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Abstract This paper presents a two-step symplectic geometric approach to the
reduction of Hamilton’s equation for open-chain, multi-body systems with multi-
degree-of-freedom holonomic joints and constant momentum. First, symplectic re-
duction theorem is revisited for Hamiltonian systems on cotangent bundles. Then,
we recall the notion of displacement subgroups, which is the class of multi-degree-
of-freedom joints considered in this paper. We briefly study the kinematics of
open-chain multi-body systems consisting of such joints. And, we show that the
relative configuration manifold corresponding to the first joint is indeed a sym-
metry group for an open-chain multi-body system with multi-degree-of-freedom
holonomic joints. Subsequently using symplectic reduction theorem at a non-zero
momentum, we express Hamilton’s equation of such a system in the symplectic re-
duced manifold, which is identified by the cotangent bundle of a quotient manifold.
The kinetic energy metric of multi-body systems is further studied, and some suffi-
cient conditions are introduced, under which the kinetic energy metric is invariant
under the action of a subgroup of the configuration manifold. As a result, the
symplectic reduction procedure for open-chain, multi-body systems is extended to
a two-step reduction process for the dynamical equations of such systems. Finally,
we explicitly derive the reduced dynamical equations in the local coordinates for
an example of a six-degree-of-freedom manipulator mounted on a spacecraft, to
demonstrate the results of this paper.
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Operators

Lr Left composition/translation by r
Rr Right composition/translation by r
Kr Conjugation by r
Adr Adjoint operator corresponding to r
adξ adjoint operator corresponding to ξ
[ξ, η] Lie bracket or matrix commutator
Tmf Tangent map corresponding to the map f at the element m
T ∗mf Cotangent map corresponding to the map f at the element m
TmM Tangent space of the manifold M at the element m
TM Tangent bundle of the manifold M
T ∗mM Cotangent space of the manifold M at the element m
T ∗M Cotangent bundle of the manifold M
exp(ξ) Group/matrix exponential of ξ
Lie(G) Lie algebra of the Lie group G
Lie∗(G) Dual of the Lie algebra of the Lie group G
Gµ Coadjoint isotropy group for µ ∈ Lie∗(G)
n Semi-direct product of groups
� ·, · � Euclidean metric
‖v‖h Norm of the vector v with respect to the metric h
〈·, ·〉 Canonical pairing of the elements of tangent and cotangent

space
LX Lie derivative with respect to the vector field X
ξM Vector field on the manifold M induced by the infinitesimal

action of ξ ∈ Lie(G)
ιXΩ Interior product of the differential form Ω by the vector field X
X(M) Space of all vector fields on the manifold M
Ω2(M) Space of all differential 2-forms on the manifold M
dΩ Exterior derivative of the differential form Ω
dH Exterior derivative of the function H
M/G Quotient manifold corresponding to a free and proper action

of the Lie group G

1 Introduction

In order to better understand the behaviour of Hamiltonian and Lagrangian sys-
tems, researchers have been trying to find conserved quantities that are used to
integrate a part of dynamical equations, and derive closed-form equations for some
parameters of such systems. For example, Jacobi in 1884 introduced Hamilton-
Jacobi equations, which give the necessary conditions for integrability of a La-
grangian system [13]. Also, Emmy Noether in 1918 in her famous paper [24] proved
that any symmetry of the action functional of a Lagrangian system corresponds
to a conserved quantity. This result is an inflection point in identifying conserved
quantities, and its relation with the reduction of dynamical equations of a system.
By reducing the dynamical equations we mean expressing the differential equations
representing a (Lagrangian or Hamiltonian) system on a manifold whose dimen-
sion is less than the original phase space of the system, by quotienting a group
action and eliminating the trivial behaviour of the system or restricting the system
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to a submanifold of the phase space. In the following, we first review two existing
reduction theories for Hamiltonian and Lagrangian mechanical systems. Then, we
report the reduction methods for multi-body systems, and finally, we state the
contributions of this paper.

1.1 Background

1.1.1 Reduction Theories

From the geometric point of view, a Hamiltonian system is a vector field X on a
symplectic manifold (M,Ω) (phase space) that satisfies (coordinate-independent)
Hamilton’s equation

ιXΩ = dH,

where ιXΩ is the interior product of the vector field X with the symplectic form Ω,
and the function H : M → R is the Hamiltonian of the system. In this formulation,
if H and Ω are invariant under a group action, then there exists a conserved
quantity (momentum) for the Hamiltonian system and we can reduce Hamilton’s
equation [18]. In this reduction process, we have to take care of not only the
topology of the phase space and its symplectic structure, but also the Hamiltonian
H and its corresponding Hamiltonian vector field X. As for the reduction of the
phase space along with its symplectic structure (M,Ω), the symplectic reduction
theorem by Marsden and Weinstein [21] gives an instruction to find the reduced
phase space and its symplectic structure. In the following, we state this theorem,
and report its impact on the geometric mechanics literature.

Let G be a Lie group, and M be the phase space of a system. The sym-
plectic reduction theorem states that in the presence of a free and proper G-
action and an (Ad∗-equivariant) momentum map M : M → Lie∗(G), for any value
µ ∈ Lie∗(G) of the momentum the quotient manifold Mµ := M−1(µ)/Gµ inher-
its a symplectic form Ωµ. Here, Gµ is the coadjoint isotropy group of µ, Ωµ is
identified by the equality i∗µΩ = π∗µΩµ, and the maps iµ : M−1(µ) ↪→ M and
πµ : M−1(µ)→M−1(µ)/Gµ are the canonical inclusion and projection maps [21].
The pair (Mµ, Ωµ) is called the symplectic reduced manifold. This theorem by
Marsden and Weinstein made a huge impact on unifying the reduction methods
that had been previously developed for Lagrangian and Hamiltonian systems, such
as classical Routh method and the reduction of Lagrangian systems by cyclic pa-
rameters [26].

For a mechanical system, the phase space is the cotangent bundle of the con-
figuration manifold T ∗Q that admits a canonical symplectic 2-form, which is
Ωcan := −dp ∧ dq, in coordinates. As the result, (T ∗Q, Ωcan) is a symplectic
manifold. The Hamiltonian of the mechanical system H : T ∗Q → R comes from
a (kinetic energy) metric and a (potential energy) function on Q. Let G be a
Lie group acting properly on the configuration manifold Q. The cotangent lifted
action on the phase space is symplectic. In this case, if the Hamiltonian of the
system is also invariant under the cotangent lift of the G-action, the group G is
called the symmetry group of the mechanical system, and the system is called a
mechanical system with symmetry [16,18]. In the reduction process of mechanical
systems with symmetry, we should take care of four structures, i.e., the topology
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of the phase space, the symplectic structure, the (kinetic energy) metric and the
(potential energy) function of the system.

The phase space of a mechanical system T ∗Q also admits a canonical Poisson
bracket {·, ·} using the canonical symplectic form. For a mechanical system with
symmetry, suppose that the symmetry group G acts freely and properly on Q,
and so does it on T ∗Q. Clearly, the Poisson bracket is invariant under the cotan-
gent lifted action, i.e., the action is a Poisson action on (T ∗Q, {·, ·}). The Poisson
bracket on T ∗Q descends to a Poisson bracket on the quotient manifold (T ∗Q)/G.
This process, which has been introduced in [18,2], is called Poisson reduction.
The major difference between Poisson reduction and symplectic reduction is the
concept of momentum map, which is not necessary for Poisson reduction, and as
the result the induced Hamilton’s equation on the quotient phase space evolves in
a bigger space. This approach unifies the Euler-Poincaré and Lagrange-Poincaré
equations for mechanical systems with symmetry [18]. Both of the abovementioned
reduction theories for mechanical systems with symmetry were developed and ex-
tended to Lagrangian systems, in the 1990s [5,20,19].

1.1.2 Dynamical Reduction of Multi-body Systems

An example of a mechanical system with symmetry is a free-base multi-body sys-
tem, which has been studied in the field of robotics, aerospace and controls. Vafa
and Dubowsky introduce the notion of Virtual Manipulator [36], and they show
that this approach decouples the system centre of mass translation and efficiently
solves for the inverse kinematics [9]. Since the trivial behaviour of a multi-body
system due to momentum conservation is eliminated during a reduction process,
the behaviour of the system is more explicit in the reduced space. The reduction
procedures have been helpful for extracting control laws for space manipulators by
restricting the dynamical equations to the submanifold of the phase space where
the momentum of the system is constant (and equal to zero). Yoshida et al. inves-
tigate the kinematics of free-floating multi-body systems utilizing the momentum
conservation law. They derive a new Jacobian matrix in generalized form and de-
velop a control method based on the resolved motion rate control concept [35,23].
McClamroch et al. also propose an articulated-body dynamical model for free-
floating robots based on Hamilton’s equation, and apply it for adaptive motion
control [37]. In the case of underactuated space manipulators, Mukherjee and Chen
in [22] show that even if the unactuated joints do not possess brakes, the manipu-
lator can be brought to a complete rest provided that the system maintains zero
momentum. In [34] an alternative path planning methodology is developed for
underactuated manipulators using high order polynomials as arguments in cosine
functions to specify the desired path directly in joint space.

Geometric methods have also been used to reduce the dynamical model of free-
base multi-body systems and introduce effective control laws. For example, in [31,
32] Sreenath reduces Hamilton’s equation by SO(2) for free-base planar multi-body
systems with non-zero angular momentum. He uses symplectic reduction theory
to first reduce dynamical equations and then derive a control law for reorienting
the free-base system. Chen in his Ph.D. thesis [6] extends Sreenath’s approach to
spatial multi-body systems with zero angular momentum. Duindam and Strami-
gioly derive Boltzmann-Hamel equations for multi-body systems with generalized
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multi-degree-of-freedom (multi-d.o.f.) holonomic and nonholonomic joints by re-
stricting the dynamical equations to the nonholonomic distribution [10]. This is
the first attempt to reduce the dynamical equations of a generic open-chain multi-
body systems with generalized holonomic and nonholonomic joints. Furthermore,
Shen proposes a novel trajectory planning in shape space for nonlinear control of
multi-body systems with symmetry [29,27,28]. In his work he performs symplectic
reduction for zero momentum and assumes multi-body systems on trivial bundles.
Then, in [30] he extends his results to include nonholonomic constraints. Also,
in the control community, Olfati-Saber in his thesis [25] studies the reduction of
underactuated Lagrangian mechanical systems with symmetry (with zero momen-
tum) and its application to nonlinear control of such systems. Further, Bloch and
Bullo extract coordinate-independent nonlinear control laws for holonomic and
nonholonomic mechanical systems with symmetry [2,3,4].

1.2 Structure of the Paper and Statement of Contributions

In the robotics community, research on the dynamical reduction of multi-body
systems is mostly focused on the cases where the total liner and angular momentum
is zero, the symmetry group of the system is either SO(3) or SO(2), and the
configuration manifold of the system is a trivial bundle of the symmetry group over
the shape space. In the real world applications however, it is impractical to have a
system with zero angular and linear momentum. In this paper we systematically
develop a two-step reduction process (based on the symplectic reduction theorem)
for dynamical equations of holonomic open-chain multi-body systems with non-
zero momentum. We consider any symmetry group, which is a subgroup of a
Cartesian product of copies of SE(3), and we do not assume that the configuration
manifold is a trivial bundle.

The following section gives a brief review of symplectic reduction theory for
mechanical systems on cotangent bundles. In Section 3, we introduce generic multi-
d.o.f. joints, and show that for a certain class of multi-d.o.f. joints the configuration
manifold of the system is indeed diffeomorphic to a Lie group. Then, Lagrangian
and Hamiltonian of generic open-chain multi-body systems are derived in Sec-
tion 4. The main results of this paper are presented in Section 5, where we in-
troduce the notion of open-chain multi-body systems with symmetry, and show
that the relative configuration manifold corresponding to the first joint is always a
symmetry group for such systems. We derive the reduced coordinate-independent
dynamical equations of generic open-chain multi-body systems with symmetry in
a vector sub-bundle of the cotangent bundle of the µ-shape space. Subsequently,
we find some necessary conditions for a reduced open-chain multi-body system
to admit a bigger symmetry group, and we repeat the reduction procedure intro-
duced in this section to further reduce the dynamical equations of these systems.
Finally in Section 6, as an example, we reduce the dynamical equations of a six
d.o.f. manipulator mounted on a spacecraft, and Section 7 concludes the paper
with some remarks.
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2 Symplectic Reduction of Holonomic Hamiltonian Mechanical
Systems with Symmetry

For a mechanical system, the Lagrangian L : TQ → R is defined by L(vq) :=
1
2Kq(vq, vq) − V (q), where ∀q ∈ Q we have vq ∈ TqQ, and Kq : TqQ × TqQ → R
is a Riemannian metric, called the kinetic energy metric, and where V : Q → R is
a smooth function, called the potential energy function. This Lagrangian is hyper-
regular, and its corresponding Legendre transformation FLq : TqQ → T ∗qQ is equal
to the fibre-wise linear isomorphism that is induced by the metric K:

〈FLq(vq), wq〉 := Kq(vq, wq). ∀vq, wq ∈ TqQ (2.1)

As the result, ∀pq ∈ T ∗Q the Hamiltonian H : T ∗Q → R of the system is

H(pq) :=
1

2
Kq(FL−1

q (pq),FL−1
q (pq)) + V (q), (2.2)

which is the total energy of the mechanical system. We label a Hamiltonian me-
chanical system by a four-tuple (T ∗Q, Ωcan, H,K), where Ωcan ∈ Ω2(T ∗Q) is the
canonical 2-form on the cotangent bundle T ∗Q, and H and K are defined as above.

Let G be a Lie group with the Lie algebra Lie(G). Consider an action of G on
Q, and denote the action by Φg : Q → Q, ∀g ∈ G. This action induces an action of
G on T ∗Q by the cotangent lift of Φg, which is denoted by T ∗Φg : T ∗Q → T ∗Q.

Lemma 21. For every g ∈ G, the map T ∗Φg is a symplectomorphism, i.e., it
preserves Ωcan [18].

