a nonholonomic mechanical system with symme-
try such that the sub-bundle corresponding to the infinitesimal G-action is
complementary to the distribution D at each point q ∈ Q. On the La-
grangian side, Chaplygin in [1] reduces such systems for abelian symmetries.
His result was generalized to non-abelian symmetry groups, by Koiller [2]. A
more general approach resulting in Lagrange-d’Alembert-Poincaré equation
[7, 13] is reported in [12]. This method is centred at defining a nonholo-
nomic connection as the summation of an Ehresmann connection and the
mechanical connection, and introducing a nonholonomic momentum map.
The analogue of this approach in Poisson formalism is also explained in [7],
which is originated in a paper by van der Schaft and Maschke [3].

On the Hamiltonian side, Bates and Śniatycki first show that the vector
field that is the solution of Hamilton’s equation for a nonholonomic system
is a section of the distribution T (FL(D)) ∩ {v ∈ T (T ∗Q)|TπQv ∈ D } ⊆
T (T ∗Q). Here, the fibre-wise linear map FL : TQ → T ∗Q is the Legen-
dre transformation. Then under the symmetry hypotheses, after restricting
Hamilton’s equation to this distribution, they show that the flow of this vec-
tor field descends to the quotient manifold FL(D)/G [14, 15, 16, 17]. Later
on, based on this method of reduction, which is called distributional Hamil-
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tonian approach [17], the Noether theorem is extended to nonholonomic sys-
tems and accordingly a two-stage reduction procedure is introduced. In the
first stage, the symplectic reduction theorem is applied to reduce Hamilton’s
equation by a normal subgroup G0 ⊆ G, whose momentum is conserved, and
yields another distributional Hamiltonian system. For the second stage, the
method in [14] is used to reduce the equations by G/G0 [18]. This method
is further extended to singular reduction of nonholonomic systems, and it is
reformulated for almost Poisson manifolds in [19]. An almost Poisson mani-
fold is a manifold equipped with a bracket that satisfies the properties of the
Poisson bracket except the Jacobi identity.

Multi-body systems are examples of interconnected mechanical systems,
consisting of rigid bodies and joints. In order to unify the Hamiltonian
and Lagrangian formalisms for these systems with nonholonomic constraints,
Dirac structures can be employed. Van der Schaft and Maschke introduce
the notion of implicit Hamiltonian system [20], while its analogue, implicit
Lagrangian system, is formulated by Yoshimura and Marsden [21, 22]. Both
of these formalisms have been used to model systems with nonholonomic con-
straints, and subsequently their reduction theories have been developed [21,
23, 24].

An extension of the reduction of Chaplygin systems is also reported in
the concept of nonholonomic Hamilton-Jacobi theory [25, 26], which uses
an extended version of the symplectic reduction theorem in the presence
of further symmetries of the system to reduce a Chaplygin system in two
stages. The first stage is performing the Chaplygin reduction [2], which
results in a non-degenerate 2-form for describing the reduced Hamilton’s
equation. In the second stage, under some assumptions an almost symplectic
reduction [27] is performed. Note that for Hamiltonian systems, researchers
have also introduced the notion of reduction by stages [28], which consists of
several stages of symplectic reduction of a Hamiltonian system. As opposed
to the two-stage reduction of nonholonomic systems, in reduction by stages
the resulting system is always symplectic in each stage of reduction. On the
Lagrangian side, the notion of Lagrangian reduction by stages has also been
introduced [8]. In particular, Routh reduction by stages can be regarded
as the Lagrangian analogue of the symplectic reduction by stages on the
Hamiltonian side [29].
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1.2. Structure of the Paper and Statement of Contributions

In the field of robotics, researchers have been studying kinematics, dy-
namics and control of multi-body systems, specifically nonholonomic systems,
from a geometric point of view [30]. However, the dynamical reduction of
nonholonomic multi-body systems has been mostly focused on the restriction
of dynamical equations to a submanifold of the phase space [31, 32]. And,
the existing symmetries in such systems has not been explored. In this paper
we systematically develop a two-stage reduction process, based on the Chap-
lygin reduction and an almost symplectic reduction theorem, for dynamical
equations of nonholonomic open-chain multi-body systems. We try to ex-
ploit the proposed reduction procedure by finding the symmetry groups in
the form of a Cartesian product of subgroups of SE(3), and trivializing the
principal bundles appearing in this process.

The following section gives a brief review of the Chaplygin reduction theo-
rem on cotangent bundles, and its extension to a two-stage reduction process
based on an almost symplectic reduction theorem. In Section 3, we introduce
nonholonomic open-chain multi-body systems with multi-d.o.f. joints, and
derive their corresponding Lagrangian and Hamiltonian. The symmetries
of the kinetic energy metric of multi-body systems is investigated in Sec-
tion 4. The main results of this paper are presented in Section 5, where we
introduce the notion of nonholonomic open-chain multi-body systems with
symmetry, and derive the reduced coordinate-independent dynamical equa-
tions of generic nonholonomic open-chain multi-body systems with symmetry
in the cotangent bundle of a quotient manifold. Finally in Section 6, as an
example, we reduce the dynamical equations of a two d.o.f. crane mounted
on a four-wheel car, and we conclude the paper in Section 7.

2. Two-stage Dynamical Reduction of Nonholonomic Hamiltonian
Mechanical Systems with Symmetry

In this section, we revisit Koiller’s result [2], known as Chaplygin reduc-
tion theorem, for nonholonomic mechanical systems with symmetry in the
Hamiltonian framework. An example of such systems is a two-wheel cart
that was studied in [2]. Then, we extend his result to a two-stage reduc-
tion procedure, using an almost symplectic reduction theorem under some
hypothesis. We study, for instance, the two-stage dynamical reduction of a
four-wheel crane in Section 6 that admits a big symmetry group.
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2.1. Chaplygin Reduction on Cotangent Bundles

For a mechanical system, the Lagrangian L : TQ → R is defined by
L(vq) := 1

2
Kq(vq, vq)−V (q), where ∀q ∈ Q we have vq ∈ TqQ, and Kq : TqQ×

TqQ → R is a Riemannian metric, called the kinetic energy metric, and where
V : Q → R is a smooth function, called the potential energy function. This
Lagrangian is hyper-regular, and its corresponding Legendre transformation
FLq : TqQ → T ∗qQ is equal to the fibre-wise linear isomorphism that is in-
duced by the metric K:

〈FLq(vq), wq〉 := Kq(vq, wq). ∀vq, wq ∈ TqQ (2.1)

As a result, ∀pq ∈ T ∗Q the Hamiltonian H : T ∗Q → R of the system is

H(pq) :=
1

2
Kq(FL−1

q (pq),FL−1
q (pq)) + V (q), (2.2)

which is the total energy of the mechanical system. In this paper, we con-
sider mechanical systems with (linear) nonholonomic constraints, which are
called nonholonomic Hamiltonian mechanical system. Such a system can be
identified by a five-tuple (T ∗Q,Ωcan, H,K,D), where Ωcan ∈ Ω2(T ∗Q) is the
canonical 2-form on the cotangent bundle T ∗Q, the distribution D ⊂ TQ
is a regular, non-involutive, linear distribution that is bracket generating,
and H and K are defined as above. Suppose that D is specified by a set of
(constraint) 1-forms {ωs ⊂ T ∗Q| s = 1, · · · , f} on Q such that

D(q) = {vq ∈ TqQ|ωs(q)(vq) = 0, s = 1, · · · , f}, (2.3)

where f is the number of nonholonomic constraints. A nonholonomic Hamil-
tonian mechanical system satisfies Hamilton-d’Alembert equation (along with
f constraint equations)[

q̇
ṗ

]
=

[
0 id
−id 0

] [∂H
∂q
∂H
∂p

]
−
[

0
ωT (q)κ

]
, ω(q)q̇ = 0, (2.4)
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where κ = [κ1 · · · κf ]
T is a set of Lagrange multipliers, (q, p) is a set of

local coordinates for T ∗Q, and we define

ω(q) :=

ω1(q)
...

ωf (q)

 .
Here, with an abuse of notation, we use ωs(q) as the sth row of the ma-
trix whose kernel is the nonholonomic distribution. In this equation we
have 2 dim(Q) + f variables and the same number of equations consisting
of 2 dim(Q) dynamical equations and f constraint equations.

Let G be a Lie group with the Lie algebra Lie(G). Consider an action of
G on Q, and denote the action by Φg : Q → Q, ∀g ∈ G. Note that wherever
we consider the action of G on the tangent and cotangent bundle of Q, we
implicitly use the naturally induced action maps on those spaces. Consider
the infinitesimal action of Lie(G) on Q. For any ξ ∈ Lie(G), this action
induces a vector field ξQ ∈ X(Q) such that ∀q ∈ Q,

ξQ(q) =
∂

∂ε

∣∣∣∣
ε=0

(
Φexp(εξ)(q)

)
=: φq(ξ). (2.5)

Here, we denote the fibre-wise linear map corresponding to the infinitesimal
action of Lie(G) by φq : Lie(G) → TqQ. Now, consider the fibre-wise linear
map M : T ∗Q → Lie∗(G)

〈Mq(pq), ξ〉 := 〈pq, ξQ(q)〉 =
〈
φ∗q(pq), ξ

〉
, (2.6)

called momentum map, which is an Ad∗-equivariant map with respect to the
G-action.

Definition 2.1. A nonholonomic Hamiltonian mechanical system (T ∗Q,Ωcan,
H,K,D) is called a nonholonomic Hamiltonian mechanical system with sym-
metry, if H, K and D are invariant under the action of G. We denote such
a system by a six-tuple (T ∗Q,Ωcan, H,K,D,G), as defined above.

For instance, the nonholonomic distribution D is invariant under the co-
ordinate change for the nonholonomic multi-bodies with fixed directions of
constraint forces in the body coordinate frame.

Definition 2.2. (Chaplygin System) A nonholonomic Hamiltonian mechan-
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ical system with symmetry (T ∗Q,Ωcan, H,K,D,G) is called a Chaplygin sys-
tem if ∀q ∈ Q we also have the dimensional assumption

TqQ = D(q)⊕ TqOq(G), (2.7)

where Oq(G) := {Φg(q)| g ∈ G} is the orbit of the G-action through q.

In this paper, we restrict our attention to nonholonomic Hamiltonian
mechanical systems with symmetry whose symmetry group G possesses a Lie
subgroup G ⊆ G that satisfies the definition of a Chaplygin system. That
is, (T ∗Q,Ωcan, H,K,D, G) is a Chaplygin system. Under this assumption,
we can perform the Chaplygin reduction that was presented by Koiller in
[2]. Here, we briefly review Koiller’s result on cotangent bundles. For a
Chaplygin system we may define a principal connection

Â :=

f∑
s=1

ωsεs, (2.8)

corresponding to the G-principal bundle Q → Q/G. In this equation,
{εs| s = 1, · · · , f} is a basis for Lie(G). The horizontal vector bundle of
this connection is the distribution D and its vertical vector bundle is the
tangent to the G-orbits {ηQ(q)| η ∈ Lie(G)}. Accordingly, we denote the

horizontal lift corresponding to the G-principal bundle by ĥlq, which maps

tangent vectors on the quotient manifold Q̂ := Q/G to the horizontal vector
bundle. We also denote the momentum map corresponding to the G action
by M̂ : T ∗Q → Lie∗(G). Let K̂ be the metric on Q̂ induced by the kinetic

energy metric K. That is, ∀ûq̂, ŵq̂ ∈ Tq̂Q̂ we have

K̂q̂(ûq̂, ŵq̂) = Kq(ĥlq(ûq̂), ĥlq(ŵq̂)).