Consider the infinitesimal action of Lie(G) on Q. For any ξ ∈ Lie(G), this
action induces a vector field ξQ ∈ X(Q) such that ∀q ∈ Q,

ξQ(q) =
∂

∂ε

∣∣∣∣
ε=0

(
Φexp(εξ)(q)

)
. (2.3)

Denote the fibre-wise linear map corresponding to the infinitesimal action of Lie(G)
by φq : Lie(G) → TqQ, where φq(ξ) = ξQ(q). Likewise, we define ξT ∗Q ∈ X(T ∗Q)
such that ∀pq ∈ T ∗qQ,

ξT ∗Q(pq) =
∂

∂ε

∣∣∣∣
ε=0

(
T ∗Φexp(εξ)(q)Φexp(−εξ)(pq)

)
. (2.4)

Now, consider the fibre-wise linear map M : T ∗Q → Lie∗(G), called momentum
map, which is defined by

〈Mq(pq), ξ〉 := 〈φ∗q(pq), ξ〉 = 〈pq, ξQ(q)〉. (2.5)

Lemma 22. The map M is an Ad∗-equivariant momentum map corresponding to
the cotangent lifted action T ∗Φg. That is,

M ◦ T ∗Φg(pq) = Ad∗g ◦M(pq). (2.6)

Proposition 23 (Noether’s Theorem). Let H : T ∗Q → R be the Hamiltonian of a
Hamiltonian mechanical system. If H is invariant under the cotangent lifted group
action, i.e., H ◦ T ∗Φg(pq) = H(pq), the momentum map M, as defined above, is
constant along the flow of the Hamiltonian vector field X for the Hamiltonian H.
That is, ∀ξ ∈ Lie(G) we have LX(〈M, ξ〉) = 0.
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We call X ∈ X(T ∗Q) a Hamiltonian vector field for the Hamiltonian H, if it
satisfies Hamilton’s equation:

ιXΩcan = dH. (2.7)

This equation is a coordinate-independent way of formulating Hamilton’s equation
in the language of differential forms, which is used mostly in the context of geomet-
ric mechanics. This equation is equivalent to the familiar form of the Hamilton’s
equation in a chosen coordinates (q, p) for T ∗Q:

ιXΩcan = ι(q̇,ṗ)(−dp ∧ dq) = q̇dp− ṗdq =
∂H

∂q
dq +

∂H

∂p
dp.

=⇒
{
ṗ = −∂H∂q
q̇ = ∂H

∂p

(2.8)

We define a Hamiltonian mechanical system with symmetry to be a five-tuple
(T ∗Q, Ωcan, H,K,G), as above, where the Hamiltonian H and K are invariant
under the cotangent and tangent lifted action of G.

Theorem 24 (Symplectic Reduction Theorem [21]). Let µ ∈ Lie∗(G) be a reg-
ular value of the momentum map M, and assume that the action of G on Q
is free and proper. Then the quotient manifold (T ∗Q)µ := M−1(µ)/Gµ, where
Gµ = {g ∈ G|Ad∗gµ = µ} is the coadjoint isotropy group, is a symplectic manifold,
called the symplectic reduced space, with the unique symplectic form Ωµ that is
identified by the equality T ∗πµ(Ωµ) = T ∗iµ(Ωcan). Here, the maps πµ : M−1(µ)→
M−1(µ)/Gµ and iµ : M−1(µ) ↪→ T ∗Q are the canonical projection and inclusion
map, respectively.

This theorem was first stated and proved in a paper by Marsden and Weinstein
in 1974 [21], and since then this result has been extended to non-free actions [8]
and almost symplectic manifolds [12]. An almost symplectic manifold is a man-
ifold equipped with a nondegenerate 2-form. Based on the symplectic reduction
theorem, in the presence of a group action that preserves the symplectic structure
and an Ad∗-equivariant momentum map (corresponding to the symmetry group)
we say that the phase space of a Hamiltonian system along with its symplectic
2-form can be reduced to the symplectic reduced space ((T ∗Q)µ, Ωµ). In order to
have a well-defined projection of Hamilton’s equation onto the symplectic reduced
space, the Hamiltonian of the system should be invariant under the group action,
as well. Under these hypotheses, Hamilton’s equation can be written on (T ∗Q)µ
as

ιXµΩµ = dHµ, (2.9)

where Hµ is defined by H ◦ iµ = Hµ ◦ πµ and Xµ ◦ πµ = Tπµ(X ◦ iµ).
We say that the Hamiltonian system with symmetry (T ∗Q, Ωcan, H,G) has

been reduced to the Hamiltonian system ((T ∗Q)µ, Ωµ, Hµ).
In the theory of cotangent bundle reduction, there exist two equivalent ways

to identify the symplectic reduced space with cotangent bundles and coadjoint
orbits [17]:

i) Embedding version: in which the symplectic reduced space is identified with a

vector sub-bundle of the cotangent bundle of Q̃ := Q/Gµ, called µ-shape space
of a Hamiltonian system.
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ii) Bundle version: in which the symplectic reduced space is identified by a (locally
trivial) fibre bundle of the coadjoint orbit through µ over the cotangent bundle
of Q := Q/G, namely shape space of the Hamiltonian system.

In this paper, the embedding version of the cotangent bundle reduction is used
to write Hamilton’s equation (2.9) in the cotangent bundle of the µ-shape space,

i.e., T ∗Q̃. Prior to reporting the final result, we introduce a number of necessary
objects.

Consider a Hamiltonian mechanical system with symmetry (T ∗Q, Ωcan,K,
H,G), and ∀g ∈ G denote the action map by Φg : Q → Q. Assume that the action is
free and proper. The quotient manifold Q := Q/G gives rise to the principal bundle
π : Q → Q with the base space Q, and the fibres of the bundle are isomorphic to
the group G. A principal connection on the principle bundle π : Q → Q is a fibre-
wise linear map A : TQ → Lie(G), such that A(ξQ(q)) = ξ (∀ξ ∈ Lie(G) and
∀q ∈ Q), and it is Ad-equivariant, i.e., A(TqΦg(vq)) = AdgA(vq) (∀vq ∈ TqQ).
Accordingly, for any base element q ∈ Q the tangent space of Q can be written as
the following direct sum

TqQ = ker(Tqπ)⊕ ker(Aq). (2.10)

Note that, V := ker(Tπ) = {ξQ = φ(ξ)| ξ ∈ Lie(G)} is called the vertical vector
sub-bundle of TQ, and H := ker(A) is called the horizontal vector sub-bundle of
TQ. As a result, any vq ∈ TqQ can be decomposed into the horizontal and vertical
components such that vq = hor(vq) + ver(vq), where ver(vq) := φq ◦ Aq(vq) and
hor(vq) := vq − ver(vq).

For any q ∈ Q and q := π(q) ∈ Q the restriction of the tangent map Tqπ : TqQ →
TqQ to the horizontal subspace of TqQ, namely Hq, is a linear isomorphism be-
tween Hq and TqQ. Therefore, for any vq ∈ TqQ it defines a horizontal lift map
by

hlq(vq) := (Tqπ|Hq )
−1(vq). (2.11)

The choice of the principal connection A is arbitrary; however, for a Hamilto-
nian mechanical system, we can use the Legendre transformation, which is induced
by the kinetic energy metric K, to define an appropriate principal connection.

For any q ∈ Q consider the linear map Iq : Lie(G)→ Lie∗(G), defined by

Iq := φ∗q ◦ FLq ◦ φq, (2.12)

such that the following diagram commutes:

Lie(G)

Iq

��

φq // TqQ

FLq

��
Lie∗(G) T ∗qQ

φ∗q

oo

This map is a linear isomorphism for any q ∈ Q, and it is called the locked inertia
tensor. For a Hamiltonian mechanical system with symmetry ∀ξ, η ∈ Lie(G) we
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have 〈Iq(ξ), η〉 = Kq(ξQ(q), ηQ(q)). The principal connection A can now be chosen
to be the mechanical connection AMech, which can be interpreted as the orthog-
onal projection with respect to the kinetic energy metric K, and defined by the
following commuting diagram:

TqQ

AMechq

��

FLq // T ∗qQ

Mq

��
Lie(G) Lie∗(G)

I−1
q

oo

Therefore, ∀q ∈ Q we have

Aq = AMech
q := I−1

q ◦Mq ◦ FLq. (2.13)

For any µ ∈ Lie∗(G), let the action of G restricted to the subgroup Gµ =
{g ∈ G|Ad∗gµ = µ} ⊆ G be denoted by Φµh : Q → Q (∀h ∈ Gµ). Similarly, for

this action we have a principal bundle π̃ : Q → Q̃ := Q/Gµ. Using the same
procedure detailed above, the locked inertia tensor Iµq : Lie(Gµ) → Lie∗(Gµ) and
the (mechanical) connection Aµq : TqQ → Lie(Gµ) (∀q ∈ Q) for the Gµ-action are
defined by

Iµq := (φµq )∗ ◦ FLq ◦ φµq , (2.14)

and
Aµq := (Iµq )−1 ◦Mµ

q ◦ FLq, (2.15)

respectively. Here, the map φµq : Lie(Gµ) → TQ corresponds to the infinitesimal
Gµ-action, and Mµ : T ∗Q → Lie∗(Gµ) is the Ad∗-equivariant momentum map for
the cotangent lifted Gµ-action, which are defined based on (2.3) and (2.5). Let
the map iµ : Gµ ↪→ G be the canonical inclusion map. Denote the induced map in
the Lie algebras by iµ∗ : Lie(Gµ) ↪→ Lie(G) and in the dual of the Lie algebras by
(iµ)∗ : Lie∗(G)→ Lie∗(Gµ). The following diagrams commute:

Lie(G)

φq

""
Lie(Gµ)
?�

iµ∗

OO

φµq // TqQ

Lie∗(G)

(iµ)∗

��
Lie∗(Gµ) T ∗qQ

(φµq )
∗

oo

φ∗q

bb

Based on these commuting diagrams, we have the following relations:

Iµq = (iµ)∗ ◦ φ∗q ◦ FLq ◦ φq ◦ iµ∗ = (iµ)∗ ◦ Iq ◦ iµ∗ ,
Mµ
q = (iµ)∗ ◦Mq,

Aµq = (Iµq )−1 ◦ (iµ)∗ ◦Mq ◦ FLq = (Iµq )−1 ◦ (iµ)∗ ◦ Iq ◦ Aq.
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For the principal bundle π̃ : Q → Q̃ with the principal connection Aµ, the
horizontal and vertical sub-bundles are Hµ := ker(Aµ) and Vµ := ker(π̃) =
{ηQ = φµ(η)| η ∈ Lie(Gµ)}, respectively. It is easy to check that Vµ ⊆ V and
H ⊆ Hµ as vector sub-bundles. The horizontal lift map corresponding to the
connection Aµ can be defined as

h̃lq(ṽq̃) := (Tqπ̃|Hµq )−1(ṽq̃),

where q̃ := π̃(q) and ṽq̃ ∈ Tq̃Q̃.
Now, consider the 1-form αµ := A∗µ ∈ Ω1(Q).

Lemma 25. The 1-form αµ takes values in M−1(µ), and it is invariant under
Gµ-action.

Proof. Using the definition of the momentum map and principal connection, we
have ∀ξ ∈ Lie(G)

〈M(αµ), ξ〉 = 〈αµ, ξQ〉 = 〈A∗qµ, φq(ξ)〉 = 〈µ, (Aq ◦ φq)(ξ)〉 = 〈µ, ξ〉.

As the result, αµ ∈M−1(µ).
Finally, consider the action of an arbitrary element h ∈ Gµ, and denote the

action simply by h·q := Φh(q) and h·vq := TΦh(vq). Based on the Ad∗-equivariance
of A and the definition of Gµ, one can show that αµ is Gµ invariant. For all
vq ∈ TqQ,

〈αµ(h · q), h · vq〉 = 〈A∗h·qµ, h · vq〉 = 〈µ,Ah·q(h · vq)〉
= 〈µ,Adh−1Aq(vq)〉 = 〈Ad∗h−1µ,Aq(vq)〉 = 〈µ,Aq(vq)〉.

According to the Cartan Structure Equation [1] ∀Z, Y ∈ X(Q) the exterior
derivative of αµ evaluated on Y and Z is equal to

dαµ(Z, Y ) = 〈µ, dA(Z, Y )〉 = 〈µ,B(Z, Y ) + [A(Z),A(Y )]〉, (2.16)

where Bq(Zq, Yq) := (dA)q(horq(Zq),horq(Yq)) = −Aq([hor(Z),hor(Y )]q) is the
curvature of the connection A, and [·, ·] in (2.16) corresponds to the Lie bracket
in Lie(G).

Lemma 26. For all η ∈ Lie(Gµ), the interior product of the 2-form dαµ with ηQ
is zero, i.e., ιηQdαµ = 0.

Proof.

ιηQdαµ = LηQ(αµ)− d(ιηQαµ).

The Lie derivative term is zero since αµ is invariant under the Gµ-action (see
Lemma 25), and the exterior derivative term is zero since

ιηQαµ = 〈αµ, ηQ〉 = 〈µ,A ◦ φµ(η)〉 = 〈µ, η〉

is a constant function on Q, since A ◦ φµ(η) = η, for all η ∈ Lie(Gµ).
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By this lemma and Lemma 25 the 2-form dαµ is basic; hence, a closed 2-form

βµ ∈ Ω2(Q̃) can be uniquely defined by the relation T ∗π̃(βµ) = dαµ, and its

pullback Ξµ by the cotangent bundle projection πQ̃ : T ∗Q̃ → Q̃ will be a closed

2-form on T ∗Q̃,
Ξµ := T ∗πQ̃(βµ).

Theorem 27. There is a symplectic embedding ϕµ : ((T ∗Q)µ, Ωµ) ↪→ (T ∗Q̃,
Ω̃can − Ξµ) onto [T π̃(V)]0 ⊂ T ∗Q̃ that covers the base Q̃, where Ω̃can is the

canonical 2-form on T ∗Q̃ and 0 indicates the annihilator with respect to the natural
pairing between tangent and cotangent bundle. The map ϕµ is identified by

〈ϕµ([γq]µ), Tqπ̃(vq)〉 = 〈γq − αµ(q), vq〉, (2.17)

∀γq ∈ M−1
q (µ) and ∀vq ∈ TqQ, where [·]µ refers to a class of elements in the

quotient manifold M−1(µ)/Gµ [17].

Based on the above theorem, the inverse of the map ϕµ exists only on [T π̃(V)]0 ⊂
T ∗Q̃, and it is a diffeomorphism on this vector sub-bundle. Hence, one may rewrite
the reduced Hamilton’s equation (2.9) in [T π̃(V)]0 ⊂ T ∗Q̃ as

ιX̃(Ω̃can − Ξµ) = dH̃, (2.18)

where H̃ := Hµ ◦ ϕ−1
µ for ϕ−1

µ : [T π̃(V)]0 → (T ∗Q)µ being the inverse of ϕµ,

X̃ ◦ ϕµ = Tϕµ ◦ Xµ, and Ξµ can be calculated as follows. Consider two vector

fields Z,Y ∈ X(T ∗Q̃), denote an element of Q̃ by q̃ := π̃(q), and ∀α̃q̃ ∈ T ∗Q̃ define
Zq̃ := TπQ̃Z(α̃q̃), Yq̃ := TπQ̃Y(α̃q̃):

(Ξµ)α̃q̃ (Z(α̃q̃),Y(α̃q̃))

=
〈
µ,−Aq([hor(h̃l(Z)),hor(h̃l(Y ))]q) + [Aq(h̃lq(Zq̃)),Aq(h̃lq(Yq̃))]

〉
.

(2.19)

If in Theorem 27 we assume Gµ = G, whose special examples are when G is
Abelian or µ = 0, then the map ϕµ becomes a symplectomorphism. Under this

assumption, since hl = h̃l and A ◦ hl = 0, Ξµ can be calculated by a simpler
formulation

(Ξµ)α̃q̃ (Z(α̃q̃),Y(α̃q̃)) =
〈
µ,−Aq([h̃l(Z), h̃l(Y )]q)

〉
. (2.20)

3 Kinematics of Open-chain Multi-body Systems

3.1 Rigid Body and Observer

A 3-dimensional physical space can be modelled mathematically by a 3-dimensional
affine space, which is equipped with a vector space. A rigid body is the closure
of a bounded open subset of the affine space. This paper considers N + 1 inter-
connected rigid bodies Bi’s (i = 0, · · · , N), each of which is a subset of an affine
space Ai. We assume that A0 corresponds to an inertial observer. Considering
two rigid bodies, namely Bi and Bj , a relative pose of Bi with respect to Bj ,
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namely rji , can be defined by an isometry between Ai and Aj with respect to the

Euclidean metric, i.e., rji : Ai → Aj . The collection of all relative poses forms a

smooth manifold, denoted by P ji , which is diffeomorphic to the Lie group SE(3).
When i = j this manifold admits a group structure, and it becomes isomorphic
to SE(3), as a group. The elements of P ii correspond to the possible coordinate
transformations of Ai. To simplify the notation, when i = j only the lower index
is used, e.g., Pi := P ii . The identity element and the Lie algebra of Pi are denoted
by ei and Lie(Pi), respectively. A relative motion of Bi with respect to Bj is a
smooth curve t 7→ rji (t) ∈ P ji , and the relative velocity at time t is the vector

vji (t) = (drji /dt)(t) ∈ Trji (t)P
j
i .

3.2 Joints

Given two rigid bodies Bi and Bj , a joint is a mechanism that restricts the relative
motion of Bi with respect to Bj , and specifies a subset Dji of TP ji . A joint can be
time dependant, called rheonomic, or time independent, called scleronomic [33]. A
special type of scleronomic joints, which is mostly considered in the literature, is
when we have Dji ⊆ TP ji being a distribution on P ji that corresponds to admissible
directions of the relative velocity of Bi with respect to Bj . We only consider this
category of joints in this paper. We also assume in this paper that the distribution
Dji is non-singular. If Dji is involutive, i.e. closed under the Lie bracket of vector
fields, the joint is called holonomic; otherwise, it is a nonholonomic joint. Based on
the global Frobenius Theorem [15], for a holonomic joint Dji identifies a foliation

of submanifolds of P ji . The leaf Qji ⊆ P ji that contains the initial relative pose

of Bi with respect to Bj , r
j
i,0, is called the relative configuration manifold. The

manifold Qji is the space of all admissible relative poses of Bi with respect to

Bj considering the joint constraints. The dimension of Qji is called the number of
degrees of freedom (d.o.f.) of a joint. We then define Qi ⊆ Pi and Qj ⊆ Pj by the
left and right composition of Qji by the element rij,0 ∈ Qij , where rij,0 ◦ rji,0 = ei

and rji,0 ◦ rij,0 = ej , i.e., Qi = Lrij,0(Qji ) and Qj = Rrij,0(Qji ). These submanifolds

contain the identity element of Pi and Pj that correspond to the initial relative
pose of Bi with respect to Bj , i.e., rji,0 ∈ Qji .

3.2.1 Holonomic displacement subgroups

For a holonomic joint, we consider the left composed distributionDi := Trji
Lrij(0)(D

j
i ) ⊆

TPi, which is involutive on Pi, and its integral manifold containing ei is Qi ⊆ Pi.
The Lie bracket on the Lie algebra Lie(Pi) is defined by the Lie bracket of left-
invariant vector fields on Pi [14]. Therefore, if Di is left-invariant, i.e., Di(ri) =
TeiLri(Di(ei)),∀ri ∈ Pi, involutivity of Di coincides with the closedness of the Lie
bracket on Di(ei) as a linear subspace of Lie(Pi), and TeiQi = Di(ei) becomes a
Lie sub-algebra of Lie(Pi). As the result, the integral manifold of Di, denoted by
Qi, is a unique di-dimensional connected Lie subgroup of Pi with the Lie algebra
Lie(Qi) = Di(ei) [7].

Definition 31. A holonomic joint is called displacement subgroup if the corre-
sponding distribution Di (defined above) on Pi is left-invariant. That is, Qi, which
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Table 1 Categories of displacement subgroups

Dim. Subgroups of SE(3)/displacement subgroups

6 SE(3) = SO(3) n R3

freea

4 SE(2)× R
planar+prismaticb

3 SE(2) = SO(2) n R2

planar
SO(3)
ball (spherical)

R3

3-d.o.f. prismatic
Hp n R2

2-d.o.f. prismatic +
helicalc

2 SO(2)× R
cylindricald

R2

2-d.o.f. prismatic
1 SO(2)

revolute
R
prismatic

Hp
helical

0 {e}
fixeda

a These two subgroups are the trivial subgroups of SE(3).
b The axis of the prismatic joint is always perpendicular to the plane of the planar joint.
c The axis of the helical joint is always perpendicular to the plane of the 2-d.o.f. prismatic
joint.
d The axis of the revolute and prismatic joints are always aligned.

is diffeomorphic to the relative configuration manifold Qji , is a connected Lie sub-
group of Pi.

We identify different types of displacement subgroups by the connected Lie
subgroups of SE(3), up to conjugation, which are tabulated in Table 1 [7]. From
this table, we can observe that the displacement subgroups consist of the six lower
kinematic pairs, i.e., revolute, prismatic, helical, cylindrical, planar and spherical
joints, and combinations of them. There also exist other types of holonomic joints,
e.g., universal joint and higher kinematic pairs, which are not included in the
category of displacement subgroups.

In this paper, we consider multi-body systems with multi-d.o.f. displacement
subgroups, or joints whose relative configuration manifolds are diffeomorphic to the
(group) multiplication of subgroups of SE(3). That is,Qji

∼= Qi = {y1 · · · yni | yk ∈
Yk ⊂ SE(3), k = 1, · · · , ni} ∼= Y1×· · ·×Yni , where Yk is a Lie subgroup of SE(3).
Examples of this type of joints are the universal joint and ball bearing joint (with-
out considering the nonholonomic constraints). The relative configuration manifold
of the universal joint is diffeomorphic to the (group) multiplication of two rotations
(SO(2)) about two perpendicular axes. And the configuration manifold of the ball
bearing joint is diffeomorphic to the (group) multiplication of R2 and SO(3). From
here on, by holonomic joint we mean a holonomic joint that satisfies the above
assumptions.

3.3 Open-chain Multi-body Systems

Let B0, · · · , BN be N + 1 rigid bodies and J1, · · · , JN be N holonomic joints,
which fall in the category of the joints described in the previous section.

Definition 32. A holonomic open-chain multi-body system MS(N) is the collec-
tion of N + 1 bodies connecting to each other with N holonomic joints, such that
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there exists a unique path between any two bodies of the multi-body system. In an
open-chain multi-body system, bodies with only one neighbouring body are called
extremities.

We can label the bodies in a MS(N) starting from the inertial coordinate
frame (ground), B0, outwards. That is, we label the bodies connected to B0 by
joints successively as B1, · · · , BN0 (N0 ≤ N), and we repeat the same procedure
for all N0 bodies starting from B1, e.g., all of the bodies connected to B1 by joints
are labelled as BN0+1, · · · , BN0+N1 and so on. Thus, we have

∑
l=0Nl = N . We

number the joints in a MS(N) using the bigger body label, e.g., we label the joint
between Bi and Bj , where i > j, as Ji. Considering the bodies and joints in an
open-chain multi-body system as vertices and edges of a graph, respectively, we
can encode the topology of the system in an N × (N + 1) matrix. We label this
matrix by GM. The N rows of this matrix correspond to the joints, J1, · · · , JN ,
and the columns represent the bodies, B0, · · · , BN . Row i of this matrix consists
of only two non-zero elements corresponding to the two bodies that Ji connects.
With the choice of numbering that was explained above, we define GM as

GMij =




−1 if Ji connects Bj−1 to Bi
1 if i = j − 1
0 otherwise

.

We have the following properties of the matrix GM.

Corollary 31. Let GMj denote the jth column of the matrix GM.

i) The summation of the columns of the matrix GM is equal to zero, i.e.,

N+1∑

j=1

GMj =




J1 0
...

...
JN 0


.

ii) The summation of the rows corresponding to the edges (joints) that connect the
vortex (body) Bj to Bi for i > j, has the following form

[B0 ··· Bj−1 Bj Bj+1 ··· Bi−1 Bi Bi+1 ··· BN

0 · · · 0 −1 0 · · · 0 1 0 · · · 0
]
.

Denote the transpose of GM by GMT . For all i, j = 1, · · · , (N + 1)
iii) ((GM)T (GM))ii= the number of neighbouring vortices (bodies) connected to

Bi−1.
iv) if ((GM)T (GM))ij = −1 for i 6= j, then the vortex (body) Bi−1 is connected to

Bj−1, either with the edge (joint) Ji−1 if i > j, or with the edge (joint) Jj−1

if j > i.

Note that, for any i = 2, · · · , (N + 1), if ((GM)T (GM))ii = 1 then the body
Bi−1 is an extremity. The body corresponding to the kth 1 is called the kth ex-
tremity. Accordingly, the path between B0 and the kth extremity is called the kth

branch.
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Corollary 32. Let the row matrix Phi represent the path between the vertex (body)
Bi (∀i = 1, · · · , N) and B0. The jth element of Phi is equal to 1 if the path crosses
the edge (joint) Jj. Then we have

Phi×GM =
[ B0 B1 ··· Bi−1 Bi Bi+1 ··· BN

−1 0 · · · 0 1 0 · · · 0
]
.

Hence, the matrix of all paths, i.e.,

Ph =




Ph1

...
PhN




is equal to GM
−1

, where GM is the matrix GM when the first column is removed.

For example, consider the following topology of an open-chain multi-body sys-
tem

B0
J1

B1
J3

J2

B3
J4

B4

B2

(3.21)

We have

GM =




B0 B1 B2 B3 B4

J1 −1 1 0 0 0
J2 0 −1 1 0 0
J3 0 −1 0 1 0
J4 0 0 0 −1 1


,

Ph =




J1 J2 J3 J4

Ph1 1 0 0 0
Ph2 1 1 0 0
Ph3 1 0 1 0
Ph4 1 0 1 1


.

Since only displacement subgroups and their combinations are considered, the
relative configuration manifold corresponding to the joint Ji is diffeomorphic to
the Lie group Qi := Lr0i.0Rri0,0Qi, where Qi ∼= Y1×· · ·×Yni is defined in Section 3.2

and r0i,0 ∈ P 0
i is the initial pose of Bi with respect to B0, for i = 1, ..., N . Note that,

everyQi is a di dimensional Lie subgroup of

ni−times︷ ︸︸ ︷
P0 × · · · × P0

∼=
ni−times︷ ︸︸ ︷

SE(3)× · · · × SE(3),
where di is the number of degrees of freedom of Ji, and D :=

∑N
i=1 di is the total

number of degrees of freedom of the holonomic open-chain multi-body system. Any
state of a MS(N) can be realized by q := (q1, · · · , qN ) ∈ Q := Q1×· · ·×QN , where
Q is the configuration manifold. The manifold Q along with the group structure
induced by Qi’s is also a Lie group. Let rcm,i ∈ SE(3) be the initial pose of the
centre of mass of Bi with respect to the inertial coordinate frame. Now, we define
the map F : Q → SE(3)× · · · × SE(3) =: P by

F (q) := (q1rcm,1, q1q2rcm,2, · · · , q1 · · · qNrcm,N ). (3.22)
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Here, if the joint Ji is a combination of displacement subgroups, by qi we mean
the multiplication of the elements of the subgroups of SE(3), i.e., Yi’s. This map
determines the pose of the centre of mass of all bodies with respect to the inertial
coordinate frame. Note that, the ith component of this map consists of the joint
parameters of all joints that connect B0 to Bi in the open-chain multi-body system.

For any motion of the open-chain multi-body system, i.e., a curve t 7→ q(t) ∈
Q, the velocity of the centre of mass of the bodies with respect to the inertial
coordinate frame (absolute velocity) is calculated by ṗ := d

dtF (q(t)) = TqF (q̇) ∈
TF (q(t))P. Based on Corollary 32, we can explicitly write the tangent map TqF
using the matrix Ph. First, we substitute the zero elements in the matrix Ph by
6×6 block matrices of zero. Then, ∀i = 1, · · · , N we substitute all of the elements
in Phi that are equal to 1 by the linear maps in the following form:

T (Rrcm,i)T (R∏
r qr

)T (L∏
l ql

),

where the maps L• : SE(3) → SE(3) and R• : SE(3) → SE(3) are the left and
right translation maps on SE(3), respectively. Here,

∏
l ql and

∏
r qr are the prod-

uct of some elements of the relative configuration manifolds Qi ⊆ P0
∼= SE(3),

considered as elements of SE(3). In order to specify which joints contribute to
the left or right translation maps, in Phi we look at the 1s that are on the left
or right of the corresponding element, respectively. If there does not exist any
element equal to 1 on left (right), then we put the argument of the left (right)
translation map equal to the identity element of SE(3). Finally, TqF is the right
multiplication of the resulting matrix by

Tqι := Tq1ι1 ⊕ · · · ⊕ TqN ιN =



Tq1ι1 · · · 0

...
. . .