Then, we can define Legendre transformation on Q̂ by〈
FL̂q̂(ûq̂), ŵq̂

〉
:= K̂q̂(ûq̂, ŵq̂),

where q̂ ∈ Q̂ and ûq̂, ŵq̂ ∈ Tq̂Q̂. Let M := FL(D) be the vector sub-
bundle of T ∗Q corresponding to the nonholonomic distribution, which is
invariant under the G-action. We may also define the horizontal lift map
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ĥl
M
q : T ∗q̂ Q̂ →M(q) to M by

ĥl
M
q := FLq ◦ ĥlq ◦ FL̂−1

q̂ . (2.9)

Accordingly, we can define the reduced Hamiltonian Ĥ : T ∗Q̂ → R on the
cotangent bundle of the quotient manifold by

Ĥ(p̂q̂) = H ◦ ĥl
M
q (p̂q̂). (2.10)

Theorem 2.3 (Chaplygin Reduction [2]). A Chaplygin system (T ∗Q,Ωcan,
H,K,D, G), whose solution curves satisfy the nonholonomic Hamilton’s equa-

tion (2.4), can be reduced to a system (T ∗Q̂, Ω̂, Ĥ, K̂), where Ω̂ is a non-

degenerate 2-form on the cotangent bundle of the quotient manifold Q̂, Ĥ is
the reduced Hamiltonian defined by (2.10), K̂ is the induced metric on Q̂.
The reduced system satisfies Hamilton’s equation for the reduced Hamiltonian
Ĥ with the non-degenerate 2-form Ω̂. That is

[Ω̂](p̂q̂)

[
˙̂q
˙̂p

]
=:

[
[Υ̂](p̂q̂) − id
id 0

] [
˙̂q
˙̂p

]
=

[
∂Ĥ
∂q̂
∂Ĥ
∂p̂

]
, (2.11)

where [Ω̂] : T (T ∗Q̂) → T ∗(T ∗Q̂) is the naturally induced vector bundle map

corresponding to the 2-form Ω̂. The elements of the anti-symmetric matrix
[Υ̂](p̂q̂) are specified in the following:

Υ̂ij(p̂q̂) :=

f∑
a=1

F̂a

((
∂Âaj
∂q̂i
− ∂Âai

∂q̂j

)
−
∑
l<k

Êalk(ÂliÂkj − ÂljÂki )

)
(2.12)

such that ∀g ∈ G we have the following identities:

Â =: Adg

[
TgLg−1 Âq̂

]
,

F̂ : = M̂ ◦ ĥl
M

(p̂q̂),

[εl, εk] =:

f∑
a=1

Êalkεa,

for l, k ∈ {1, · · · , f}, and i, j ∈ {1, · · · , dim(Q)− f}.
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2.2. Second Stage Reduction of Nonholonomic Hamiltonian Mechanical Sys-
tems with Symmetry

In this section, we use a modified version of Noether’s theorem to further
reduce the dynamical equations of the reduced Chaplygin system (T ∗Q̂, Ω̂, Ĥ,
K̂). Then using an extended version of the symplectic reduction theorem
for almost symplectic manifolds [27] and embedding version of the cotangent
bundle reduction [28], we identify the reduced space with a vector sub-bundle
of the cotangent bundle of a quotient manifold. This process is an exten-
sion of the two-stage reduction introduced by Ohsawa et al. in the concept
of Hamilton-Jacobi theory of nonholonomic systems [25]. An example of a
nonholonomic system that admits a conserved quantity in the reduced phase
space is a two-wheel cart with a dumbbell-shaped body rotating perpendic-
ular to the plane of motion of the cart. The rotational momentum of the
dumbbell is constant.

Proposition 1 (Noether’s theorem for nonholonomic systems). For a re-

duced Chaplygin system (T ∗Q̂, Ω̂, Ĥ, K̂), a function ĥ : T ∗Q̂ → R is constant

of motion if and only if its Hamiltonian vector field X̂ĥ ∈ X(T ∗Q̂) corre-

sponding to the non-degenerate 2-form Ω̂ preserves the Hamiltonian Ĥ.

Proof. Suppose that there exists a function ĥ : T ∗Q̂ → R that is constant of
motion. Its Hamiltonian vector field X̂ĥ corresponding to Ω̂ is defined by

X̂ĥ := [Ω̂]−1

[
∂ĥ
∂q̂
∂ĥ
∂p̂

]
.

Then we have

0 = LX̂ ĥ =
〈
dĥ, X̂

〉
=
〈

[Ω̂]X̂ĥ, X̂
〉

= −
〈

[Ω̂]X̂, X̂ĥ

〉
= −

〈
dĤ, X̂ĥ

〉
= −LX̂

ĥ
Ĥ,

where X̂ = [ ˙̂q
T ˙̂p

T
]T , and LX̂ ĥ is the Lie derivative of ĥ along the trajectories

of the reduced system. Conversely, based on the above calculation, if there
exists a Hamiltonian vector field X̂ĥ for the function ĥ that preserves the

Hamiltonian Ĥ, then ĥ is a constant of motion.

Note that if ĥ : T ∗Q̂ → R is a constant of motion, then there exists a

G-invariant function h : T ∗Q → R defined by the equality ĥ = h◦ ĥl
M

that is
constant on the trajectories of the vector field X = [q̇T ṗT ]T ∈ X(T ∗Q), i.e.,
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LXh = 0. Now assume that a reduced Chaplygin system (T ∗Q̂, Ω̂, Ĥ, K̂) is
invariant under a group action in the following sense. Let N ⊂ G be a Lie
group with a free and proper action, such that

(i) The Hamiltonian Ĥ is invariant under the N -action.

(ii) Along the trajectories of the vector field X̂, this action has a conserved

momentum map M̆ : T ∗Q̂ → Lie∗(N ), defined by (2.6). That is for
every ζ ∈ Lie(N ),

LX̂
(〈

M̆, ζ
〉)

= 0.

Let ϑ ∈ Lie∗(N ) be a regular value for the momentum M̆. Since M̆ is

also a momentum map with respect to the non-degenerate 2-form Ω̂, we can
perform the almost symplectic reduction presented in [27] at ϑ. And conse-

quently, drop the dynamics to M̆
−1

(ϑ)/Nϑ, where Nϑ = {n ∈ N|Ad∗nϑ = ϑ}
is the coadjoint isotropy group of ϑ ∈ Lie∗(N ).

Proposition 2. Under the assumptions (i) and (ii) stated above, we have

(i) There exists a non-degenerate 2-form Ω̂ϑ ∈ Ω2(M̆
−1

(ϑ)/Nϑ) that is
uniquely characterized by

T ∗πϑΩ̂ϑ = T ∗iϑΩ̂,

where iϑ : M̆
−1

(ϑ) ↪→ T ∗Q̂ and πϑ : M̆
−1

(ϑ) → M̆
−1

(ϑ)/Nϑ are the
canonical inclusion and projection maps, respectively.

(ii) The reduced Hamilton’s equation (2.11) can be further reduced to

[Ω̂ϑ]X̂ϑ = dĤϑ, (2.13)

where [Ω̂ϑ] and X̂ϑ ∈ X(M̆
−1

(ϑ)/Nϑ) are respectively the naturally in-

duced vector bundle map corresponding to the 2-form Ω̂ϑ and the vector
field that represent the reduced dynamics and Ĥϑ is uniquely defined by

Ĥϑ ◦ πϑ = Ĥ ◦ iϑ.

In the theory of cotangent bundle reduction, there exist two equivalent
ways to identify the symplectic reduced space with cotangent bundles and
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coadjoint orbits [28], either of which can be used to identify M̆
−1

(ϑ)/Nϑ
along with its almost symplectic structure Ω̂ϑ:

(i) Embedding version: in which the reduced space M̆
−1

(ϑ)/Nϑ is identi-

fied with a vector sub-bundle of the cotangent bundle of Q̆ := Q̂/Nϑ.

(ii) Bundle version: in which the reduced space M̆
−1

(ϑ)/Nϑ is identified
by a (locally trivial) fibre bundle of the coadjoint orbit through ϑ over

the cotangent bundle of Q̂/N .

In this paper, the embedding version of the cotangent bundle reduction is
used to write the reduced Hamilton’s equation (2.13) in T ∗Q̆. The quotient

manifold Q̂/N gives rise to the principal bundle Q̂ → Q̂/N . We work with

the mechanical connection Ă : T Q̂ → Lie(N ) as the principal connection:

Ăq̂ = Ĭ−1
q̂ ◦ M̆q̂ ◦ FL̂q̂, (2.14)

where the locked inertia tensor Ĭ : Lie(N )→ Lie∗(N ) is defined by

Ĭq̂ = φ̆∗q̂ ◦ FL̂q̂ ◦ φ̆q̂.

Here, the map φ̆q̂ : Lie(N ) → Tq̂Q̂ corresponds to the infinitesimal action

of Lie(N ) on Q̂, defined by (2.5). For any ϑ ∈ Lie∗(N ), let us consider
the action of N restricted to the subgroup Nϑ = {n ∈ N|Ad∗nϑ = ϑ}. Sim-

ilarly, for this action we have a principal bundle π̆ : Q̂ → Q̆ := Q̂/Nϑ. The
locked inertia tensor Ĭϑq̂ : Lie(Nϑ)→ Lie∗(Nϑ) and the (mechanical) connec-

tion Ăϑq̂ : Tq̂Q̂ → Lie(Nϑ) (∀q̂ ∈ Q̂) for the Nϑ-action are defined by

Ĭϑq̂ := (φ̆ϑq̂ )∗ ◦ FL̂q̂ ◦ φ̆ϑq̂ , (2.15)

and
Ăϑq̂ := (Ĭϑq̂ )−1 ◦ M̆

ϑ

q̂ ◦ FL̂q̂, (2.16)

respectively. Here, the map φ̆ϑq̂ : Lie(Nϑ)→ Tq̂Q̂ corresponds to the infinites-

imal Nϑ-action, and M̆
ϑ

: T ∗Q̂ → Lie∗(Nϑ) is the momentum map for the
Nϑ-action, which are defined based on (2.5) and (2.6). For the principal
bundle π̆ : Q → Q̆ with the principal connection Ăϑ, the horizontal lift map
is denoted by h̆lq̂ : T Q̆ → T Q̂, where q̆ := π̆(q̂).
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Now, let us consider the 1-form αϑ := Ă∗ϑ ∈ Ω1(Q̂).

Lemma 2.4. The 1-form αϑ takes values in M̆
−1

(ϑ), and it is invariant
under Nϑ-action.

Proof. Using the definition of the momentum map and principal connection,
we have ∀ζ ∈ Lie(N )〈

M̆(αϑ), ζ
〉

=
〈
αϑ, ζQ̂

〉
=
〈
Ă∗q̂ϑ, φ̆q̂(ζ)

〉
=
〈
ϑ, (Ăq̂ ◦ φ̆q̂)(ζ)

〉
= 〈ϑ, ζ〉 .