...
0 · · · TqN ιN


 ,

where for all i = 1, · · · , N , ιi : Qi → SE(3) is the canonical inclusion map and
Tιi : TQi → TSE(3) is the induced map on the tangent bundles.

This simple procedure becomes clear in an example. Consider the topology of
the system in (3.21), we have

TqF =




TRrcm,1 06×6 06×6 06×6

TRrcm,2TRq2 TRrcm,2TLq1 06×6 06×6

TRrcm,3TRq3 06×6 TRrcm,3TLq1 06×6

TRrcm,4TRq3q4 06×6 TRrcm,4TRq4TLq1 TRrcm,4TLq1q3


Tqι.

4 Lagrangian and Hamiltonian of an Open-chain Multi-body System

As mentioned in Section 2, the Lagrangian of an Open-chain Multi-body System
L : TQ → R is L(vq) = 1

2Kq(vq, vq) − V (q). In this section, we describe how the
Lagrangian L and subsequently the Hamiltonian H of an open-chain multi-body
system is calculated.

Let hi for i = 1, · · · , N be the left-invariant kinetic energy metric for the
rigid body Bi in the open-chain multi-body system. They induce the metric h :=
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h1 ⊕ · · · ⊕ hN on P, which is left-invariant. The kinetic energy metric of an open-
chain multi-body system is defined by K := T ∗F (h), where T ∗F (h) is the pull
back of the metric h by the map F . That is, ∀q ∈ Q and ∀vq, wq ∈ TqQ we have

Kq(vq, wq) = hF (q) (TqF (vq), TqF (wq))

= he

(
TF (q)LF (q)−1(TqF (vq)), TF (q)LF (q)−1(TqF (wq))

)
, (4.23)

where e is the identity element of the Lie group P and Lp is the left translation
map by an element p ∈ P. Furthermore, we can simplify the above expression by
calculating the following linear map for multi-body systems:

TF (q)LF (q)−1(TqF )

=
(

Adr−1
cm,1
⊕ · · · ⊕Adr−1

cm,N

)
Jq
(
Tq1(Lq−1

1
◦ ι1)⊕ · · · ⊕ TqN (Lq−1

N
◦ ιN )

)

=




Adr−1
cm,1
· · · 0

...
. . .

...
0 · · · Adr−1

cm,N


Jq




Tq1(Lq−1
1
◦ ι1) · · · 0

...
. . .

...
0 · · · TqN (Lq−1

N
◦ ιN )


 ,

where Jq : Lie(P)→ Lie(P) is the linear map that is calculated in the following,
similar to TqF in the previous section. In the matrix Ph, we start with substituting
the zero elements by 6×6 block matrices of zero. Then, ∀i = 1, · · · , N we substitute
all of the elements in Phi that are equal to 1 by the linear maps in the form of
Ad(

∏
r qr)

−1 . The map Jq for the example (3.21) can be calculated as

Jq =




id6 06×6 06×6 06×6

Adq−1
2

id6 06×6 06×6

Adq−1
3

06×6 id6 06×6

Ad(q3q4)−1 06×6 Adq−1
4

id6


 .

In this paper, wherever we consider a non-zero potential energy function it is
induced by a constant gravitational field g in A0, which is defined in Section 3.2
as the 3-dimensional affine space corresponding to the inertial coordinate frame.
Using the Euclidean inner product of R3, which is denoted by � ·, · �, the
potential energy function for an open-chain multi-body system is defined as

V (q) :=
N∑

i=1

� mig,O0 − Fi(q)(Oi)�, (4.24)

where mi is the mass of the rigid body Bi, and Fi(q) : Ai → A0 is the ith com-
ponent of the map F that is considered as an isometry between Ai and A0. The
points O0 ∈ A0 and Oi ∈ Ai are the base points for the affine spaces A0 and Ai,
where Oi is located at the centre of mass of Bi.

Subsequently, using the Legendre transformation one can define the Hamilto-
nian H : T ∗Q → R for an open-chain multi-body system by

H(pq) := 〈pq,FL−1
q (pq)〉 − L(FL−1

q (pq)). (4.25)

Here, we remind the reader that FL : TQ → T ∗Q is the fibre-wise invertible Leg-
endre transformation induced by the kinetic energy metric, i.e., ∀vq, wq ∈ TqQ,
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〈FLq(vq), wq〉 = Kq(vq, wq). Accordingly, a holonomic open-chain multi-body sys-
tem can be considered as a Hamiltonian mechanical system described by the four-
tuple (T ∗Q, Ωcan, H,K). Here, the metric K and the Hamiltonian H are defined
by (4.23) and (4.25), respectively.

5 Reduction of Holonomic Open-chain Multi-body Systems

Based on the definition of the kinetic energy metric K for a holonomic open-chain
multi-body system, we immediately find the following symmetry for K.

Theorem 51. For a holonomic open-chain multi-body system, the action of G =
Q1 on Q by left translation on the first component leaves the kinetic energy metric
K invariant. For any g ∈ G we denote the action map by Φg : Q → Q such that
∀q = (q1, · · · , qN ) ∈ Q we have Φg(q) = (gq1, q2, · · · , qN ).

Proof. For any g ∈ G, let TΦg : TQ → TQ be the induced action of G on the
tangent bundle. For simplicity, ∀q ∈ Q and ∀vq ∈ TqQ we respectively write Φg(q)
and TqΦg(vq) as g · q and g · vq. Then, ∀wq ∈ TqQ we have

Kg·q(g · vq, g · wq)
= he

(
(TF (g·q)LF (g·q)−1)(Tg·qF )(g · vq), (TF (g·q)LF (g·q)−1)(Tg·qF )(g · wq)

)

= he

(
(TF (g·q)LF (g·q)−1)(Tq(F ◦ Φg))(vq), (TF (g·q)LF (g·q)−1)(Tq(F ◦ Φg))(wq)

)

= he

(
(TF (g·q)LF (g·q)−1)(Tq(L(g,··· ,g) ◦ F ))(vq)

, (TF (g·q)LF (g·q)−1)(Tq(L(g,··· ,g) ◦ F ))(wq)
)

= he

(
(T(g,··· ,g)F (q)(LF (q)−1 ◦ L(g,··· ,g)−1))(Tq(L(g,··· ,g) ◦ F ))(vq)

, (T(g,··· ,g)F (q)(LF (q)−1 ◦ L(g,··· ,g)−1))(Tq(L(g,··· ,g) ◦ F ))(wq)
)

= he

(
Tq(LF (q)−1 ◦ F )(vq), Tq(LF (q)−1 ◦ F )(wq)

)

= he

(
(TF (q)LF (q)−1)(TqF )(vq), (TF (q)LF (q)−1)(TqF )(wq)

)
= Kq(vq, wq).

The first equality is based on the definition of the metric K, and the third and
fourth equalities are true since the following diagram commutes.

Q F //

Φg

��

P

L(g,··· ,g)

��
Q F // P

For the special case of open-chain multi-body systems in space where the poten-
tial energy function is equal to zero, this theorem indicates that the Hamiltonian
of the system is also invariant under the cotangent lifted action of G. In general,
there exist joints for which the potential energy function V defined by (4.24) is
also invariant under the G-action, e.g., if Q1 corresponds to a planar joint with
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the direction of the gravitational field g being perpendicular to the plane of the
joint. For such first joints, the Hamiltonian of the system H becomes invariant
under the cotangent lifted action of G. From here on, we always assume that V is
also invariant under the G-action, unless otherwise stated. Accordingly, the five-
tuple (T ∗Q, Ωcan, H,K,G) with the group action defined in Theorem 51 is called
a holonomic open-chain multi-body system with symmetry, which is a mechanical
system with symmetry.

For a holonomic open-chain multi-body system with symmetry, the G-action is
basically the left translation on Q1. Therefore, the quotient manifolds Q = Q/G
and Q̃ = Q/Gµ are equal to (Q2 × · · · × QN ) and (Q1/Gµ × Q2 × · · · × QN ),
respectively. We remind the reader that ∀µ ∈ Lie∗(G) the subgroup Gµ ⊆ G is the
coadjoint isotropy group corresponding to G. For any q1 ∈ Q1, let q̃1 ∈ Q1/Gµ
denote the equivalence class corresponding to q1. Indeed, ∀q = (q1, · · · , qN ) ∈
Q the quotient maps π : Q → Q and π̃ : Q → Q̃ are defined by q := π(q) =
(q2, · · · , qN ) and q̃ := π̃(q) = (q̃1, q2, · · · , qN ), respectively.

For an open-chain multi-body system with symmetry, we then calculate the
infinitesimal action of ξ ∈ Lie(G) on Q at q = (q1, ..., qN ) by

ξQ(q) =
∂

∂ε

∣∣∣∣
ε=0

(exp(εξ)q1, q2, · · · , qN ) = (ξq1, 0, · · · , 0).

This relation indicates that the map φ is the right translation of a Lie algebra
element on Q1, i.e.,

φq :=




Te1Rq1
0
...
0


 . (5.26)

Accordingly, based on (2.5) ∀pq := (p1, · · · , pN ) ∈ T ∗Q the momentum map
M : T ∗Q → Lie∗(G) for a holonomic open-chain multi-body system can be deter-
mined by the following calculation,

〈Mq(pq), ξ〉 = 〈(p1, · · · , pN ), (ξq1, 0, · · · , 0)〉 = 〈p1, ξq1〉 = 〈T ∗e1Rq1p1, ξ〉.
As the result,

Mq = φ∗q =
[
T ∗e1Rq1 0 · · · 0

]
. (5.27)

Denote the block components of the kinetic energy tensor K, which is equal to
the Legendre transformation in the case of Hamiltonian mechanical systems, by
Kij(q)dqi ⊗ dqj for i, j = 1, · · · , N . Hence, we have FLq =

∑N
i,j=1Kij(q)dqi ⊗ dqj

or equivalently

FLq =



K11(q) · · · K1N (q)

...
. . .

...
KN1(q) · · · KNN (q)


 .

Lemma 52. For all q ∈ Q we have the following equality:

FLq =




(T ∗q1Lq−1
1

)(K11(q))(Tq1Lq−1
1

) (T ∗q1Lq−1
1

)(K12(q)) · · · (T ∗q1Lq−1
1

)(K1N (q))

(K21(q))(Tq1Lq−1
1

) K22(q) · · · K2N (q)

...
...

. . .
...

(KN1(q))(Tq1Lq−1
1

) KN2(q) · · · KNN (q)



,
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where q = π(q) and Kij(q) = Kij((e1, q)).

Proof. By Theorem 51, ∀vq, wq ∈ TqQ and q = π(q) ∈ Q we have

Kq(vq, wq) = K(e1,q)(TqΦq−1
1
vq, TqΦq−1

1
wq).

By the definition of Legendre transformation in (2.1), we can rewrite this equation
as

〈FLq(vq), wq〉 =
〈

FL(e1,q)(TqΦq−1
1

)(vq), TqΦq−1
1

(wq)
〉

=
〈

(T ∗q Φq−1
1

)FL(e1,q)(TqΦq−1
1

)(vq), wq
〉
.

We prove the equality in the lemma, since we have

TqΦq−1
1

= Tq1Lq−1
1
⊕ idTqQ =

[
Tq1Lq−1

1
0

0 idTqQ

]
,

where idTqQ is the identity map on TqQ.

Based on this lemma we calculate the locked inertia tensor Iq = φ∗q ◦ FLq ◦ φq
for a holonomic open-chain multi-body system by

Iq = (T ∗e1Rq1)K11(q)(Te1Rq1) = Ad∗q−1
1
K11(q)Adq−1

1
. (5.28)

Consequently, using (2.13) we determine the (mechanical) connection A corre-
sponding to the G-action, for a holonomic open-chain multi-body system:

Aq = I−1
q ◦Mq ◦ FLq

= (Adq1)K11(q)−1(Ad∗q1)
[
T ∗e1Rq1 0 · · · 0

]


K11 · · · K1N

...
. . .

...
KN1 · · · KNN




= Adq1

[
Tq1Lq−1

1
K11(q)−1K12(q) · · · K11(q)−1K1N (q)

]

=: Adq1

[
Tq1Lq−1

1
Aq
]
, (5.29)

where the last line of (5.29) is the consequence of Lemma 52, and the fibre-wise
linear map A : TQ → Lie(G) is defined by the last equality.

According to (2.11), ∀q ∈ Q and ∀vq ∈ TqQ the horizontal lift map hlq : TqQ →
TqQ becomes

hlq =

[−(Te1Lq1)Aq
idTqQ

]
,

where q = (q1, q).
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Using the decomposition TQ = H⊕ V introduced in the previous section, we
then show that ∀q ∈ Q the map horq : TqQ → Hq, which maps any vector in the
tangent space TqQ to its horizontal component, is

horq = idTqQ − verq = idTqQ − φq ◦ Aq

= idTqQ −




Te1Rq1
0
...
0


Adq1

[
Tq1Lq−1

1
Aq
]

=




0 · · · 0 −Te1Lq1Aq
...