As a result, αϑ ∈ M̆
−1

(ϑ).
Finally, consider an arbitrary element n ∈ Nϑ, and denote its action and

induced tangent action simply by n · q̂ and n · v̂q̂, respectively. Based on the

Ad∗-equivariance of Ă and the definition of Nϑ, one can show that αϑ is Nϑ
invariant. For all v̂q̂ ∈ Tq̂Q̂,

〈αϑ(n · q̂), n · v̂q̂〉 =
〈
Ă∗n·q̂ϑ, n · v̂q̂

〉
=
〈
ϑ, Ăn·q̂(n · v̂q̂)

〉
=
〈
ϑ,Adn−1Ăq̂(v̂q̂)

〉
=
〈

Ad∗n−1ϑ, Ăq̂(v̂q̂)
〉

=
〈
ϑ, Ăq̂(v̂q̂)

〉
.

According to the Cartan Structure Equation [33], ∀Ẑ, Ŷ ∈ X(Q̂) the

exterior derivative of αϑ evaluated on Ŷ and Ẑ is equal to

dαϑ(Ẑ, Ŷ ) =
〈
ϑ, dĂ(Ẑ, Ŷ )

〉
=
〈
ϑ, B̆(Ẑ, Ŷ ) + [Ă(Ẑ), Ă(Ŷ )]

〉
, (2.17)

where B̆q̂(Ẑq̂, Ŷq̂) := (dĂ)q̂(h̆orq̂(Ẑq̂), h̆orq̂(Ŷq̂)) = −Ăq̂([h̆or(Ẑ), h̆or(Ŷ )]q̂) is

the curvature of the connection Ă, and [·, ·] in (2.17) corresponds to the Lie
bracket in Lie(N ).

Lemma 2.5. For all ζ ∈ Lie(Nϑ), the interior product of the 2-form dαϑ
with ζQ̂ is zero, i.e., [dαϑ]ζQ̂ = 0.

By this lemma and Lemma 2.4 the 2-form dαϑ is basic (it is invariant
in the directions of the group action and it does not see those directions);
hence, a closed 2-form βϑ ∈ Ω2(Q̆) can be uniquely defined by the relation
T ∗π̆(βϑ) = dαϑ, and its pullback Ξϑ by the cotangent bundle projection
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πQ̆ : T ∗Q̆ → Q̆ will be a closed 2-form on T ∗Q̆,

Ξϑ := T ∗πQ̆(βϑ).

There is an embedding ϕϑ : M̆
−1

(ϑ)/Nϑ ↪→ T ∗Q̆ onto the vector sub-

bundle S̆ =
{
p̆q̆ ∈ T ∗Q̆

∣∣∣ 〈p̆q̆, T π̆ (ζQ̆(q̆)
)〉

= 0,∀ζ ∈ Lie(N )
}

of T ∗Q̆ that is

identified by
〈ϕϑ([γq̂]ϑ), Tq̂π̆(v̂q̂)〉 = 〈γq̂ − αϑ(q̂), v̂q̂〉 , (2.18)

Its inverse exists only on S̆ ⊂ T ∗Q̆, and it is a diffeomorphism on this vector

sub-bundle. Hence, the map ϕ−1
ϑ : S̆ → M̆

−1
(ϑ)/Nϑ is only defined on S̆. As

the result, we can write the reduced Hamilton’s equation (2.13) in S̆ ⊂ T ∗Q̆
as (

[Ω̆ϑ](q̆1, q̃, p̃)− [Ξϑ](q̆)
) ˙̆q1

˙̃q
˙̃p

 =


∂H̆ϑ

∂q̆1
∂H̆ϑ

∂q̃
∂H̆ϑ

∂p̃

 , (2.19)

where Ω̆ϑ := T ∗ϕ−1
ϑ (Ω̂ϑ), (q̆1, q̃, p̃) is a set of coordinates for the reduced

phase space S̆ (such that q̆ = (q̆1, q̃)), and the Hamiltonian H̆ϑ is defined by

the relation H̆ϑ := Ĥϑ ◦ ϕ−1
ϑ .

The 2-form Ξϑ ∈ Ω2(S̆) is defined by

Ξϑ =
∑
i<j

dn∑
a=1

F̆a

((
∂Ăaj
∂q̃i
− ∂Ăai

∂q̃j

)
−
∑
l<k

Ĕalk(ĂliĂkj − ĂljĂki )

)
(dq̃i ∧ dq̃j)

+
∑
i′<j′

∑
l<k

dn∑
a=1

(
ϑaĔalk(Hl

i′Hk
j′ −Hl

j′Hk
i′)
)

(dq̆i′ ∧ dq̆j′)

=:
∑
i′<j′

Ῠi′j′(q̆)dq̆i′ ∧ dq̆j′ , (2.20)
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such that we have the following identities:

Ă =: Adn

[
TnLn−1 Ă

]
,

F̆ : = ϑTAd(eϑ,q̆1),

H : = −Ăϑ +
[
T(eϑ,q̆1)R(eϑ,q̆1) Ad(eϑ,q̆1)Ă

]
,

Ăϑ =: Adnϑ

[
TnϑLn−1

ϑ
Ăϑ
]
,

[El, Ek] =:
dn∑
a=1

ĔalkEa,

for l, k ∈ {1, · · · , dn}, and i, j ∈ {1, · · · , dim(Q)− dn}, and i′, j′ ∈ {1, · · · ,
dim(Q)− dim(Nϑ)}, dn := dim(N ) and {E1, · · · , Edn} being a basis for
Lie(N ). The element nϑ is an arbitrary element of Nϑ and eϑ is the identity
element of this Lie group. Note that for a local trivialization of Nϑ principal
bundle, we have n = (nϑ, q̆1). In matrix form we have

[Ξϑ](q̆) =

[
[Ῠ](q̆) 0

0 0

]
,

where zero matrices have appropriate size. Now, we can finalize this section
in the following theorem.

Theorem 2.6. We say that a reduced Chaplygin system with symmetry
(T ∗Q̂, Ω̂, Ĥ, K̂,N ), whose solution curves satisfy the reduced nonholonomic
Hamilton’s equation (2.11), can be further reduced to the system (S̆ ⊂ T ∗Q̆, Ω̆ϑ

− Ξϑ, H̆ϑ). The 2-form Ω̆ϑ := T ∗ϕ−1
ϑ (Ω̂ϑ). The Hamiltonian H̆ϑ : S̆ → R is

the further reduced Hamiltonian defined by H̆ϑ := Ĥϑ ◦ ϕ−1
ϑ , and Ξϑ is a

closed 2-form that is defined by (2.20). The reduced system satisfies Hamil-
ton’s equation (2.19) for the Hamiltonian H̆ϑ.

3. Nonholonomic Open-chain Multi-body Systems

Let B0, · · · , BN be N + 1 rigid bodies and J1, · · · , JM be M multi-d.o.f.
holonomic or nonholonomic joints. A multi-body system is the collection of
theseN+1 bodies andM joints MBS(N,M) = {Ai, Bi, Jj|Bi ⊂ Ai, i = 0, · · ·
, N, j = 1, · · · ,M} such that each joint restricts the relative motion of a body
with respect to another.
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Definition 3.1. A nonholonomic open-chain multi-body system is a multi-
body system MBS(N,N), which consists of N + 1 rigid bodies and N holo-
nomic or nonholonomic multi-d.o.f. joints, such that there exists a unique
path between any two bodies of the multi-body system. In an open-chain
multi-body system, bodies with only one neighbouring body are called ex-
tremities.

Here, we set a convention to simplify the calculations. We label the bodies
starting from the inertial coordinate frame (ground), B0, outwards. That is,
we label the bodies connected to B0 by joints successively as B1, · · · , BN0

(N0 ≤ N), and we repeat the same procedure for all N0 bodies starting
from B1. We number the joints using the bigger body label, e.g., we label
the joint between Bi and Bj, where i > j, as Ji. In this paper we only
consider a class of multi-d.o.f. joints whose relative configuration manifold
is diffeomorphic to a connected Lie subgroup of SE(3), which are called
displacement subgroup [34]. Let Ji be a joint connecting Bi to Bj. its relative
configuration manifold is denoted by Qj

i . Considering r0
i,0 ∈ SE(3) and

r0
j,0 ∈ SE(3) as the initial poses of Bi and Bj with respect to the inertial

coordinate frame, respectively, Qj
i
∼= Lr0

i,0
R(r0

j,0)−1(Qj
i ) =: Qi ⊆ SE(3). Here,

L• : SE(3) → SE(3) and R• : SE(3) → SE(3) are the standard left and
right translation maps on SE(3), respectively. We use Qi as the relative
configuration manifold of the joint Ji. Note that, every Qi is a di dimensional
Lie subgroup of SE(3), where di is the number of degrees of freedom of Ji, and
D :=

∑N
i=1 di is the total number of degrees of freedom of MBS(N,N). Any

state of the system can be realized by q := (q1, · · · , qN) ∈ Q := Q1×· · ·×QN ,
and Q is the configuration manifold. The manifold Q along with the group
structure induced by Qi’s is also a Lie group. Let rcm,i ∈ SE(3) be the initial
pose of the centre of mass of Bi with respect to the inertial coordinate frame.
We define the map F : Q → SE(3)× · · · × SE(3) =: P by

F (q) := (q1rcm,1, q1q2rcm,2, · · · , q1 · · · qNrcm,N), (3.21)

where the ith component of this map only contains the joint parameters
that are in the path from B0 to Bi. This map determines the pose of the
coordinate frames attached to the centre of mass of all bodies with respect
to the inertial coordinate frame. For any motion of MBS(N,N), i.e., a curve
t 7→ q(t) ∈ Q, the velocity of the centre of mass of the bodies with respect
to the inertial coordinate frame (absolute velocity) is calculated by ṗ :=

17



d
dt
F (q(t)) = TqF (q̇).

A MBS(N,N) is a mechanical system with the Lagrangian L : TQ → R
that is determined by L(vq) = 1

2
Kq(vq, vq) − V (q). In the following, we

describe how the Lagrangian L and subsequently the Hamiltonian H of a
MBS(N,N) is calculated. Let hi for i = 1, · · · , N be the left-invariant kinetic
energy metric for the rigid body Bi in the MBS(N,N). They induce the
metric h := h1 ⊕ · · · ⊕ hN on P , which is left-invariant. The kinetic energy
metric of an open-chain multi-body system is defined by K := T ∗F (h), where
T ∗F (h) is the pull back of the metric h by the map F . That is, ∀q ∈ Q and
∀vq, wq ∈ TqQ we have

Kq(vq, wq) = hF (q) (TqF (vq), TqF (wq))

= he
(
TF (q)LF (q)−1(TqF (vq)), TF (q)LF (q)−1(TqF (wq))

)
, (3.22)

where e is the identity element of the Lie group P and Lp is the left translation
map by an element p ∈ P . Furthermore, we can simplify the above expression
by calculating the following linear map for the MBS(N,N):

TF (q)LF (q)−1(TqF )

=
(

Adr−1
cm,1
⊕ · · · ⊕ Adr−1

cm,N

)
Jq
(
Tq1(Lq−1

1
◦ ι1)⊕ · · · ⊕ TqN (Lq−1

N
◦ ιN)

)
=

Adr−1
cm,1

· · · 0
...

. . .
...

0 · · · Adr−1
cm,N

Jq
Tq1(Lq−1

1
◦ ι1) · · · 0

...
. . .

...
0 · · · TqN (Lq−1

N
◦ ιN)

 ,
where Jq : Lie(P) → Lie(P) is the linear map calculated in the following
way. This map is a lower triangular linear map with the blocks of identity
map on the diagonal and a combination of zero blocks and the blocks of the
linear maps in the form of Ad(

∏
r qr)−1 . Here,

∏
r qr is the product of elements

of the relative configuration manifolds Qi ⊆ SE(3), which appear in the
unique path from B0 to Bi. A zero blocks means that a certain joint does
not appear in the path connecting B0 and Bi in the MBS(N,N).

In this paper, we consider the potential energy function induced by a
constant gravitational field g in the ambient space, i.e., the inertial coordinate
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frame. The potential energy function for the MBS(N,N) is defined as

V (q) :=
N∑
i=1

〈mig, Fi(q)(Oi)−O0〉 , (3.23)

where mi is the mass of the rigid body Bi, and Fi(q) is the ith component
of the map F that can be considered as an isometry between the inertial
coordinate frame and the coordinate frame attached to Bi. The points O0

and Oi are the base points of these coordinate frames, where Oi is located at
the centre of mass.

Using the Legendre transformation induced by the metric K, we define
the Hamiltonian H : T ∗Q → R for the MBS(N,N) by

H(pq) := 〈pq,FL−1
q (pq)〉 − L(FL−1

q (pq)). (3.24)

Here, we remind the reader that FL : TQ → T ∗Q is the fibre-wise invertible
Legendre transformation induced by the kinetic energy metric, i.e., ∀vq, wq ∈
TqQ, 〈FLq(vq), wq〉 = Kq(vq, wq).

Accordingly, the MBS(N,N) can be considered as a Hamiltonian mechan-
ical system described by the four-tuple (T ∗Q,Ωcan, H,K). Here, the metric
K and the Hamiltonian H are defined by (3.22) and (3.24), respectively.

4. Symmetries of the Kinetic Energy Metric of Open-chain Multi-
body Systems

In this section, in Theorem 4.1 we state that the relative configuration
manifold of the first joint is always a symmetry group for the kinetic energy
metric K of the MBS(N,N). Then, we give some sufficient conditions, under
which K is also invariant under the action of a subgroup of the configuration
manifold of the rest of the joints.

Theorem 4.1. For a MBS(N,N), the action of G1 = Q1 on Q by left
translation on the first component leaves the kinetic energy metric K in-
variant. For any g1 ∈ G1 we denote the action map by Φg1 : Q → Q such
that ∀q = (q1, · · · , qN) ∈ Q we have Φg1(q) = (g1q1, q2, · · · , qN).

We also investigate two approaches to identify other groups in addition
to the one presented in Theorem 4.1 whose actions leave the kinetic energy
metric of a MBS(N,N) invariant.
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AP1) Identifying symmetry groups due to left invariance of the kinetic energy
metric h on P = SE(3)× · · · × SE(3). See Section 3 for the definition
of the metric h.

AP2) Identifying symmetry groups by studying the metric K on Q.

4.1. Identifying Symmetry Groups using AP1

As for the approach AP1, we consider the embedding F : Q → P , defined
by (3.21). For any element (a1, · · · , aN) ∈ P we define the group action
ΘN(a1,··· ,aN ) : P → P by

ΘN(a1,··· ,aN )(p) := (a1p1, (a1a2)p2, · · · , (a1 · · · aN)pN),

where p = (p1, · · · , pN) ∈ P . Since the metric h on P is left-invariant, it
is also invariant under this action. That is, we have T ∗ΘN(a1,··· ,aN )(h) = h.
This action induces an action on Q, if and only if the image of the map F ,
i.e., F (Q), is invariant under the action ΘN for a Lie subgroup of P . We
denote this Lie subgroup by G1×· · ·×GN , where Gi ⊆ SE(3) (i = 1, · · · , N)
is a Lie subgroup of SE(3). Then the induced action on Q, denoted by
ΦN(a1,··· ,aN ) : Q → Q, is defined by ΦN(a1,··· ,aN ) := F−1 ◦ ΘN(a1,··· ,aN ) ◦ F , where

(a1, · · · , aN) ∈ G1 × · · · × GN . Here, F−1 : F (Q)→ Q is only defined on the
image of the map F . In order to identify the group G1×· · ·×GN , we impose
the condition that F (Q) is invariant under the action of this group. By the
definition of the map F and ΘN(a1,··· ,aN ), we have

ΘN(a1,··· ,aN ) ◦ F (q) = (a1q1rcm,1, (a1a2)q1q2rcm,2, · · · , (a1 · · · aN)q1 · · · qNrcm,N).

The image of F is invariant under the group action if and only if we have
the following conditions:

a1 ∈ Q1

q−1
1 a2q1 ∈ Q2 ∀q1 ∈ Q1,

...

(q1 · · · qN−1)−1aN(q1 · · · qN−1) ∈ QN ∀q1 ∈ Q1 and · · · and ∀qN−1 ∈ QN−1.

20



Hence, the biggest symmetry group G1×· · · GN that leaves the kinetic energy
metric K invariant under the induced action ΦN is equal to

G1 × · · · × GN ={(a1, · · · , aN)| a1 ∈ Q1, a2 ∈
⋂

q1∈Q1

(q1Q2q
−1
1 ), · · ·

, aN ∈
⋂

q1∈Q1
···

qN−1∈QN−1

((q1 · · · qN−1)QN(q−1
N−1 · · · q

−1
1 ))} ⊆ Q1 × · · · × QN .

Noteworthy examples of MBS(N,N) whose kinetic energy metric K is in-
variant under the action of this group include but not limited to the systems
with identical multi-d.o.f. joints, and systems with commutative joints. In
general, this symmetry group may be as small as G1 = Q1, specially when
the joints are actuated, since the actuation force may break the symmetry.

4.2. Identifying Symmetry Groups using AP2

For any velocity vector q̇ ∈ TqQ, we denote the left translation of q̇ to
Lie(Q) by

τ = (τ1, · · · , τN) := q−1q̇ = (q−1
1 q̇1, · · · , q−1

N q̇N) ∈ Lie(Q)

Now, let iτ ji (i, j = 1, · · · , N) be the relative twist of the body Bi with respect
to Bj and expressed in the coordinate frame attached to Bi. With the similar
calculation we did in Section 3, we have

iτ 0
i = Adr−1

cm,i

(
Ad(q2···qi)−1(τ1) + · · ·+ Adq−1

i
(τi−1) + τi

)
for a sequence of joints connecting B0 to Bi [34]. Then, the kinetic energy of
a MBS(N,N) can alternatively be calculated by

1

2
Kq(q̇, q̇) =

1

2

N∑
i=1

‖ iτ 0
i ‖2

hi
, (4.25)

where hi denotes the left invariant metric corresponding to the body Bi

on se(3), and ‖ · ‖hi refers to its induced norm on se(3). To simplify the
computations, we first consider the case of MBS(2, 2) in the sequel, and then
we generalize the result for the case of MBS(2, 2).

Let G1 = Q1 and G2 ⊆ Q2 be a Lie subgroup ofQ2, and consider the action
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of G1×G2 by left translation on the configuration manifold Q = Q1×Q2, i.e.,
∀(a1, a2) ∈ G1 × G2 we have (q1, q2) 7→ (a1q1, a2q2) for all q = (q1, q2) ∈ Q.
It is easy to show that under this action the kinetic energy of the system
becomes

1

2
K(a1q1,a2q2)(a1q̇1, a2q̇2) =

1

2

(
‖ Adr−1

cm,1
τ1 ‖2

h1
+ ‖ Adr−1

cm,2

(
Ad(a2q2)−1τ1 + τ2

)
‖2
h2

)
,

where (a1q̇1, a2q̇2) denotes the left translation of the velocity vector (q̇1, q̇2) to
(a1q1, a2q2). As it was expected, the kinetic energy remains invariant under
the G1-action. We define the metric h′2 := Ad∗

r−1
cm,2

(h2)e on se(3) corresponding

to the body B2. Note that, here e ∈ SE(3) denotes the identity element of
SE(3). Kinetic energy is invariant under the action of G1 × G2 if and only if
it is invariant under the infinitesimal action of all elements $ ∈ Lie(G2) at
the identity element e2 ∈ G2. As a result, we have the following necessary
and sufficient condition for the metric K being invariant under the action of
G1 × G2 by left translation:

∂

∂ε

∣∣∣∣
ε=0

(
1

2
‖ Ad(exp(−ε$)q2)−1τ1 + τ2 ‖2

h′2

)
= h′2(Adq−1

2
ad$(τ1),Adq−1

2
τ1 + τ2) = 0.

(4.26)

∀q2 ∈ Q2, ∀τ1 ∈ Lie(Q1) and ∀τ2 ∈ Lie(Q2)

The largest Lie sub-algebra of Lie(Q2) whose elements satisfy the above
condition is the Lie algebra of G2, and G2 is identified by integrating this Lie
sub-algebra on Q2. Noteworthy examples of the systems that admit such a
symmetry group are any two commutative joints, a planar cart with a rotary
joint orthogonal to it, and a planar cart moving on a rotating disc. With
similar calculations, we can extend this result to the case of MBS(N,N), and
write the condition (4.26) as

N∑
i=2

h′i(Ad(q2···qi)−1ad$(τ1),Ad(q2···qi)−1(τ1 + · · ·+ Ad(q2···qi)τi)) = 0. (4.27)

∀qi ∈ Qi (i = 2, · · · , N) and ∀τi ∈ Lie(Qi) (i = 1, · · · , N)

where h′i := Ad∗
r−1
cm,i

(hi)e. Note that, the expression in the parentheses in

the second argument of h′i is the relative twist of Bi with respect to B0 and
expressed in a coordinate frame attached to B1. Based on this condition, we
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may derive a sufficient condition for the metric K being invariant under the
action of G1 × G2 by left translation.

Proposition 3. For an open-chain multi-body system MBS(N,N), the met-
ric K is invariant under the action of G1 × G2, as defined above, by left
translation, if ∀$ ∈ Lie(G2) and ∀τ1 ∈ Lie(Q1) we have

ad$(τ1) = 0.

Similarly, we can derive sufficient conditions for invariance of the metric
K under the action of a group in the form of G1×· · ·×GN by left translation.
Here Gi ⊆ Qi is a Lie subgroup of Qi for i = 2, · · · , N . However, since it is
unlikely that K is invariant under the action of such a big group, we do not
go through the calculations for this most general case.

Finally, suppose that Bi0 is an extremity of MBS(N,N). Consider the
action of Gi0 as a Lie subgroup of Qi0 by right translation. The kinetic energy
of the system after the action of an element ai0 ∈ Gi0 becomes

1

2
Kqai0

(q̇ai0 , q̇ai0) =
1

2

N∑
i=1
i 6=i0

‖ iτ 0
i ‖2

hi
+

1

2
‖ Ada−1

i0

Adrcm,i0

i0τ 0
i0
‖2
h′i0

. (4.28)

The kinetic energy metric is invariant under this action if and only if it is
invariant under the infinitesimal action of any element % ∈ Lie(Gi0) at the
identity element.