...
0 · · · 0 idTqQ


 . (5.30)

We consider the principal bundle π̃1 : Q1 → Q1/Gµ to locally trivialize the
Lie group Q1. Let Uµ ⊆ Q1/Gµ be an open neighbourhood of ẽ1, where ẽ1 is the
equivalence class corresponding to the identity element e1 ∈ Q1. We denote the
map corresponding to a local trivialization of the principal bundle π̃1 by χ̃ : Gµ ×
Uµ → Q1. This map can be defined by embedding Uµ in Q1, for example by using
the exponential map of Lie groups. We denote this embedding by χµ : Uµ ↪→ Q1

such that ∀q̃1 ∈ Q1/Gµ we have χµ(q̃1) = exp(ζ) for some ζ ∈ C̃, where C̃ ⊂
Lie(Q1) is a complementary subspace to Lie(Gµ) ⊂ Lie(G). Accordingly, ∀h ∈ Gµ
we define the map χ̃ by the equality χ̃((h, q̃1)) := hχµ(q̃1). It is easy to show that
the map χ̃ is a diffeomorphism onto its image [11]. Using this diffeomorphism, any
element q1 ∈ π̃−1

1 (Uµ) ⊆ Q1 can be uniquely identified by an element (h, q̃1) ∈
Gµ × Uµ. As the result, we have q = (q1, q) = (χ̃((h, q̃1)), q). Note that, from
now on, for brevity we write q = (h, q̃1, q). Accordingly, by Lemma 52, for all
q = (h, q̃1, q) ∈ Gµ × Uµ ×Q we can calculate Aµ as

Aµq = Adh

[
ThLh−1 Aµq̃

]
, (5.31)

where q̃ = π̃(q) = (q̃1, q) ∈ Uµ ×Q and Aµq̃ : Tq̃(Uµ ×Q) → Lie(Gµ) is calculated
by

Aµq̃ :=
[
K̃
Gµ
1 (q̃)−1K̃

Q1/Gµ
1 (q̃) K̃

Gµ
1 (q̃)−1K̃

Gµ
12 (q̃) · · · K̃Gµ1 (q̃)−1K̃

Gµ
1N (q̃)

]
. (5.32)

Here, according to the local trivialization that we chose we have the following form
for the tensor FLq

FLq =




K
Gµ
1 ((h, q̃)) K

Q1/Gµ
1 ((h, q̃)) K

Gµ
12 ((h, q̃)) · · · K

Gµ
1N ((h, q̃))

K
Gµ
2 ((h, q̃)) K

Q1/Gµ
2 ((h, q̃)) K

Q1/Gµ
12 ((h, q̃)) · · · KQ1/Gµ

1N ((h, q̃))

K
Gµ
21 ((h, q̃)) K

Q1/Gµ
22 ((h, q̃)) K22((h, q̃)) · · · K2N ((h, q̃))

...
...

...
. . .

...

KGµN1((h, q̃)) K
Q1/Gµ
N1 ((h, q̃)) KN2((h, q̃)) · · · KNN ((h, q̃))



,
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where q = (h, q̃), q1 = χ̃(h, q̃1), and we have the following equalities:
[
K
Gµ
1 ((h, q̃)) K

Q1/Gµ
1 ((h, q̃))

K
Gµ
2 ((h, q̃)) K

Q1/Gµ
2 ((h, q̃))

]
= T ∗(h,q̃1)χ̃ (K11(χ̃(h, q̃)))T(h,q̃1)χ̃,

[
K
Gµ
12 ((h, q̃)) · · · K

Gµ
1N ((h, q̃))

K
Q1/Gµ
12 ((h, q̃)) · · · KQ1/Gµ

1N ((h, q̃))

]
= T ∗(h,q̃1)χ̃

[
K12(χ̃(h, q̃)) · · · K1N (χ̃(h, q̃))

]
,




K
Gµ
21 ((h, q̃)) K

Q1/Gµ
21 ((h, q̃))

...
...

K
Gµ
N1((h, q̃)) K

Q1/Gµ
N1 ((h, q̃))


 =



K21(χ̃(h, q̃))

...
KN1(χ̃(h, q̃))


T(h,q̃1)χ̃.

And, we have K̃
Gµ
1 (q̃) = K

Gµ
1 ((eµ, q̃)), K̃

Q1/Gµ
1 (q̃) = K

Q1/Gµ
1 ((eµ, q̃)), and K̃

Gµ
1i (q̃) =

K
Gµ
1i ((eµ, q̃)) for all i = 2, · · · , N . Here, eµ ∈ Gµ is the identity element of the Lie

group Gµ ⊆ G = Q1.
Now, for any h ∈ Gµ and ∀q = (h, q̃1, q) ∈ Gµ × Uµ × Q, we calculate the

horizontal lift map h̃lq : Tq̃(Uµ×Q)→ TqQ for the principal bundle π̃ : Q → Q̃ by

h̃lq =

[
−(TeµLh)Aµq̃

idTq̃1Uµ ⊕ idTqQ

]
, (5.33)

where idTq̃1Uµ is the identity map on the tangent space Tq̃1Uµ. Let µ ∈ Lie∗(G) be
a regular value of the momentum map M. For a holonomic open-chain multi-body
system with symmetry, the level set of the momentum map M at µ becomes

M−1(µ) = {pq = (p1, · · · , pN ) ∈ T ∗Q
∣∣ p1 = T ∗q1Rq−1

1
µ} ⊂ T ∗Q.

Furthermore, we determine αµ = A∗µ ∈ Ω1(Q) in the local trivialization by

αµ(q) =

[
T ∗(h,q̃1)L(h,q̃1)−1

A∗q

]
Ad∗(h,q̃1)µ =

[
T ∗(h,q̃1)L(h,q̃1)−1

A∗q

]
Ad∗(eµ,q̃1)µ, (5.34)

where (h, q̃1)−1 = χ̃−1
(
(χ̃(h, q̃1))−1

)
, by definition. The second equality is true by

the definition of the map χ̃, and because h ∈ Gµ.

Lemma 53. Based on Theorem 27, the inverse of the map ϕµ : M−1/Gµ → T ∗Q̃
is defined on [T π̃(V)]0 and in the local trivialization ∀p̃q̃ = (p̃1, p) ∈ T ∗q̃ (Uµ ×Q),

ϕ−1
µ (p̃q̃) =

[
T ∗(h,q̃1)R(h,q̃1)−1(µ)

p+A∗q(Ad∗(eµ,q̃1)µ)

]

µ

. (5.35)

Proof. First we show that p̃ ∈ [T π̃(V)]0 if and only if p̃1 = 0. For any p̃ ∈ [T π̃(V)]0

and ∀ξ ∈ Lie(G) = Lie(Q1) we have

〈(p̃1, p), T π̃(ξQ)〉 =
〈
φ∗q(0, p̃1, p), ξ

〉
=
〈
T ∗e1Rq1(0, p̃1), ξ

〉
= 0.

The first equality is true based on the definition of ξQ and the local trivialization
that is chosen. The second equality is the consequence of the definition of the map
φ in (5.26). Since the above equality should hold for every ξ ∈ Lie(G) and the
right translation map is a diffeomorphism ∀q1 ∈ Q1, we have p̃1 = 0. Now, based
on (5.34) and the definition of the map ϕµ in Theorem 27 we have the desired
equation in the lemma.
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Based on the definition of H̃(p̃q̃) := Hµ ◦ ϕ−1
µ (p̃q̃) and the above lemma, we

calculate H̃ on [T π̃(V)]0 using the local trivialization:

H̃(p̃q̃) =
1

2

〈
(Ad∗(eµ,q̃1)µ, p+A∗q(Ad∗(eµ,q̃1)µ)),

,FL−1
(eµ,q̃1,q)

(Ad∗(eµ,q̃1)µ, p+A∗q(Ad∗(eµ,q̃1)µ))
〉

+ V (eµ, q̃1, q). (5.36)

Now we are ready to state the main result of this section in the following
theorem.

Theorem 54. Let µ ∈ Lie∗(G) be a regular value of the momentum map M. A
holonomic open-chain multi-body system with symmetry (T ∗Q, Ωcan, H,K,G) is

reduced to a Hamiltonian mechanical system ([T π̃(V)]0 ⊆ T ∗Q̃, (Ω̃can−Ξµ)|[Tπ̃(V)]0 , H̃, K̃),

where Ω̃can is the canonical 2-form on T ∗Q̃, H̃ is defined by (5.36) and K̃ is a

metric on Q̃ such that ∀ũq̃, w̃q̃ ∈ Tq̃Q̃ we have

K̃q̃(ũq̃, w̃q̃) = Kq(h̃lq(ũq̃), h̃lq(w̃q̃)).

Here, in the local coordinates Ξµ is calculated as follows. Let πQ̃ : T ∗Q̃ → Q̃ be the

canonical projection map of the cotangent bundle and let TπQ̃ : T (T ∗Q̃)→ T Q̃ be

its induced map on the tangent bundles. For every α̃q̃ ∈ T ∗Q̃ and ∀Ũ , W̃ ∈ X(T ∗Q̃)

we introduce ũq̃ = Tα̃q̃πQ̃(Ũα̃q̃ ) and w̃q̃ = Tα̃q̃πQ̃(W̃α̃q̃ ). In the local trivialization,

we have q̃ = (q̃1, q) ∈ Uµ ×Q, ũq̃ = (ũ1, u) and w̃q̃ = (w̃1, w):

(Ξµ)α̃q̃ (Ũα̃q̃ , W̃α̃q̃ ) =

〈
µ,−Adχµ(q̃1)

(
[Aqu,Aqw] + (

∂Aq
∂q

w)u− (
∂Aq
∂q

u)w

)

+
[(
−Aµq̃ ũ+ (Tχµ(q̃1)Rχµ(q̃1)−1)(Tq̃1χµ)(ũ1) + Adχµ(q̃1)Aqu

)
,

(
−Aµq̃ w̃ + (Tχµ(q̃1)Rχµ(q̃1)−1)(Tq̃1χµ)(w̃1) + Adχµ(q̃1)Aqw

)]〉
,

(5.37)

where χµ : Uµ ↪→ Q1 is the embedding that is used to define the local trivialization
map χ̃.

Finally, in local coordinates we have X̃ = (˙̃q1, q̇, ṗ) as a vector field on [T π̃(V)]0.
Hamilton’s equation in the vector sub-bundle [T π̃(V)]0 of the cotangent bundle of
µ-shape space reads

ι( ˙̃q1,q̇,ṗ)
(−dp ∧ dq − Ξµ) =

∂H̃

∂p
dp+

∂H̃

∂q̃1
dq̃1 +

∂H̃

∂q
dq,

where Ξµ is calculated by (5.37).

Proof. In order to prove (5.37), we start with (2.19):

(Ξµ)α̃q̃ (Ũα̃q̃ , W̃α̃q̃ )

=
〈
µ,−Aq([hor(h̃l(ũ)),hor(h̃l(w̃))]q) + [Aq(h̃lq(ũq̃)),Aq(h̃lq(w̃q̃))]

〉
.
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Using the local trivialization, we write q = (h, q̃1, q) ∈ Gµ×Uµ×Q, and accordingly
ũ = (ũ1, u) and w̃ = (w̃1, w). By (5.33), the horizontal lift of ũ and w̃ can be
calculated as

h̃lq(ũq̃) = (−(TeµLh)Aµq̃ ũ, ũ1, u), h̃lq(w̃q̃) = (−(TeµLh)Aµq̃ w̃, w̃1, w),

and using (5.30), the terms hor(h̃l(ũ)) and hor(h̃l(w̃)) are

horq(h̃lq(ũq̃)) = (−(T(eµ,ẽ1)L(h,q̃1))Aqu, u),

horq(h̃lq(w̃q̃)) = (−(T(eµ,ẽ1)L(h,q̃1))Aqw,w).

Now, by (5.29) we have

Aq(h̃lq(ũq̃)) = Ad(h,q̃1)

(
(T(h,q̃1)L(h,q̃1)−1)

(
−(TeµLh)Aµq̃ ũ, ũ1

)
+Aqu

)
. (5.38)

Using the definition of the local trivialization map χ̃ we have

T(h,q̃1)L(h,q̃1)−1

(
−(TeµLh)Aµq̃ ũ, ũ1

)

= Thχµ(q̃1)Lχµ(q̃1)−1h−1

(
ThRχµ(q̃1)(−(Te1Lh)Aµq̃ ũ) + (Tχµ(q̃1)Lh)(Tq̃1χµ)(ũ1)

)

= Adχµ(q̃1)−1(−Aµq̃ ũ) + (Tχµ(q̃1)Lχµ(q̃1)−1)(Tq̃1χµ)(ũ1),

where χµ : Uµ ↪→ Q1 is the embedding map that is defined using the exponential
map. Therefore, we have

Aq(h̃lq(ũq̃)) = Adh

(
−Aµq̃ ũ+ (Tχµ(q̃1)Rχµ(q̃1)−1)(Tq̃1χµ)(ũ1) + Adχµ(q̃1)Aqu

)
.

Similarly,

Aq(h̃lq(w̃q̃)) = Adh

(
−Aµq̃ w̃ + (Tχµ(q̃1)Rχµ(q̃1)−1)(Tq̃1χµ)(w̃1) + Adχµ(q̃1)Aqw

)
.

Since for all g ∈ G and ξ, η ∈ Lie(G) we have the equality Adg[ξ, η] = [Adgξ,Adgη]:

[Aq(h̃lq(ũq̃)),Aq(h̃lq(w̃q̃))]

= Adh

[(
−Aµq̃ ũ+ (Tχµ(q̃1)Rχµ(q̃1)−1)(Tq̃1χµ)(ũ1) + Adχµ(q̃1)Aqu

)
,

(
−Aµq̃ w̃ + (Tχµ(q̃1)Rχµ(q̃1)−1)(Tq̃1χµ)(w̃1) + Adχµ(q̃1)Aqw

)]
.

For all q ∈ Q, to calculate the Lie bracket [hor(h̃l(ũ)),hor(h̃l(w̃))]q, we express the

vector fields hor(h̃l(ũ)) and hor(h̃l(w̃)) in coordinates:

horq(h̃lq(ũq̃)) =
(
−(T(eµ,ẽ1)L(h,q̃1))Aqu

) ∂

∂(h, q̃1)
+ u

∂

∂q

horq(h̃lq(w̃q̃)) =
(
−(T(eµ,ẽ1)L(h,q̃1))Aqw

) ∂

∂(h, q̃1)
+ w

∂

∂q
.
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In any coordinates chosen for Qi (i = 2, · · · , N), Gµ and Q1/Gµ we have

[hor(h̃l(ũ)),hor(h̃l(w̃))]

= [
(
(T(eµ,ẽ1)L(h,q̃1))Aqu

) ∂

∂(h, q̃1)
,
(
(T(eµ,ẽ1)L(h,q̃1))Aqw

) ∂

∂(h, q̃1)
]

+ [u
∂

∂q
, w

∂

∂q
] + [

(
(T(eµ,ẽ1)L(h,q̃1))Aqw

) ∂

∂(h, q̃1)
, u

∂

∂q
]

− [
(
(T(eµ,ẽ1)L(h,q̃1))Aqu

) ∂

∂(h, q̃1)
, w

∂

∂q
]

Based on the definition of the Lie bracket for Lie groups, ∀q ∈ Q the first bracket
on the right hand side can be written as

[
(
(T(eµ,ẽ1)L(h,q̃1))Aqu

) ∂

∂(h, q̃1)
,
(
(T(eµ,ẽ1)L(h,q̃1))Aqw

) ∂

∂(h, q̃1)
]

=
(
(T(eµ,ẽ1)L(h,q̃1))[Aqu,Aqw]

) ∂

∂(h, q̃1)

+

(
(T(eµ,ẽ1)L(h,q̃1))Aq

∂w

∂(h, q̃1)

(
(T(eµ,ẽ1)L(h,q̃1))Aqu

)) ∂

∂(h, q̃1)

−
(

(T(eµ,ẽ1)L(h,q̃1))Aq
∂u

∂(h, q̃1)

(
(T(eµ,ẽ1)L(h,q̃1))Aqw

)) ∂

∂(h, q̃1)
.