∂

∂ε

∣∣∣∣
ε=0

(
1

2
‖ Ad(exp(−ε%))−1(Adrcm,i0

i0τ 0
i0

) ‖2
h′i0

)
= h′i0(ad%(Adrcm,i0

i0τ 0
i0

),Adrcm,i0

i0τ 0
i0

) = 0, (4.29)

for all i0τ 0
i0

, i.e., all admissible relative twists of Bi0 with respect to the
inertial coordinate frame and expressed in the same frame. The largest Lie
sub-algebra of Lie(Qi0) that satisfies the above condition is Lie(Gi0), and
Gi0 ⊆ Qi0 is identified by integrating this Lie sub-algebra on Qi0 . Therefore,
the kinetic energy K is invariant under the Gi0-action by right translation on
Qi0 if and only if we have the above condition.
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5. Dynamical Reduction of Nonholonomic Open-chain Multi-body
Systems

A nonholonomic open-chain multi-body system with displacement sub-
groups is a MBS(N,N) with at least one nonholonomic joint whose dy-
namics can be identified by the five-tuple (T ∗Q,Ωcan, H,K,D). Here, Q =
Q1 × · · · × QN is the configuration manifold, H : T ∗Q → R is the Hamil-
tonian of the system, which is defined by (3.24), K is the kinetic energy
metric defined by (3.22), and the distribution D ⊂ TQ corresponds to the
nonholonomic joints. This distribution may be identified by the constraint
one-forms {ωs ⊂ T ∗Q| s = 1, · · · , f}, where f < D = dim(Q) is the number
of linear constraints on the relative velocities at nonholonomic joints.

Since in robotics nonholonomic joints usually appear in the form of wheeled
mobile platforms, in this paper we restrict our attention to the case where ωs’s
only depend on the elements of the configuration manifold of the mobile plat-
form, labelled as Q′1. We also label the configuration manifold corresponding
to the rest of the joints in MBS(N,N) by Q; hence, we have Q = Q′1 × Q.
Let G := G ′1×N ⊆ Q, such that G ′1 ⊆ Q′1 and N ⊆ Q, be a Lie group whose
action on Q leaves the kinetic energy metric K invariant. The action of G is
defined in Section 4. We also assume that

NHR1) The potential energy function V is G-invariant. As a result, the Hamil-
tonian H is also invariant under the cotangent lift of the G-action.

NHR2) The distribution D ⊂ TQ is invariant under the G-action, i.e., ∀q ∈ Q
and ∀g ∈ G we have D ◦ Φg(q) = TqΦg(D(q)).

NHR3) There exists a Lie subgroup of G ′1, namely G, for which we have the
Chaplygin assumption (2.7).

We call a MBS(N,N) that satisfies the above assumptions, a nonholo-
nomic open-chain multi-body system with symmetry and denote its dynamics
by the six-tuple (T ∗Q,Ωcan, H,K,D,G), as defined above. The nonholonomic
Hamilton’s equation for such a multi-body system is written on T ∗Q by (2.4).
Under the assumption NHR3, we have a G-principal bundle, and the corre-
sponding connection Â : TQ → Lie(G) may be defined by

Â :=

f∑
s=1

ωsεs,
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where εs for s ∈ {1, · · · , f} are elements of a basis for Lie(G). We represent
any element ofQ/G by q̂ = (q̂1, q) ∈ Q′1/G×Q, where q̂1 ∈ Q′1/G is the equiv-
alence class corresponding to q′1 ∈ Q′1 and q ∈ Q. We consider the principal
bundle π̂1 : Q′1 → Q′1/G to locally trivialize the Lie group Q′1. Let U ⊆ Q′1/G
be an open neighbourhood of ê1, where ê1 is the equivalence class correspond-
ing to the identity element e′1 ∈ Q′1. We denote the map corresponding to a
local trivialization of the principal bundle π̂1 by χ̂ : G× U → Q′1. This map
can be defined by embedding U in Q′1, for example by using the exponential
map of Lie groups. We denote this embedding by χ : U ↪→ Q′1 such that

∀q̂1 ∈ Q′1/G we have χ(q̂1) = exp(ζ) for some ζ ∈ Ĉ, where Ĉ ⊂ Lie(Q′1)
is a complementary subspace to Lie(G) ⊆ Lie(G ′1) ⊆ Lie(Q′1). Accordingly,
∀h ∈ G we define the map χ̂ by the equality χ̂((h, q̂1)) := hχ(q̂1). The map χ̂
is a diffeomorphism onto its image. Using this diffeomorphism, any element
q′1 ∈ π̂−1

1 (U) ⊆ Q′1 can be uniquely identified by an element (h, q̂1) ∈ G× U .
As a result, we have q = (q′1, q) = (χ̂((h, q̂1)), q). Note that, from now on, for
brevity we write q = (h, q̂1, q).

The map corresponding to the infinitesimal action of G on Q is denoted
by φ̂q : Lie(G) → TqQ. Based on the above local trivialization, ∀(h, q̂1, q) ∈
G× U ×Q this map is calculated by

φ̂q =


Te′1Rh

0
...
0

 ,
where with an abuse of notation we show the identity element of G by e′1.

Accordingly, we calculate the momentum map M̂ : T ∗Q → Lie∗(G) by

M̂q = φ̂∗q =
[
T ∗e′1

Rh 0 . . . 0
]
.

Then by defining the fibre wise linear map Âq̂1 : Tq̂1U → Lie(G) according
to the nonholonomic constraint 1-forms ωs’s and based on the properties of
principal connections, for all q = (h, q̂1, q) ∈ G× U ×Q we can write Â as

Âq = Adh

[
ThLh−1 Âq̂1 0

]
,

As a result, at each point q = (h, q̂1, q), we have the horizontal lift map
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ĥlq : Tq̂Q̂ → TqQ, which is determined by

ĥlq =

[[
−(Te′1Lh)Âq̂1 0

]
idTq̂1

U ⊕ idTqQ

]
,

where idTq̂1
U and idTqQ are the identity maps on the tangent spaces Tq̂1U and

TqQ, respectively.
We denote the block components of the kinetic energy tensor, which is

equal to the Legendre transformation for Hamiltonian mechanical systems,
by Kij(q)dqi ⊗ dqj (i, j = 1, · · · , N). We show FLq in matrix form as

FLq =

[
K ′11(q) K ′12(q)
K ′21(q) K ′22(q)

]
= FLq =

K11(q) · · · K1N(q)
...

. . .
...

KN1(q) · · · KNN(q)

 ,
where K ′11(q) and K ′22(q) are the blocks of FLq corresponding to the mobile
platform and rest of the MBS(N,N), respectively, and K ′12(q) = K ′∗21(q) is
the block representing the interconnection between them. Using the local
trivialization we can rewrite this matrix as follows:

FL(h,q̂) =

KG
1 ((h, q̂)) K

Q′1/G
1 ((h, q̂)) KG

12((h, q̂))

KG
2 ((h, q̂)) K

Q′1/G
2 ((h, q̂)) K

Q′1/G
12 ((h, q̂))

KG
21((h, q̂)) K

Q′1/G
21 ((h, q̂)) K ′22((h, q̂))

 ,
where q̂ = (q̂1, q), q

′
1 = χ̂(h, q̂1), and we have[

KG
1 ((h, q̂)) K

Q′1/G
1 ((h, q̂))

KG
2 ((h, q̂)) K

Q′1/G
2 ((h, q̂))

]
= T ∗(h,q̂1)χ̂ (K ′11(χ̂(h, q̂)))T(h,q̂1)χ̂,

[
KG

21((h, q̂)) K
Q′1/G
21 ((h, q̂))

]∗
=

[
KG

12((h, q̂))

K
Q′1/G
12 ((h, q̂))

]
= T ∗(h,q̂1)χ̂(K ′12(χ̂(h, q̂))),

K ′22((h, q̂)) = K ′22(χ̂(h, q̂)).
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Now, since K is invariant under the G-action, we have the following equality:

FL(h,q̂) =

(T ∗hLh−1)(K̂G
1 (q̂))(ThLh−1) (T ∗hLh−1)(K̂

Q′1/G
1 (q̂)) (T ∗hLh−1)(K̂G

12(q̂))

(K̂G
2 (q̂))(ThLh−1) K̂

Q′1/G
2 (q̂) K̂

Q′1/G
12 (q̂)

(K̂G
21(q̂))(ThLh−1) K̂

Q′1/G
21 (q̂) K̂ ′22(q̂)

 ,
where we introduce the new block components by

K̂G
1 (q̂) = KG

1 ((e′1, q̂)), K̂
Q′1/G
1 (q̂) = K

Q′1/G
1 ((e′1, q̂)), K̂G

2 (q̂) = KG
2 ((e′1, q̂)),

K̂
Q′1/G
2 (q̂) = K

Q′1/G
2 ((e′1, q̂)), K̂G

12(q̂) = KG
12((e′1, q̂)), K̂

Q′1/G
12 (q̂) = K

Q′1/G
12 ((e′1, q̂)),

K̂G
21(q̂) = KG

21((e′1, q̂)), K̂
Q′1/G
21 (q̂) = K

Q′1/G
21 ((e′1, q̂)), K̂ ′22(q̂) = K ′22((e′1, q̂)).

Since K is G-invariant, it induces a metric on Q̂, namely K̂, which defines
the Legendre transformation on Q̂ by

〈FL̂q̂(ûq̂), ŵq̂〉 : = K̂q̂(ûq̂, v̂q̂) = Kq(ĥlq(ûq̂), ĥlq(ŵq̂))

= 〈FLq ◦ ĥlq(ûq̂), ĥlq(ŵq̂)〉 = 〈ĥl
∗
q ◦ FLq ◦ ĥlq(ûq̂), ŵq̂〉,

where q̂ = (q̂1, q) and ∀ûq̂, ŵq̂ ∈ Tq̂Q̂. Therefore,

FL̂q̂ =

[
K̂ ′11(q̂) K̂ ′12(q̂)

K̂ ′21(q̂) K̂ ′22(q̂)

]
,

with the following equalities:

K̂ ′11(q̂) = (Â∗q̂1)(K̂G
1 (q̂))(Âq̂1)− (Â∗q̂1)(K̂

Q′1/G
1 (q̂))− (K̂G

2 (q̂))(Âq̂1) + K̂
Q′1/G
2 (q̂),

K̂ ′12(q̂) = −(Â∗q̂1)(K̂G
12(q̂)) + K̂

Q′1/G
12 (q̂),

K̂ ′21(q̂) = −(K̂G
21(q̂))(Âq̂1) + K̂

Q′1/G
21 (q̂).