The second bracket is equal to

[u
∂

∂q
, w

∂

∂q
] =

(
∂w

∂q
u

)
∂

∂q
−
(
∂u

∂q
w

)
∂

∂q
.

We calculate the third bracket as

[
(
(T(eµ,ẽ1)L(h,q̃1))Aqw

) ∂

∂(h, q̃1)
, u

∂

∂q
] =

(
∂u

∂(h, q̃1)
(T(eµ,ẽ1)L(h,q̃1))Aqw

)
∂

∂q

−
(

(T(eµ,ẽ1)L(h,q̃1))

(
∂Aq
∂q

u

)
w + (T(eµ,ẽ1)L(h,q̃1))Aq

∂w

∂q
u

)
∂

∂(h, q̃1)
.

Similarly, the last bracket can be calculated. Accordingly, using (5.29),

Aq([hor(h̃l(ũ)), hor(h̃l(w̃))]q)

= Ad(h,q̃1)

(
[Aqu,Aqw] +

(
∂Aq
∂q

w

)
u−

(
∂Aq
∂q

u

)
w

)
.

Finally, knowing that h ∈ Gµ, we have the equation for Ξµ in the theorem.
Regarding Hamilton’s equation, we should note that based on Lemma 53 the

restriction of Ω̃can to [T π̃(V)]0 is equal to −dp ∧ dq, in coordinates.

Corollary 55. Let us assume that Gµ = G, in the above theorem. A holonomic
open-chain multi-body system with symmetry (T ∗Q, Ωcan, H,K,G) is reduced to
a Hamiltonian mechanical system (T ∗Q, Ωcan − Ξµ, H,K), where Ωcan is the
canonical 2-form on T ∗Q,

H(pq) :=
1

2

〈
(µ, p+A∗qµ),FL−1

(e1,q)
(µ, p+A∗qµ)

〉
+ V (e1, q), (5.39)
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and K is a metric on Q such that ∀uq, wq ∈ TqQ we have

Kq(uq, uq) = Kq(hlq(uq),hlq(wq)).

Here, in the local coordinates Ξµ is calculated by a simpler formulation. Let πQ : T ∗Q →
Q be the canonical projection map of the cotangent bundle and let TπQ : T (T ∗Q)→
TQ be its induced map on the tangent bundles. For every αq ∈ T ∗Q and ∀U ,W ∈
X(T ∗Q) we introduce uq = TαqπQ(Uαq ) and wq = TαqπQ(Wαq ). We have

(Ξµ)αq (Uαq ,Wαq ) =

〈
µ,−[Aqu,Aqw]− (

∂Aq
∂q

w)u+ (
∂Aq
∂q

u)w

〉
. (5.40)

Finally, in local coordinates we have X = (q̇, ṗ) as a vector field on T ∗Q.
Hamilton’s equation in the cotangent bundle of shape space reads

ι(q̇,ṗ)(−dp ∧ dq − Ξµ) =
∂H

∂p
dp+

∂H

∂q
dq,

where Ξµ is calculated by (5.40).

We show the isotropy groups for different types of displacement subgroups
in Table 2. Note that, for different values of µ ∈ Lie∗(G), the isotropy groups
are isomorphic to the groups listed in the table, and the isomorphism map is
conjugation by an element of SE(3). In this table we consider the configuration
manifold of the first joint as a Lie sub-group of SE(3) whose Lie algebra is a vector
space isomorphic to so(3)⊕ R3, where so(3) is the Lie algebra of SO(3). For any
element ξ ∈ se(3), we call its component in R3 the linear and the one in so(3) the
angular component of ξ, where se(3) denotes the Lie algebra of SE(3).

Table 2 displacement subgroups and their corresponding isotropy groups

displacement
subgroups

Gµ (µ = (µv , µω)a)

Q1
∼= G µv 6= 0, µω 6= 0 µω 6= 0, µv = 0 µω = 0, µv 6= 0 µv = µω = 0

SE(3) SO(2)× R SE(2)× R SO(2)× R SE(3)
SE(2)× R R2 (SE(2)× R)b SE(2)× R R2 (SE(2)× R)b SE(2)× R
SE(2) R SE(2) R SE(2)
SO(3) SO(2) SO(3)
R3 R3 R3

Hp n R2 R Hp n R2 R Hp n R2

SO(2)× R SO(2)× R SO(2)× R SO(2)× R SO(2)× R
R2 R2 R2

SO(2) SO(2) SO(2)
R R R
Hp Hp Hp

a µv is the linear component and µω is the angular component of the momentum.
b If the linear momentum is in the direction of the allowed direction of rotation in the space.
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5.1 Further Symmetries of Open-chain Multi-body Systems

In this subsection we introduce a number of sufficient conditions under which the
kinetic energy metric of a holonomic open-chain multi-body system admits further
symmetries. That is, the system is invariant (in the sense that was presented in the
previous section) under the action of other groups in addition to the one presented
in Theorem 51. We investigate two approaches:

AP1) Identifying symmetry groups due to left invariance of the kinetic energy metric
h on P = SE(3)×· · ·×SE(3). See Section 4 for the definition of the metric h.

AP2) Identifying symmetry groups by studying the metric K on Q.

5.1.1 Identifying Symmetry Groups using AP1

As for the approach AP1, we consider the embedding F : Q → P, defined by (3.22),
which determines the pose of the centre of mass of all bodies with respect to the
inertial coordinate frame.

F (q) = (q1rcm,1, q1q2rcm,2, · · · , q1 · · · qNrcm,N ),

where rcm,i (i = 1, · · · , N) is the initial pose of a coordinate frame attached to
the centre of mass of body Bi with respect to the inertial coordinate frame, i.e.,
B0.

For any element (p1,0, · · · , pN,0) ∈ P we define the group action ΘN(p1,0,··· ,pN,0)
: P → P by

ΘN(p1,0,··· ,pN,0)(p) := (p1,0p1, (p1,0p2,0)p2, · · · , (p1,0 · · · pN,0)pN ),

where p = (p1, · · · , pN ) ∈ P. Since the metric h on P is left-invariant, it is also
invariant under this action. That is, we have T ∗ΘN(p1,0,··· ,pN,0)(h) = h. This action
induces an action on Q by the embedding F , if and only if the image of the map F ,
i.e., F (Q), is invariant under the action ΘN for a Lie subgroup of P. We denote this
Lie subgroup by G1×· · · GN , where Gi ⊆ SE(3) (i = 1, · · · , N) is a Lie subgroup of
SE(3). Then the induced action onQ, denoted by ΦN(p1,0,··· ,pN,0) : Q → Q, is defined

by ΦN(p1,0,··· ,pN,0) := F−1 ◦ΘN(p1,0,··· ,pN,0) ◦F , where (p1,0, · · · , pN,0) ∈ G1 × · · · GN .

Here, F−1 : F (Q) → Q is only defined on the image of the map F . In order to
identify the group G1 × · · · × GN , we impose the condition that F (Q) is invariant
under the action of this group. By the definition of the map F and ΘN(p1,0,··· ,pN,0),
we have

ΘN(p1,0,··· ,pN,0) ◦ F (q)

= (p1,0q1rcm,1, (p1,0p2,0)q1q2rcm,2, · · · , (p1,0 · · · pN,0)q1 · · · qNrcm,N )

The image of F is invariant under the group action if and only if we have the
following conditions:

p1,0 ∈ Q1,

q−1
1 p2,0q1 ∈ Q2, ∀q1 ∈ Q1

...

(q1 · · · qN−1)−1pN,0(q1 · · · qN−1) ∈ QN . ∀q1 ∈ Q1 and · · · and ∀qN−1 ∈ QN−1
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Hence, the biggest symmetry group G1 × · · · GN that leaves the kinetic energy
metric K invariant under the induced action ΦN is equal to

G1 × · · · GN ={ (p1,0, · · · , pN,0)| p1,0 ∈ Q1, p2,0 ∈
⋂

q1∈Q1

(q1Q2q
−1
1 ), · · ·

, pN,0 ∈
⋂

q1∈Q1···
qN−1∈QN−1

((q1 · · · qN−1)QN (q1 · · · qN−1)−1)} ⊆ Q1 × · · · × QN .

Noteworthy examples of open-chain multi-body systems whose kinetic energy met-
ric K is invariant under the action of this group include but not limited to the
systems with identical multi-degree-of-freedom joints and systems with commuta-
tive joints. In general, this symmetry group may be as small as G1 = Q1, specially
when most of the joints are actuated, since the actuation force can break the
symmetry.

5.1.2 Identifying Symmetry Groups using AP2

For any velocity vector q̇ ∈ TqQ, we denote the left translation of q̇ to Lie(Q) by

τ = (τ1, · · · , τN ) := q−1q̇ = (q−1
1 q̇1, · · · , q−1

N q̇N ) ∈ Lie(Q)

Now let iτ ji (i, j = 0, · · · , N) be the relative twist of the body Bi with respect to
Bj and expressed in the coordinate frame attached to Bi. In order to determine the
kinetic energy of an open-chain multi-body system we need to have the relative
twist of each body Bi with respect to B0 and expressed in a coordinate frame
attached to the centre of mass of Bi, i.e.,

iτ0
i (q, τ) = Adr−1

cm,i

(
Ad(q2···qi)−1(τ1) + · · ·+ Adq−1

i
(τi−1) + τi

)

for a sequence of bodies from B0 to Bi [7]. Then the kinetic energy of a multi-body
system can be calculated by

1

2
Kq(q̇, q̇) =

1

2

N∑

i=1

‖ iτ0
i (q, τ) ‖2he,i

, (5.41)

where hi denotes the left invariant metric corresponding to the body Bi and he,i

is its restriction to se(3), and ‖ · ‖he,i
refers to its induced norm on se(3). In the

second approach AP2, first the case of a multi-body system with only three bodies
and two joints is investigated in the sequel, and the result is generalized for the
case of N bodies.

Let G1 = Q1 and G2 ⊆ Q2 be a Lie subgroup of Q2, and consider the action
of G1 × G2 by left translation on the configuration manifold Q = Q1 × Q2, i.e.,
∀(g1, g2) ∈ G1 × G2 we have (q1, q2) 7→ (g1q1, g2q2) for all q = (q1, q2) ∈ Q. It is
easy to show that under this action the kinetic energy of the system becomes

1

2
K(g1q1,g2q2)(g1q̇1, g2q̇2) =

1

2

(
‖ Adr−1

cm,1
τ1 ‖2he,1 + ‖ Adr−1

cm,2

(
Ad(g2q2)−1τ1 + τ2

)
‖2he,2

)
,

where (g1q̇1, g2q̇2) denotes the left translation of the velocity vector (q̇1, q̇2) to
(g1q1, g2q2). As it was expected, the kinetic energy remains invariant under the
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G1-action. We define the metric h′2 := Ad∗
r−1
cm,2

(he,2) on se(3) corresponding to the

body B2. Kinetic energy is invariant under the action of G1×G2 if and only if it is
invariant under the infinitesimal action of all elements $ ∈ Lie(G2) at the identity
element e2 ∈ G2. Hence, we have the following necessary and sufficient condition
for the metric K to be invariant under the action of G1 × G2 by left translation:

∂

∂ε

∣∣∣∣
ε=0

(
1

2
‖ Ad(exp(−ε$)q2)−1τ1 + τ2 ‖2h′2

)
= h′2(Adq−1

2
ad$(τ1),Adq−1

2
τ1 + τ2) = 0.

(5.42)

∀q2 ∈ Q2, ∀τ1 ∈ Lie(Q1) and ∀τ2 ∈ Lie(Q2)

The largest Lie sub-algebra of Lie(Q2) whose elements satisfy the above condition
is the Lie algebra of G2, and G2 can be identified by integrating this Lie sub-algebra
on Q2. Noteworthy examples of the systems that admit such a symmetry group
are any two commutative joints, a planar cart with a rotary joint orthogonal to
it, and a planar cart moving on a rotating disc. With similar calculations, we can
extend this result to the case of open-chain multi-body systems with N+1 bodies,
and write the necessary and sufficient condition (5.42) as

N∑

i=2

h′i(Ad(q2···qi)−1ad$(τ1),Ad(q2···qi)−1(τ1 + · · ·+ Ad(q2···qi)τi)) = 0. (5.43)

∀qi ∈ Qi (i = 2, · · · , N) and ∀τi ∈ Lie(Qi) (i = 1, · · · , N)

where h′i := Ad∗
r−1
cm,i

(he,i). Note that, the expression in the parentheses in the

second argument of h′i is the relative twist of Bi with respect to B0 and expressed
in a coordinate frame attached to B1. Based on this condition, we may derive a
sufficient condition for the metric K being invariant under the action of G1 × G2
by left translation.

Proposition 56. For an open-chain multi-body system, the metric K is invariant
under the action of G1 × G2, as defined above, by left translation, if ∀$ ∈ Lie(G2)
and ∀τ1 ∈ Lie(Q1) we have

ad$(τ1) = 0.

Similarly, we can derive sufficient conditions for the metric K being invariant
under the action of a group in the form of G1 × · · · × GN by left translation. Here
Gi ⊆ Qi is a Lie subgroup of Qi for i = 2, · · · , N . However, since it is very unlikely
that we have the invariance of K under the action of such a big group, we do not
go through the calculations for this most general case.