Let M = FL(D) be the vector sub-bundle of T ∗Q corresponding to the

nonholonomic distribution. We then define the horizontal lift map ĥl
M
(h,q̂) : T ∗q̂ Q̂ →
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M((h, q̂)) on the cotangent bundle of the reduced space by

ĥl
M
(h,q̂) : = FL(h,q̂) ◦ ĥl(h,q̂) ◦ FL̂−1

q̂

=

[
T ∗hLh−1 0

0 idTq̂Q̂

]−(K̂G
1 (q̂))(Âq̂1) + K̂

Q′1/G
1 (q̂) K̂G

12(q̂)

−(K̂G
2 (q̂))(Âq̂1) + K̂

Q′1/G
2 (q̂) K̂

Q′1/G
12 (q̂)

−(K̂G
21(q̂))(Âq̂1) + K̂

Q′1/G
21 (q̂) K̂ ′22(q̂)

FL̂−1
q̂ ,

where idTq̂Q̂ is the identity map on Tq̂Q̂. Based on the definition of Ĥ(p̂q̂) :=

H ◦ ĥl
M
q (p̂q̂), where p̂q̂ ∈ T ∗Q̂ and q̂ = π̂(q), we calculate Ĥ on T ∗Q̂ using

the local trivialization and the definition of the map ĥl
M

:

Ĥ(p̂q̂) =
1

2

〈
ĥl
M
(h,q̂)(p̂q̂),FL−1

(h,q̂) ◦ ĥl
M
(h,q̂)(p̂q̂)

〉
+ V (e1, q̂) =

1

2

〈
p̂q̂,FL̂−1

q̂ (p̂q̂)
〉

+ V̂ (q̂),

(5.30)

where the function V̂ (q̂) := V (e′1, q̂).
Performing the Chaplygin reduction in Theorem 2.3 we can write the

reduced dynamical equations for nonholonomic multi-body systems on T ∗Q̂.

Theorem 5.1. A nonholonomic open-chain multi-body system MBS(N,N)
with symmetry whose dynamics is represented by (T ∗Q,Ωcan, H,K,D, G) is

reduced to a system (T ∗Q̂, Ω̂, Ĥ, K̂), where Ĥ is defined by (5.30) and K̂

is the induced metric on Q̂. Here, in the local coordinates Ω̂ is calculated
by (2.11) and (2.12), where

F̂ : =
[
−(K̂G

1 (q̂))(Âq̂1) + K̂
Q′1/G
1 (q̂) K̂G

12(q̂)
]
FL̂−1

q̂ (p̂q̂).

And, Hamilton’s equation in the reduced phase space reads (2.11).

5.1. Second Stage Reduction of Nonholonomic Open-chain Multi-body Sys-
tems

Let N be a Lie subgroup of Q. We define the action of N on Q̂, i.e.,
Φ̆n : Q̂ → Q̂, by left translation on Q. For any element n ∈ N we have

Φ̆n(q̂1, q) = (q̂1, nq).
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Hence, the tangent and cotangent lift of the N -action are

Tq̂Φ̆n(v̂q̂) =

[
idTq̂1

Q̂1
0

0 TqLn

] [
v̂1

v

]
T ∗

Φ̆n(q̂)
Φ̆n−1(p̂q̂) =

[
idTq̂1

Q̂1
0

0 T ∗nqLn−1

] [
p̂1

p

]
.

Let us assume that the Hamiltonian Ĥ and the metric K̂ of the re-
duced nonholonomic open-chain multi-body system (T ∗Q̂, Ω̂, Ĥ, K̂) are in-

variant under the N -action. We locally trivialize Q̂ such that we have
q̂ = (q̂1, n, q̃) ∈ U ×N × Ũ , where Ũ ⊆ Q̃ := Q/N is an open subset of Q̃.
In this trivialization, the map corresponding to the infinitesimal N -action
φ̆q̂ : Lie(N ) ⊂ Lie(Q)→ T Q̂ is calculated by

φ̆q̂ =

 0
TeRn

0

 ,
where e ∈ N ⊆ Q is the identity element. Since the N -action leaves p̂1

invariant, it satisfies the condition (i) and (ii) on Page 11. We also define the

momentum M̆q̂ : T ∗q̂ Q̂ → Lie∗(N ) of the N -action by

M̆q̂ = φ̆∗q̂ =
[
0 T ∗eRn 0

]
.

Accordingly, the locked inertia tensor Ĭq̂ : Lie(N ) → Lie∗(N ) and the prin-

cipal connection Ăq̂ : Tq̂Q̂ → Lie(N ) for the N -action are calculated as

Ĭq̂ = φ̆∗q̂ ◦ FL̂q̂ ◦ φ̆q̂ = Ad∗n−1(KN1 (q̂1, q̃))Adn−1

Ăq̂ = Ĭ−1
q̂ ◦ M̆q̂ ◦ FL̂q̂

= Adn

[
(KN1 (q̂1, q̃))

−1KN12(q̂1, q̃) TnLn−1 (KN1 (q̂1, q̃))
−1K

Q/N
1 (q̂1, q̃)

]
=:
[
Ă(q̂1,q̃) TnLn−1 B̆(q̂1,q̃)

]
, (5.31)

where we define the linear maps Ăq̆ : TU → Lie(N ) and B̆q̆ : T Ũ → Lie(Nϑ)
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by the last equality, and we have

FL̂q̂ =

[
K̂ ′11(q̂) K̂ ′12(q̂)

K̂ ′21(q̂) K̂ ′22(q̂)

]

=:

 K̂ ′11(q̂1, e, q̃) (KN12(q̂1, q̃))TnLn−1 K
Q/N
12 (q̂1, q̃)

T ∗nLn−1(KN21(q̂1, q̃)) T ∗nLn−1(KN1 (q̂1, q̃))TnLn−1 T ∗nLn−1(K
Q/N
1 (q̂1, q̃))

K
Q/N
21 (q̂1, q̃) (KN2 (q̂1, q̃))TnLn−1 K

Q/N
2 (q̂1, q̃)

 .
We also locally trivialize the principal bundle N → N /Nϑ, and similarly

we calculate the (mechanical) principal connection Ăϑ corresponding to the

principal bundle Q̂ → Q̆ = Q̂/Nϑ. We use this connection to calculate the
horizontal lift map h̆l. Let us assume that the principal connection Ăϑ in the
local trivialization is written as:

Ăϑq̂ :=
[
Ăϑq̆ TkLk−1 B̆ϑ

q̆

]
,

for all q̂ ∈ U × Nϑ × Uϑ × Ũ , where Uϑ ⊆ N /Nϑ is an open subset of

N /Nϑ, k ∈ Nϑ and q̆ ∈ U × Uϑ × Ũ ⊆ Q̆ = Q̂/Nϑ. Here, the linear maps

Ăϑq̆ : TU → Lie(Nϑ) and B̆ϑ
q̆ : T (Uϑ× Ũ)→ Lie(Nϑ) are defined based on the

Legendre transformation FL̂q̂ in the local trivialization of the principal bundle

N → N /Nϑ. Consequently, the horizontal lift map h̆lq̂ : Tq̆(U × Uϑ × Ũ) →
Tq̂(U ×Nϑ × Uϑ × Ũ) is calculated by

h̆lq̂ =

[
−TeLk

[
Ăϑq̆ B̆ϑ

q̆

]
idTq̆(U×Uϑ×Ũ)

]
, (5.32)

where idTq̆(U×Uϑ×Ũ) is the identity map on the tangent space Tq̆(U ×Uϑ× Ũ).

Now, we use (5.31) and (5.32) to calculate the 2-form Ξϑ in (2.20) for a
reduced MBS(N,N). Furthermore, for a reduced MBS(N,N) we have the

inverse of the map ϕϑ : M̆
−1

(ϑ)/Nϑ → T ∗Q̆ is defined on S̆ and in the local

trivialization ∀p̆q̆ = (p̂1, pϑ, p̃) ∈ T ∗q̆ (U × Uϑ × Ũ),

ϕ−1
ϑ (p̂1, pϑ, p̃) =

p̂1 + Ă∗(q̂1,q̃)(Ad∗(e,ñ)ϑ)

T ∗(k,ñ)R(k,ñ)−1(ϑ)

p̃+ B̆∗(q̂1,q̃)(Ad∗(e,ñ)ϑ)


ϑ

, (5.33)
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where in local trivialization we have n = (k, ñ) ∈ N . It is easy to show that
on the vector sub-bundle S̆, pϑ = 0. Hence, we can determine the reduced
Hamiltonian H̆ϑ : S̆ → R by

H̆ϑ(q̆, p̂1, p̃) := Ĥϑ(ϕ−1
ϑ (p̂1, 0, p̃)). (5.34)

Theorem 5.2. We say that a reduced MBS(N,N) with symmetry whose

dynamics is represented by (T ∗Q̂, Ω̂, Ĥ, K̂,N ), and whose solution curves
satisfy the reduced nonholonomic Hamilton’s equation (2.11), can be further

reduced to the system (S̆ ⊂ T ∗Q̆, Ω̆ϑ−Ξϑ, H̆ϑ). The 2-form Ω̆ϑ := T ∗ϕ−1
ϑ (Ω̂ϑ)

is calculated based on (5.33). The Hamiltonian H̆ϑ : S̆ → R is the further
reduced Hamiltonian in (5.34). Also the closed 2-form Ξϑ is defined by (2.20),
using (5.31) and (5.32). The further reduced system satisfies Hamilton’s
equation (2.19) for the Hamiltonian H̆ϑ.

6. Case Study (Four-wheel Crane)

In this section we study the dynamics of an example of nonholonomic
open-chain multi-body systems. In this example, we study the two-stage
reduction of a two-d.o.f. crane on a four-wheel car whose top and side view in
the initial configuration is shown in Figure 1. Using the indexing introduced
in the previous section and starting with the car without the rear wheels and
the crane as B1, we first number the bodies and joints. The following graph
shows the structure of the nonholonomic open-chain multi-body system.

B4 B2
J5J4

B5

B0
J1 B1

J2

J3 B3
J6

B6

We first identify the relative configuration manifolds corresponding to the
joints of the robotic system. The relative configuration manifold correspond-
ing to the first joint, which is a three-d.o.f. planar joint, is

Q0
1 =

r2
1 =


cos(θ) − sin(θ) 0 x
sin(θ) cos(θ) 0 y

0 0 1 0
0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣x, y ∈ R, θ ∈ S1

 .
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Figure 1: An example of a crane

Here, (x, y) is the position of C with respect to the inertial coordinate frame
and θ is the angle between theX1-axis andX0-axis (see Figure 2). The second
joint is a one-d.o.f. revolute joint between B2 and B1, and its corresponding
relative configuration manifold is given by

Q1
2 =

r1
2 =


cos(ψ1) − sin(ψ1) 0 l
sin(ψ1) cos(ψ1) 0 0

0 0 1 0
0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣ψ1 ∈ S1

 ,

where l is the distance between the front and rear wheels. Similarly, for the
third joint we have

Q1
3 =

r1
3 =


cos(ϕ1) − sin(ϕ1) 0 l1
sin(ϕ1) cos(ϕ1) 0 0

0 0 1 0
0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣ϕ1 ∈ S1

 .