Finally, suppose that Bi0 is an extremity of the open-chain multi-body system.
Consider the action of Gi0 as a Lie subgroup ofQi0 by right translation. The kinetic
energy of the system after the action of an element gi0 ∈ Gi0 becomes

1

2
Kqgi0 (q̇gi0 , q̇gi0) =

1

2

N∑

i=1
i6=i0

‖ iτ0
i ‖2hi +

1

2
‖ Adg−1

i0
Adrcm,i0

i0τ0
i0 ‖2h′i0 . (5.44)
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The kinetic energy metric is invariant under this action if and only if it is invariant
under the infinitesimal action of any element % ∈ Lie(Gi0) at the identity element.

∂

∂ε

∣∣∣∣
ε=0

(
1

2
‖ Ad(exp(−ε%))−1(Adrcm,i0

i0τ0
i0) ‖2h′i0

)
(5.45)

= h′i0(ad%(Adrcm,i0
i0τ0

i0),Adrcm,i0
i0τ0

i0) = 0, (5.46)

for all i0τ0
i0 , i.e., all admissible relative twists of Bi0 with respect to the inertial

coordinate frame and expressed in the same frame. The largest Lie sub-algebra of
Lie(Qi0) that satisfies the above condition is Lie(Gi0), and Gi0 ⊆ Qi0 is identified
by integrating this Lie sub-algebra on Qi0 . Therefore, the kinetic energy K is
invariant under the Gi0 -action by right translation on Qi0 if and only if we have
the above condition.

5.2 Further Reduction of Holonomic Open-chain Multi-body Systems

Let N = G2 × · · · GN be a Lie subgroup of Q = Q2 × · · · × QN , i.e., Gi is a Lie
subgroup of Qi for i = 2, · · · , N . We define the action of N on Q̃, i.e., Φ̃n : Q̃ → Q̃,
by left translation on Q. For any element n = (n2, · · · , nN ) ∈ N we have

Φ̃n(q̃1, q) = (q̃1, n2q2, · · · , nNqN ).

Hence, the tangent and cotangent lift of the N -action are

Tq̃Φ̃n(ṽq̃) =




idTq̃1Q̃1
0 · · · 0

0 Tq2Ln2 · · · 0
...

...
. . .

...
0 0 · · · TqNLnN







ṽ1
v2
...
vN




T ∗
Φ̃n(q̃)

Φ̃n−1(p̃q̃) =




idTq̃1Q̃1
0 · · · 0

0 T ∗n2q2Ln−1
2
· · · 0

...
...

. . .
...

0 0 · · · T ∗nNqNLn−1
N







p̃1
p̃2
...
p̃N


 .

Let us assume that the Hamiltonian H̃ and the metric K̃ of a reduced holonomic
open-chain multi-body system (T ∗Q̃, Ω̃can − Ξµ, H̃, K̃) are invariant under the
cotangent and tangent lift of the N -action, respectively. We also have that for all
ζ ∈ Lie(N ) the infinitesimal generator of the cotangent lifted action ζT ∗Q̃ satisfies
the following conditions:

ιζT∗Q̃Ξµ = 0,

LζT∗Q̃Ξµ = 0,

which indicate that the 2-form Ξµ is basic with respect to the N -action.
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The map corresponding to the infinitesimal N -action φ̃q̃ : Lie(N ) ⊂ Lie(Q)→
T Q̃ is calculated by

φ̃q̃ =




0 · · · 0
Te2(Rq2 ◦ ι̃2) · · · 0

...
. . .

...
0 · · · TeN (RqN ◦ ι̃N )


 ,

where ι̃i : Gi ↪→ Qi is the canonical inclusion map for i = 2, · · · , N . As the result,
we define the momentum map M̃q̃ : T ∗q̃ Q̃ → Lie∗(N ) by

M̃q̃ = φ̃∗q̃ =




0 T ∗e2(Rq2 ◦ ι̃2) · · · 0
...

...
. . .

...
0 0 · · · T ∗eN (RqN ◦ ι̃N )


 .

Now, we have the locked inertia tensor Ĩq̃ : Lie(N )→ Lie∗(N ) and the mechanical

connection corresponding to the N -action Ãq̃ : Tq̃Q̃ → Lie(N ) calculated by

Ĩq̃ = φ̃∗q̃ ◦ FL̃q̃ ◦ φ̃q̃,
Ãq̃ = Ĩ−1

q̃ ◦ M̃q̃ ◦ FL̃q̃,

where, FL̃q̃ : Tq̃Q̃ → T ∗q̃ Q̃ is the Legendre transformation induced by the metric

K̃:

〈FL̃q̃(ṽq̃), w̃q̃〉 := K̃q̃(ṽq̃, w̃q̃). ∀ṽq̃, w̃q̃ ∈ Tq̃Q̃
We use the local trivialization introduced in the previous section to locally trivialize
the principal bundle Q̃ → Q̃/N , and find the principal connection Ãq̃ : Tq̃Q̃ →
Lie(N ) in the form of (5.29). We may also locally trivialize the principal bundle
N → N/Nϑ, where Nϑ is the isotropy group of N for ϑ ∈ Lie∗(N ), and calculate

the mechanical connection Ãϑq̃ : Tq̃Q̃ → Lie(Nϑ) corresponding to the principal

bundle π̂ : Q̃ → Q̂ := Q̃/Nϑ using (5.29). Then we calculate the Hamiltonian

Ĥ : T ∗Q̂ → R by the equality

Ĥ := H̃ϑ ◦ ϕ−1
ϑ , (5.47)

where H̃ϑ : M̃
−1

(ϑ)/Nϑ → R is the induced Hamiltonian on the reduced phase

space defined in (2.9), and ϕ̃ϑ : M̃
−1

(ϑ)/Nϑ → [T π̂Ṽ]0 ⊆ T ∗Q̂ is defined in Lemma

53. Here, Ṽ ⊂ T Q̃ is the vertical vector sub-bundle for the principal bundle Q̃ →
Q̃/N . Plus, H̃ ⊂ T Q̃ is the corresponding horizontal vector sub-bundle of this
principal bundle.

Finally, we are ready to report the main result of this section in the following
theorem, by repeating the reduction procedure detailed in the previous section.

Theorem 57. Let ϑ ∈ Lie∗(N ) be a regular value of the momentum map M̃.
Under the above-mentioned assumptions, a reduced holonomic open-chain multi-
body system with symmetry (T ∗Q̃, Ω̃can − Ξµ, H̃, K̃,N ) can be further reduced to

a mechanical system ([T π̂Ṽ]0 ⊆ T ∗Q̂, Ω̂can − Ξ̂µ − Ξϑ, Ĥ, K̂), in the sense that
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was introduced in Theorem 54. Here, Ω̂can is the canonical 2-form on T ∗Q̂, Ĥ is
defined by (5.47) and K̂ is a metric on Q̂ such that ∀ûq̂, ŵq̂ ∈ Tq̂Q̂ we have

K̂q̂(ûq̂, ŵq̂) = K̃q̃(ĥlq̃(ûq̂), ĥlq̃(ŵq̂)),

where q̂ := π̂(q̃), and ĥlq̃ : Tq̂Q̂ → H̃q̃ is the horizontal lift map for the principal

bundle π̂ : Q̃ → Q̂. The 2-form Ξϑ ∈ Ω2(T ∗Q̂) is calculated in the local coordinates

by (5.37). Plus, the basic 2-form Ξµ ∈ Ω2(T ∗Q̃) (with respect to the N -action) is

projected to the 2-form Ξ̂µ ∈ Ω2(T ∗Q̂).

Finally, in local coordinates we have X̂ = (˙̂q, ˙̂p) as a vector field on [T π̂(Ṽ)]0.

Hamilton’s equation in the vector sub-bundle [T π̂(Ṽ)]0 of the cotangent bundle of
ϑ-shape space reads

ι( ˙̂q, ˙̂p)(−dp̂ ∧ dq̂ − Ξ̂µ − Ξϑ) =
∂Ĥ

∂p̂
dp̂+

∂Ĥ

∂q̂
dq̂.

6 Case Study

In this section we study the dynamics of an example of a holonomic open-chain
multi-body system. We derive the reduced dynamical equations of a six-d.o.f. ma-
nipulator mounted on top of a spacecraft whose initial configuration is shown in
Figure 1.

Using the indexing introduced in the previous section and starting with the
spacecraft as B1, we first number the bodies and joints. The following graph shows
the topology of the holonomic open-chain multi-body system.

B4

B0
J1

B1
J2

B2
J3

B3

J5

J4

B5

We then identify the relative configuration manifolds corresponding to the
joints of the robotic system. The relative pose of B1 with respect to the iner-
tial coordinate frame is identified by the elements of the Special Euclidean group
SE(3). We identify the elements of the relative configuration manifold correspond-
ing to the first joint, which is a six-d.o.f. free joint, by

Q0
1 =




r01 =



RY (θY )RX(θX)RZ(θZ)



x
y
z




[
0 0 0

]
1




∣∣∣∣∣∣∣∣
x, y, z ∈ R, θX , θY , θZ ∈ S1




,
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Fig. 1 A six-d.o.f. manipulator mounted on a spacecraft

where we have

RX(θX) =




1 0 0
0 cos(θX) − sin(θX)
0 sin(θX) cos(θX)


 ,

RY (θY ) =




cos(θY ) 0 sin(θY )
0 1 0

− sin(θY ) 0 cos(θY )


 ,

RZ(θZ) =




cos(θZ) − sin(θZ) 0
sin(θZ) cos(θZ) 0

0 0 1


 .

The second joint is a three-d.o.f. spherical joint between B2 and B1, and its
corresponding relative configuration manifold is given by

Q1
2 =




r12 =



RX(ψX)RY (ψY )RZ(ψZ)




0
l1
0




[
0 0 0

]
1




∣∣∣∣∣∣∣∣
ψX , ψY , ψZ ∈ S1




.
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Fig. 2 The coordinate frames attached to the bodies of the robot

The third joint is a one-d.o.f. revolute joint between B3 and B2, and its relative
configuration manifolds is

Q2
3 =




r23 =




1 0 0 0
0 cos(ψ1) − sin(ψ1) l2
0 sin(ψ1) cos(ψ1) 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ψ1 ∈ S1




.

The forth and fifth joints are one-d.o.f. revolute joints whose axes of revolution
are assumed to be the Xi-axis (i = 4, 5). The relative configuration manifolds of
these joints are identified by

Q3
4 =




r34 =




1 0 0 c
0 cos(ψ2) − sin(ψ2) l3
0 sin(ψ2) cos(ψ2) 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ψ2 ∈ S1




,

Q3
5 =




r35 =




1 0 0 −c
0 cos(ψ3) − sin(ψ3) l3
0 sin(ψ3) cos(ψ3) 0
0 0 0 1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
ψ3 ∈ S1




.

Here, l1, · · · , l5 are defined in Figure 2, and the distance between J4 and J5 is
assumed to be 2c.

We assume that the initial pose of B1 with respect to the inertial coordinate
frame r01,0 is the identity element of SE(3). We have located the coordinate frame
attached to B1 on its centre of mass. Hence, in matrix form we have r01,0 = rcm,1 =
id4, where id4 is the 4×4 identity matrix. For the second body, the initial relative
pose with respect to B1 is

r12,0 =




1 0 0 0
0 1 0 l1
0 0 1 0
0 0 0 1


 ,
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and we have

rcm,2 =




1 0 0 0
0 1 0 l1 + l2/2
0 0 1 0
0 0 0 1


 .

The initial relative pose of B3 with respect to B2 is

r23,0 =




1 0 0 0
0 1 0 l2
0 0 1 0
0 0 0 1


 ,

and the relative pose of the centre of mass of B3 with respect to the inertial
coordinate frame is

rcm,3 =




1 0 0 0
0 1 0 l1 + l2 + l3/2
0 0 1 0
0 0 0 1


 .

Here we have assumed that the centre of mass of B2 and B3 are in the middle of
the links. For the forth and fifth bodies we have (i = 4, 5)

r3i,0 =




1 0 0 ±c
0 1 0 l3
0 0 1 0
0 0 0 1


 ,

rcm,4 =




1 0 0 c
0 1 0 l1 + l2 + l3 + l4
0 0 1 0
0 0 0 1


 , rcm,5 =




1 0 0 −c
0 1 0 l1 + l2 + l3 + l5
0 0 1 0
0 0 0 1


 ,

where the plus and minus signs correspond to the body B4 and B5, respectively.

With the above specifications of the system we identify the configuration
manifold of the holonomic open-chain multi-body system in this case study by
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Q = Q1 × · · · × Q5, where

Q1 =




q1 =



RY (θY )RX(θX)RZ(θZ)



x
y
z




[
0 0 0

]
1


 ∈ SE(3)




,

Q2 =




q2 =




R




0
l1
0


−R




0
l1
0




[
0 0 0

]
1


 ∈ SE(3)

∣∣∣∣∣∣∣∣
R = RX(ψX)RY (ψY )RZ(ψZ)




,

Q3 =




q3 =




1 0 0 0
0 cos(ψ1) − sin(ψ1) 2(l1 + l2) sin2(ψ1/2)
0 sin(ψ1) cos(ψ1) −(l1 + l2) sin(ψ1)
0 0 0 1


 ∈ SE(3)




,

Q4 =




q4 =




1 0 0
0 cos(ψ2) − sin(ψ2) 2(l1 + l2 + l3) sin2(ψ2/2)
0 sin(ψ2) cos(ψ2) −(l1 + l2 + l3) sin(ψ2)
0 0 0 1


 ∈ SE(3)




,

Q5 =




q5 =




1 0 0 0
0 cos(ψ3) − sin(ψ3) 2(l1 + l2 + l3) sin2(ψ3/2)
0 sin(ψ3) cos(ψ3) −(l1 + l2 + l3) sin(ψ3)
0 0 0 1


 ∈ SE(3)




.

In order to calculate the kinetic energy for the system under study, we need to

first form the function F : Q → P =

5−times︷ ︸︸ ︷
SE(3)× · · · × SE(3), which determines the

pose of the coordinate frames attached to the centres of mass of the bodies with
respect to the inertial coordinate frame.