The forth and fifth joints are one-d.o.f. revolute joints whose axes of revolu-
tion are the Yi-axis (i = 4, 5). The relative configuration manifolds of these
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Figure 2: The coordinate frames attached to the bodies of the crane

joints are identified by

Q2
4 =

r2
4 =


cos(ψ2) 0 sin(ψ2) 0

0 1 0 c
− sin(ψ2) 0 cos(ψ2) 0

0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣ψ2 ∈ S1

 ,

Q2
5 =

r2
5 =


cos(ψ3) 0 sin(ψ3) 0

0 1 0 −c
− sin(ψ3) 0 cos(ψ3) 0

0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣ψ3 ∈ S1

 ,

where c is the distance between the steering point and the front wheels. Note
that, if we assume that the front wheels are rotating together, then we can
substitute the front wheels with a cylinder. Finally, the sixth joint is a one-
d.o.f. revolute joint with the Y6-axis being its axis of revolution. So, we
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have

Q5
6 =

r5
6 =


cos(ϕ2) 0 sin(ϕ2) 0

0 1 0 0
− sin(ϕ2) 0 cos(ϕ2) l2

0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣ϕ2 ∈ S1

 .

We assume that the initial pose of B1 with respect to the inertial coordi-
nate frame r0

1,0 is the identity element of SE(3). As a result, the initial pose
of the centre of mass of B1 with respect to B0 is

rcm,1 =


1 0 0 l0
0 1 0 0
0 0 1 0
0 0 0 1

 .
For the second and third body, the initial relative pose with respect to B1 is

r1
2,0 =


1 0 0 l
0 1 0 0
0 0 1 0
0 0 0 1

 ,

r1
3,0 =


1 0 0 l1
0 1 0 0
0 0 1 0
0 0 0 1

 ,
and we have

rcm,2 =


1 0 0 l
0 1 0 0
0 0 1 0
0 0 0 1

 ,

rcm,3 =


1 0 0 l1
0 1 0 l2/2
0 0 1 0
0 0 0 1

 ,
where we assume that the centre of mass of B3 is located in the middle of
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the body. The initial relative pose of B4 and B5 with respect to B2 is

r2
i,0 =


1 0 0 0
0 1 0 ±c
0 0 1 0
0 0 0 1

 ,
and the relative pose of the centre of mass of B4 and B5 with respect to the
inertial coordinate frame is

rcm,i =


1 0 0 l
0 1 0 ±c
0 0 1 0
0 0 0 1

 ,
where i = 4, 5 and plus and minus signs refer to B4 and B5, respectively. For
the sixth body we have

r3
6,0 =


1 0 0 0
0 1 0 l2
0 0 1 0
0 0 0 1

 ,

rcm,6 =


1 0 0 l1
0 1 0 0
0 0 1 l2
0 0 0 1

 ,
where we assume that the centre of mass of this body is at the sixth joint J6.

Knowing the above specifications of the system, we identify the configu-
ration manifold of the nonholonomic open-chain multi-body system in this
case study by Q = Q1 × · · · × Q6, where

Q1 =

q1 =


cos(θ) − sin(θ) 0 x
sin(θ) cos(θ) 0 y

0 0 1 0
0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣x, y ∈ R, θ ∈ S1

 ,
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Q2 =

q2 =


cos(ψ1) − sin(ψ1) 0 2l sin2(ψ1/2)
sin(ψ1) cos(ψ1) 0 −l sin(ψ1)

0 0 1 0
0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣ψ1 ∈ S1

 ,

Q3 =

q3 =


cos(ϕ1) − sin(ϕ1) 0 2l1 sin2(ϕ1/2)
sin(ϕ1) cos(ϕ1) 0 −l1 sin(ϕ1)

0 0 1 0
0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣ϕ1 ∈ S1

 ,

Q4 =

q4 =


cos(ψ2) 0 sin(ψ2) 2l sin2(ψ2/2)

0 1 0 0
− sin(ψ2) 0 cos(ψ2) l sin(ψ2)

0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣ψ2 ∈ S1

 ,

Q5 =

q5 =


cos(ψ3) 0 sin(ψ3) 2l sin2(ψ3/2)

0 1 0 0
− sin(ψ3) 0 cos(ψ3) l sin(ψ3)

0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣ψ3 ∈ S1

 ,

Q6 =

q6 =


cos(ϕ2) 0 sin(ϕ2) 2l1 sin2(ϕ2/2)− l2 sin(ϕ2)

0 1 0 0
− sin(ϕ2) 0 cos(ϕ2) l1 sin(ϕ2) + 2l2 sin2(ϕ2/2)

0 0 0 1

 ∈ SE(3)

∣∣∣∣∣∣∣∣ϕ2 ∈ S1

 .

In order to calculate the kinetic energy for the system under study, we

need to first form the function F : Q → P =

6−times︷ ︸︸ ︷
SE(3)× · · · × SE(3), which

determines the pose of the coordinate frames attached to the centres of mass
of the bodies with respect to the inertial coordinate frame.

F (q1, · · · , q5) = (q1rcm,1, q1q2rcm,2, q1q3rcm,3, q1q2q4rcm,4, q1q2q5rcm,5, q1q3q6rcm,6)

Using (3.22), we can calculate the kinetic energy metric for the open-chain
multi-body system. In matrix form we have the following equation for the
tangent map (TF (q)LF (q)−1)(TqF ) : TqQ → Lie(P)

(TF (q)LF (q)−1)(TqF ) =

Adr−1
cm,1

· · · 0
...

. . .
...

0 · · · Adr−1
cm,6

Jq
Tq1(Lq−1

1
◦ ι1) · · · 0

...
. . .

...
0 · · · Tq6(Lq−1

6
◦ ι6)

 ,
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where we have the following equalities, using the introduced joint parameters:

Jq =



id6 06×6 06×6 06×6 06×6 06×6

Adq−1
2

id6 06×6 06×6 06×6 06×6

Adq−1
3

06×6 id6 06×6 06×6 06×6

Ad(q2q4)−1 Adq−1
4

06×6 id6 06×6 06×6

Ad(q2q5)−1 Adq−1
5

06×6 06×6 id6 06×6

Ad(q3q6)−1 06×6 Adq−1
6

06×6 06×6 id6


,

Tq1(Lq−1
1
◦ ι1) =

cos(θ) − sin(θ) 0 0 0 0
sin(θ) cos(θ) 0 0 0 0

0 0 0 0 0 1

T ,
Tq2(Lq−1

2
◦ ι2) =

[
0 −l 0 0 0 1

]T
,

Tq3(Lq−1
3
◦ ι3) =

[
0 −l1 0 0 0 1

]T
,

Tq4(Lq−1
4
◦ ι4) =

[
0 0 l 0 1 0

]T
,

Tq5(Lq−1
5
◦ ι5) =

[
0 0 l 0 1 0

]T
,

Tq6(Lq−1
6
◦ ι6) =

[
−l2 0 l1 0 1 0

]T
.

Let us denote the standard basis for se(3) by {E1, · · · , E6}, such that

E1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , E2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , E3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0



E4 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , E5 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , E6 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .
Further, we define the following metrics on the Lie algebras of copies of SE(3)
corresponding to the bodies:

(hi)e =


miid3 03×3

03×3

jx,i 0 0
0 jy,i 0
0 0 jz,i


 ,
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where i = 1, · · · , 6, mi is the mass of Bi, and (jx,i, jy,i, jz,i) are the moments
of inertia of Bi about the Xi, Yi and Zi axes of the coordinate frame attached
to the centre of mass of Bi. Note that, we chose this coordinate frame such
that its axes coincide with the principal axes of the body Bi. For the body
Bi (i = 2, · · · , 6), we assume a symmetric cylindrical shape. The cylinder
axis is aligned with the Yi-axis for i = 2, 4, 5, so we have jx,i = jz,i. Similarly,
for the bodies B3 and B6, the cylinder axes are aligned with Z3 and X6

axes, and we have the equalities jx,3 = jy,3 and jy,6 = jz,6. Also, since the
wheels are assumed identical, only the dynamic parameters of B4 is going to
appear in the calculations. Therefore, in the coordinates chosen to identify
the configuration manifold (joint parameters), we have the following matrix
form for FLq

FLq = T ∗q (LF (q)−1F )

(h1)e · · · 0
...

. . .
...

0 · · · (h6)e

Tq(LF (q)−1F ) =

K11(q) · · · K16(q)
...

. . .
...

K61(q) · · · K66(q)

 .
Here, we have

K11(q) =

mtot 0 − sin(θ)(lm2 + 2lm4 + l0m1 + l1m3 + l1m6)
? mtot cos(θ)(lm2 + 2lm4 + l0m1 + l1m3 + l1m6)
? ? jz,tot


K21(q) = K12(q)T =

[
0 0 2m4c

2 + jx,2 + 2Jx,4
]
,

K31(q) = K13(q)T =
[
0 0 jz,3 + jx,6 sin2(ϕ2) + jy,6 cos2(ϕ2)

]
,

Ki1(q) = K1i(q)
T =

[
0 0 0

]
,∀i = 4, 5, 6

K22(q) = 2m4c
2 + jx,2 + 2jx,4, Ki2 = K2i = 0,∀i = 3, · · · , 6

K33(q) = jz,3 + jx,6 sin2(ϕ2) + jy,6 cos2(ϕ2), Ki3 = K3i = 0, ∀i = 4, 5, 6

K44(q) = jy,4, Ki4 = K4i = 0,∀i = 5, 6

K55(q) = jy,4, K65 = K56 = 0, K66(q) = jy,6,

where

mtot = m1 +m2 +m3 + 2m4 +m6,

jz,tot = jz,1 + jx,2 + jz,3 + 2jx,4 + jx,6 + l2m2 + 2l2m4 + l20m1 + l21m3

+ l21m6 + 2c2m4 − jx,6 cos2(ϕ2) + jy,6 cos2(ϕ2).
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For K11(q), we did not include the lower diagonal elements, since the matrix
is symmetric. The kinetic energy is calculated by

Kq(q̇, q̇) =
1

2
q̇TFLq q̇,

where, with an abuse of notation, q̇ is the vector corresponding to the speed
of the joint parameters.

For this case study, the potential energy of the nonholonomic open-chain
multi-body system is constant, and it does not enter the dynamical equation.
As a result, the Hamiltonian of the nonholonomic open-chain multi-body
system is calculated by

H(q, p) =
1

2
pTFL−1

q p,

where p is the vector of generalized momenta corresponding to the joint
parameters.

The nonholonomic constraints for the multi-body system under study are
the non-slipping conditions on the wheels, i.e., B1, B4 and B5. The linearly
independent 1-forms corresponding to the constraints are

ω1
1 = − sin(θ)dx+ cos(θ)dy,

ω2
1 = − sin(θ + ψ1)dx+ cos(θ + ψ1)dy + l cos(ψ1)dθ,

ω3
1 = cos(θ + ψ1)dx+ sin(θ + ψ1)dy + (l sin(ψ1)− c)dθ − cdψ1 − bdψ2,

ω4
1 = cos(θ + ψ1)dx+ sin(θ + ψ1)dy + (l sin(ψ1) + c)dθ + cdψ1 − bdψ3,

where b is the radius of each wheel. The distribution D ⊂ TQ is the anni-
hilator of these constraint 1-forms, and it is the span of the following vector
fields:{

∂

∂ψ1

+
cl cos(ψ1)

l − c sin(ψ1)

(
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y
+

tan(ψ1)

l

∂

∂θ
+

2

b cos(ψ1)

∂

∂ψ3

)
,
∂

∂ψ2

+
bl cos(ψ1)

l − c sin(ψ1)

(
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y
+

tan(ψ1)

l

∂

∂θ
+
l + c sin(ψ1)

bl cos(ψ1)

∂

∂ψ3

)
,
∂

∂ϕ1

,
∂

∂ϕ2

}
.

Here in this example, the base of the multi-body system consists of four
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bodies, B1, B2, B4 and B5, and its configuration manifold is Q1 × Q2 ×
Q4 × Q5. The Hamiltonian of the system H and the distribution D are
invariant under the action of G = Q1 ×Q3 ×Q4 ×Q5, which is isomorphic
to SE(2) × SO(2) × SO(2) × SO(2) as a group, by left translation. Now,
consider the action of G = Q1 ×Q5 ⊂ G as a subgroup of G, which satisfies
the dimensional assumption (2.7) for Chaplygin systems. Using the joint
parameters, ∀(x0, y0, θ0, ψ3,0) ∈ G we have

Φ̂(x0,y0,θ0,ψ3,0)(q) = (x cos(θ0)−y sin(θ0)+x0, x sin(θ0)+y cos(θ0)+y0, θ+θ0, ψ3+ψ3,0, q̂1, q),

where q̂1 = (ψ1, ψ2) and q = (ϕ1, ϕ2). We have the principal G-bundle

π̂ : Q → Q̂ = Q2 ×Q4 ×Q3 ×Q6, and using the joint parameters its corre-
sponding principal connection Â : TQ → Lie(G) is defined by

Âq =

Adh︷ ︸︸ ︷
cos(θ) − sin(θ) y 0
sin(θ) cos(θ) −x 0

0 0 1 0
0 0 0 1




ThLh−1︷ ︸︸ ︷
cos(θ) sin(θ) 0 0
− sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1


Âq̂1︷ ︸︸ ︷

1

l − c sin(ψ1)


−lc cos(ψ1) −lb cos(ψ1)

0 0
−c sin(ψ1) −b sin(ψ1)
−2lc/b −(l + c sin(ψ1))

 04×2


,

where h = (x, y, θ, ψ3) is an element of Q1 × Q5. And consequently, the

horizontal lift map ĥlq : Tq̂Q̂ → TqQ is

ĥlq =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1




1

l−c sin(ψ1)


lc cos(ψ1) cos(θ) lb cos(ψ1) cos(θ)
lc cos(ψ1) sin(θ) lb cos(ψ1) sin(θ)

c sin(ψ1) b sin(ψ1)
2lc/b l + c sin(ψ1)

 04×2

id4

 ,
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where in the above formulation, the first matrix in the multiplication is nec-
essary only to match the order of parameters.

Then, we have

FL̂q̂ = ĥl
T

q FLqĥlq =

K̂11(q̂) · · · K̂14(q̂)
...

. . .
...

K̂41(q̂) · · · K̂44(q̂)

 ,
where the following equalities hold:

K̂11(q̂) = ÂTq̂1

[
K11((e1, q̂)) K15((e1, q̂))
K51((e1, q̂)) K55((e1, q̂))

]
Âq̂1 − ÂTq̂1

[
K21((e1, q̂)) K25((e1, q̂))
K41((e1, q̂)) K45((e1, q̂))

]T
−
[
K21((e1, q̂)) K25((e1, q̂))
K41((e1, q̂)) K45((e1, q̂))

]
Âq̂1 +

[
K22((e1, q̂)) K24((e1, q̂))
K42((e1, q̂)) K44((e1, q̂))

]
,

K̂12(q̂) = −ÂTq̂1

[
K13((e1, q̂))
K53((e1, q̂))

]
+

[
K23((e1, q̂))
K43((e1, q̂))

]
= K̂21(q̂)T ,

K̂13(q̂) = −ÂTq̂1

[
K16((e1, q̂))
K56((e1, q̂))

]
+

[
K26((e1, q̂))
K46((e1, q̂))

]
= K̂31(q̂)T ,[

K̂22(q̂) K̂23(q̂)

K̂32(q̂) K̂33(q̂)

]
=

[
K33((e1, q̂)) K36((e1, q̂))
K63((e1, q̂)) K66((e1, q̂))

]
.

Here,

Âq̂1 =
1

l − c sin(ψ1)


−lc cos(ψ1) −lb cos(ψ1)

0 0
−c sin(ψ1) −b sin(ψ1)
−2lc/b −(l + c sin(ψ1))

 .
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As a result, we can calculate the 2-form Ω̂ by (2.12)

Υ̂12(q̂, p̂) = p̂TFL̂−1
q̂

−Â
T
q̂1

[
K11((e1, q̂)) K15((e1, q̂))
K51((e1, q̂)) K55((e1, q̂))

]
+

[
K21((e1, q̂)) K25((e1, q̂))
K41((e1, q̂)) K45((e1, q̂))

]
[
K31((e1, q̂)) K35((e1, q̂))
K61((e1, q̂)) K65((e1, q̂))

]



−b(c− l sin(ψ1))

0
−b cos(ψ1)
−2c cos(ψ1)

 l

(l − c sin(ψ1))2
,

Υ̂13 = Υ̂14 = Υ̂23 = Υ̂24 = Υ̂34 = 0,

where p̂ is the vector of generalized momenta in the reduced space. Finally,
in matrix form we have the following reduced equations of motion for the
nonholonomic multi-body system under study:

[
˙̂q
˙̂p

]
=


04×4 id4

−id4


0 Υ(q̂, p̂) 0 0

−Υ(q̂, p̂) 0 0 0
0 0 0 0
0 0 0 0



∂Ĥ∂q̂
∂Ĥ
∂p̂

 ,

where Ĥ is calculated by (5.30), with V (q) = 0.

6.1. Further Reduction of the System

In this subsection we investigate if the system under study demonstrates
any conserved quantity due to the action of a bigger symmetry group (bigger
than Q1 × Q5). In this case study, since originally FLq is independent of

ϕ1, the Hamiltonian Ĥ is invariant under the action of N = Q3 by left
translation. Using the joint parameters, for any ϕ1,0 we have the action of

N on T ∗Q̂ defined as

T ∗Φ̆ϕ1,0(ψ1, ψ2, ϕ1, ϕ2, p̂ψ1 , p̂ψ2 , p̂ϕ1 , p̂ϕ2) = (ψ1, ψ2, ϕ1 + ϕ1,0, ϕ2, p̂ψ1 , p̂ψ2 , p̂ϕ1 , p̂ϕ2),

where (ψ1, ψ2, ϕ1, ϕ2, p̂ψ1 , p̂ψ2 , p̂ϕ1 , p̂ϕ2) is a set of coordinates for T ∗Q̂, which
can be considered as the reduced space of joint parameters and their cor-
responding momenta. Also, it is easy to check that the conditions (i) and
(ii) on Page 11 are satisfied for this case study. As the result, we have that
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the momentum map M̆q̂ : T ∗q̂ Q̂ → Lie∗(N ) for the N -action is conserved
along the solution curves of the reduced system. Here, the momentum map
is defined by

M̆q̂ =
[
0 0 1 0

]
.

We have a principal bundle π̆ : Q̂ → Q̆ = Q2×Q4×Q6 with the (mechanical)

principal connection Ăq̂ : Tq̂Q̂ → Lie(N )

Ăq̂ =
1

l − c sin(ψ1)

[
c sin(ψ1) b sin(ψ1) l − c sin(ψ1) 0

]
.

For a regular value of the momentum map ϑ ∈ Lie∗(N ), the coadjoint
isotropy group Nϑ = N , and the level set of the momentum map is

M̆
−1

(ϑ) =
{

(ψ1, ψ2, ϕ1, ϕ2, p̂ψ1 , p̂ψ2 , p̂ϕ1 , p̂ϕ2) ∈ T ∗Q̂
∣∣∣ p̂ϕ1 = ϑ

}
⊂ T ∗Q̂.

Also, we have

αϑ =
ϑ

l − c sin(ψ1)
(c sin(ψ1)dψ1 + b sin(ψ1)dψ2 + (l − c sin(ψ1))dϕ1) ∈ Ω1(Q̂),

and hence,

Ξϑ =
ϑbl cos(ψ1)

(l − c sin(ψ1))2
dψ1 ∧ dψ2 ∈ Ω2(T ∗Q̆).

We then can calculate the map ϕ̆−1
ϑ : T ∗Q̆ → M̆

−1
(ϑ)/N by

ϕ̆−1
ϑ (ψ1, ψ2, ϕ2, p̆ψ1 , p̆ψ2 , p̆ϕ2) = (ψ1, ψ2, ϕ2, p̆ψ1+

ϑc sin(ψ1)

l − c sin(ψ1)
, p̆ψ2+

ϑb sin(ψ1)

l − c sin(ψ1)
, p̆ϕ2).

As a result, we determine the 2-forms Ω̆ϑ ∈ Ω2(T ∗Q̆):

Ω̆ϑ = −dp̆ ∧ dq̆ − Ῠ′(q̆, p̆)dψ1 ∧ dψ2,

where

Ῠ′(q̆, p̆) := Υ(ψ1, ψ2, 0, ϕ2, p̆ψ1 +
ϑc sin(ψ1)

l − c sin(ψ1)
, p̆ψ2 +

ϑb sin(ψ1)

l − c sin(ψ1)
, ϑ, p̆ϕ2).
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Finally, we have the reduced equations of motion in T ∗Q̆ as:

[
˙̆q
˙̆p

]
=


03×3 id3

−id3

 0 Ῠ′(q̆, p̆) + ϑbl cos(ψ1)
(l−c sin(ψ1))2 0

−Ῠ′(q̆, p̆)− ϑbl cos(ψ1)
(l−c sin(ψ1))2 0 0

0 0 0



[
∂H̆ϑ

∂q̆
∂H̆ϑ

∂p̆

]
,

where

H̆ϑ(q̆, p̆) = Ĥ(ψ1, ψ2, 0, ϕ2, p̆ψ1 +
ϑc sin(ψ1)

l − c sin(ψ1)
, p̆ψ2 +

ϑb sin(ψ1)

l − c sin(ψ1)
, ϑ, p̆ϕ2).

7. Conclusions and Future Work

In this paper, we developed a two-stage reduction method to reduce the
dynamical equations of a nonholonomic multi-body system. Through this
process, we considered more general cases of multi-body systems, where there
exist multi-d.o.f. holonomic and nonholonomic displacement subgroups as a
class of multi-d.o.f. joints. The relative configuration manifold of this class
of joints is diffeomorphic to a subgroup of SE(3). We used the Chaplygin
reduction theorem to express Hamilton’s equation in the cotangent bundle
of a quotient manifold. We found some sufficient conditions, under which
the kinetic energy metric is invariant under the action of a subgroup of the
configuration manifold. Accordingly, we extended the Chaplygin reduction
theorem to a two-stage reduction process for the dynamical equations of open-
chain multi-body systems with multi-d.o.f. holonomic and nonholonomic
joints. Finally, we derived the reduced dynamical equations in the local
coordinates for an example of a two d.o.f. crane mounted on a four-wheel
car to illustrate the results of this paper.

The reduction process introduced in this paper can be unified with the
reduction of holonomic multi-body systems. The investigation of the simi-
larities and differences of these two reduction methods will be the subject of
our future research.
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Figure 1: An example of a crane

Figure 2: The coordinate frames attached to the bodies of the crane
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