F (q1, · · · , q5) = (q1rcm,1, q1q2rcm,2, q1q2q3rcm,3, q1q2q3q4rcm,4, q1q2q3q5rcm,5)

Using (4.23), we can calculate the kinetic energy metric for the open-chain multi-
body system. In matrix form we have the following equation for the tangent map
Tq(LF (q)−1F ) : TqQ → Lie(P)

Tq(LF (q)−1F ) =




Adr−1
cm,1
· · · 0

...
. . .

...
0 · · · Adr−1

cm,5


Jq




Tq1(Lq−1
1
◦ ι1) · · · 0

...
. . .

...
0 · · · Tq5(Lq−1

5
◦ ι5)


 ,

where we have

Jq =




id6 06×6 06×6 06×6 06×6

Adq−1
2

id6 06×6 06×6 06×6

Ad(q2q3)−1 Adq−1
3

id6 06×6 06×6

Ad(q2q3q4)−1 Ad(q3q4)−1 Adq−1
4

id6 06×6

Ad(q2q3q5)−1 Ad(q3q5)−1 Adq−1
5

06×6 id6



,
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and where id6 is the 6 × 6 identity matrix. Let us denote the standard basis for
se(3) by {E1, · · · , E6}, such that

E1 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 , E2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 , E3 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0




E4 =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 , E5 =




0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


 , E6 =




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0




Using the introduced joint parameters, we have the following equalities:

Tq1(Lq−1
1
◦ ι1) =




R−1
Z (θZ)R−1

X (θX)R−1
Y (θY ) 03×3

03×3




cos(θZ) cos(θX) sin(θZ) 0
− sin(θZ) cos(θX) cos(θZ) 0

0 − sin(θX) 1





 ,

Tq2(Lq−1
2
◦ ι2) =




−l1 sin(ψY ) 0 −l1
0 0 0

l1 cos(ψY ) cos(ψZ) −l1 sin(ψZ) 0
− cos(ψY ) cos(ψZ) sin(ψZ) 0
cos(ψY ) sin(ψZ) cos(ψZ) 0
− sin(ψY ) 0 1



,

Tq3(Lq−1
3
◦ ι3) =

[
0 0 l1 + l2 1 0 0

]T
,

Tq4(Lq−1
4
◦ ι4) =

[
0 0 l1 + l2 + l3 1 0 0

]T

Tq5(Lq−1
5
◦ ι5) =

[
0 0 l1 + l2 + l3 1 0 0

]T
.

Note that, ∀r0 ∈ SE(3) that is in the following form (R0 ∈ SO(3) and p0 =
[p0,1, p0,2, p0,3]T ∈ R3)

r0 =

[
R0 p0

01×3 1

]
,

we calculate the Adr0 operator by

Adr0 =

[
R0 p̃0R0

03×3 R0

]
,

where

p̃0 =




0 −p0,3 p0,2
p0,3 0 −p0,1
−p0,2 p0,1 0




is a skew-symmetric matrix. We choose the standard basis {E1, · · · , E6} for se(3).
For this case study, the left-invariant metric h = h1 ⊕ · · · ⊕ h6 on P is identified,
in the above basis, by the following metrics on the Lie algebras of copies of SE(3)
corresponding to the bodies:

he,i =




miid3 03×3

03×3



jx,i 0 0
0 jy,i 0
0 0 jz,i





 ,



38 Robin Chhabra, M. Reza Emami

where i = 1, · · · , 5, id3 and 03×3 are the 3× 3 identity and zero matrices, respec-
tively, mi is the mass of Bi, and (jx,i, jy,i, jz,i) are the moments of inertia of Bi
about the X, Y and Z axes of the coordinate frame attached to the centre of mass
of Bi. Note that, we chose this coordinate frame such that its axes coincide with
the principal axes of the body Bi. For the body Bi (i = 2, · · · , 5), since we assume
a symmetric shapes with Yi-axis being the axis of symmetry, we have jx,i = jz,i.
Finally, in the coordinates chosen to identify the configuration manifold (joint
parameters), we have the following matrix form for FLq

FLq = T ∗q (LF (q)−1F )



he,1 · · · 0

...
. . .

...
0 · · · he,5


Tq(LF (q)−1F ) =



K11(q) · · · K15(q)

...
. . .

...
K51(q) · · · K55(q)


 ,

and the kinetic energy is calculated by

Kq(q̇, q̇) =
1

2
q̇TFLq q̇,

where, with an abuse of notation, q̇ is the vector corresponding to the speed of the
joint parameters.

We assume zero potential energy for this holonomic open-chain multi-body
system, Hence, we have the Hamiltonian of the system as

H(q, p) =
1

2
pTFL−1

q p,

where p is the vector of generalized momenta corresponding to the joint parame-
ters.

In the following, we derive the reduced Hamilton’s equation for this system,

with the initial total momentum µ =
[
0 µ1 0 µ2 0 0

]T ∈ se∗(3) represented in
the dual of the standard basis for se(3). That is, the system has a constant linear
momentum in the direction of Y0, equal to µ1, and a constant angular momentum
in the direction of X0, equal to µ2. The kinetic energy (and hence the Hamiltonian)
of the this multi-body system is invariant under the action of G = Q1 = SE(3).
The isotropy group corresponding to µ is

Gµ =





h =




cos(θY ) 0 sin(θY ) µ2
µ1

sin(θY )

0 1 0 y
− sin(θY ) 0 cos(θY ) −2µ2

µ1
sin2(θY /2)

0 0 0 1


 ∈ SE(3)




,

which is a Lie subgroup of G, and it is isomorphic to SO(2) × R. Now, consider
the action of G = SE(3) by left translation on Q1. Using the joint parameters,
∀(x0, y0, z0, θX,0, θY,0, θZ,0) ∈ G we have

Φ(x0,y0,z0,θX,0,θY,0,θZ,0)(q) = (RY (θY,0)RX(θX,0)RZ(θZ,0)
[
x y z

]T
+
[
x0 y0 z0

]T

, RY (θY,0)RX(θX,0)RZ(θZ,0)RY (θY )RX(θX)RZ(θZ), q)
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where q = (ψX , ψY , ψZ , ψ1, ψ2, ψ3). We have the principal G-bundle π : Q → Q =
Q2×· · ·×Q5, and using the joint parameters its corresponding principal connection
A : TQ → se(3) is defined by (5.29)

Aq =



RY (θY )RX(θX)RZ(θZ)

̃

x
y
z


RY (θY )RX(θX)RZ(θZ)

03×3 RY (θY )RX(θX)RZ(θZ)



[
Tq1Lq−1

1
Aq
]
,

where we have

̃

x
y
z


 =




0 −z y
z 0 −x
−y x 0


 ,

Tq1Lq−1
1

=




R−1
Z (θZ)R−1

X (θX)R−1
Y (θY ) 03×3

03×3




cos(θZ) cos(θX) sin(θZ) 0
− sin(θZ) cos(θX) cos(θZ) 0

0 − sin(θX) 1





 ,

Aq =
[
K11(q)−1K12(q) · · · K11(q)−1K1N (q)

]
,

where K1i(q) = K1i(e1, q) for i = 1, · · · , N , and consequently, the horizontal lift
map hlq : TqQ → TqQ is

hlq =



−




RY (θY )RX(θX)RZ(θZ) 03×3

03×3




cos(θZ) − sin(θZ) 0
sin(θZ)/ cos(θX) cos(θZ)/ cos(θX) 0
sin(θZ) tan(θX) cos(θZ) tan(θX) 1





Aq

id6



,

where id6 is the 6× 6 identity matrix. Then, we use the principal bundle π̃ : Q →
Q/Gµ to introduce the local trivialization of G = Q1. The Lie algebra of Gµ as a

vector subspace of se(3) is spanned by
{
E2,

µ2
µ1
E1 + E5

}
, and a complementary

subspace to this subspace is spanned by {E1, E3, E4, E6}. Now, ∀q̃1 ∈ Uµ ⊂ Q1/Gµ
we introduce the embedding χµ : Uµ ↪→ Q1

χµ(q̃1) =



RX(θX)RZ(θZ)



x
0
z




01×3 1


 ,

which identifies the elements of Q1/Gµ by elements of an embedded submanifold
of Q1, and in the local coordinates its induced map on the tangent bundles is

Tq̃1χµ =




1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1



.
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Subsequently, we define the local trivialization of the principal bundle π̃ : Q →
Q/Gµ by χ̃ : Gµ × Uµ → Q1

χ̃((h, q̃1)) = hχµ(q̃1),

and its induced map on the tangent bundles (in the local coordinates) is calculated
as

T(h,q̃1)χ̃ =




0 (µ2
µ1

+ z) cos(θY )− x sin(θY ) cos(θY ) sin(θY ) 0 0

1 0 0 0 0 0
0 −(µ2

µ1
+ z) sin(θY )− x cos(θY ) − sin(θY ) cos(θY ) 0 0

0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1



,

where we use (y, θY ), (x, z, θX , θZ), and (x, y, z, θX , θY , θZ) as the local coordinates
for the manifolds Gµ, Q1/Gµ, and Q1, respectively. Accordingly, we can calculate
the map Aµq̃ : T(q̃1,q)(Uµ ×Q)→ Lie(Gµ) using the following equalities:

Aµq̃ :=
[
K̃
Gµ
1 (q̃)−1K̃

Q1/Gµ
1 (q̃) K̃

Gµ
1 (q̃)−1K̃

Gµ
12 (q̃) · · · K̃Gµ1 (q̃)−1K̃

Gµ
1N (q̃)

]
,

[
K
Gµ
1 ((h, q̃)) K

Q1/Gµ
1 ((h, q̃))

K
Gµ
2 ((h, q̃)) K

Q1/Gµ
2 ((h, q̃))

]
= T ∗(h,q̃1)χ̃ (K11(χ̃(h, q̃)))T(h,q̃1)χ̃,

[
K
Gµ
12 ((h, q̃)) · · · K

Gµ
1N ((h, q̃))

K
Q1/Gµ
12 ((h, q̃)) · · · KQ1/Gµ

1N ((h, q̃))

]
= T ∗(h,q̃1)χ̃

[
K12(χ̃(h, q̃)) · · · K1N (χ̃(h, q̃))

]
.

And, we have K̃
Gµ
1 (q̃) = K

Gµ
1 ((eµ, q̃)), K̃

Q1/Gµ
1 (q̃) = K

Q1/Gµ
1 ((eµ, q̃)), and K̃

Gµ
1i (q̃) =

K
Gµ
1i ((eµ, q̃)) for all i = 2, · · · , N . We also have the reduced Hamiltonian on

[T π̃(V)]0:

H̃(p̃q̃) =
1

2

[
AdT(eµ,q̃1)µ

p+ATq AdT(eµ,q̃1)µ

]T
FL−1

(eµ,q̃1,q)

[
AdT(eµ,q̃1)µ

p+ATq AdT(eµ,q̃1)µ

]
, (6.48)

where

AdT(eµ,q̃1)µ =




RTZ(θZ)RTX(θX) 03×3

−RTZ(θZ)RTX(θX)

̃

x
0
z


 RTZ(θZ)RTX(θX)







0
µ1

0
µ2

0
0



.



Symplectic Reduction of Multi-body Systems 41

In order to calculate the 2-form Ξµ, we compute the following matrices in the local
coordinates:

Tχµ(q̃1)Rχµ(q̃1)−1(Tq̃1χµ) =




1 0 0 z sin(θX)
0 0 z −x cos(θX)
0 1 0 −x sin(θX)
0 0 1 0
0 0 0 − sin(θX)
0 0 0 cos(θX)



,

Adχµ(q̃1) =



RX(θX)RZ(θZ)

̃

x
0
z


RX(θX)RZ(θZ)

03×3 RX(θX)RZ(θZ)


 ,

Dq̃ : = −Aµq̃ +
[
Tχµ(q̃1)Rχµ(q̃1)−1(Tq̃1χµ) Adχµ(q̃1)Aq

]
,

Fq̃1 :=




0
µ1

0
µ2

0
0




T

Adχµ(q̃1) =




µ1 cos(θX) sin(θZ)
µ1 cos(θX) cos(θZ)
−µ1 sin(θX)

µ1(z cos(θZ)− x sin(θX) sin(θZ)) + µ2 cos(θZ)
−µ1(z sin(θZ) + x cos(θZ) sin(θX))− µ2 sin(θZ)

−µ1x cos(θX)




T

.

Finally, we have the following expression for the 2-form Ξµ:

Ξµ =
∑

i<j

6∑

a=1

Fa
((

∂Aaj
∂qi
− ∂Aai
∂qj

)
−
∑

l<k

Ealk(AliA
k
j −AljAki )

)
(dqi ∧ dqj)

+
∑

i′<j′

∑

l<k

(
(µ1E2

lk + µ2E4
lk)(Dli′Dkj′ −Dlj′Dki′)

)
(dq̃i′ ∧ dq̃j′)

=:
∑

i′<j′

Υi′j′(q̃)dq̃i′ ∧ dq̃j′ ,

where a, l, k, i, j ∈ {1, · · · , 6} and i′, j′ ∈ {1, · · · , 10}. Here, in the local coordinates
q̃ = (x, z, θX , θZ , ψX , ψY , ψZ , ψ1, ψ2, ψ3), q = (ψX , ψY , ψZ , ψ1, ψ2, ψ3), and for the
standard basis for se(3), i.e., {E1, · · · , E6}, we have

[El, Ek] =

6∑

a=1

EalkEa,

Fq̃1 =

6∑

a=1

Fa(q̃1)Ea,

Aq =



A1

1(q) · · · A1
6(q)

...
. . .

...
A6

1(q) · · · A6
6(q)


 ,

Dq̃ =



D1

1(q̃) · · · A1
10(q̃)

...
. . .

...
D6

1(q̃) · · · D6
10(q̃)


 .
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As the result, in matrix form we have the following reduced equations of motion
for the holonomic multi-body system under study:




˙̃q1
q̇
ṗ


 =







0 −Υ12(q̃) · · · · · · −Υ110(q̃)
Υ12(q̃) 0 −Υ23(q̃) · · · −Υ210(q̃)

... · · · . . . · · ·
...

Υ19(q̃) · · · Υ89(q̃) 0 −Υ910(q̃)
Υ110(q̃) · · · · · · Υ910(q̃) 0




[
04×6

−id6

]

[
06×4 id6

]
06×6




−1 


∂H̃
∂q̃1

∂H̃
∂q
∂H̃
∂p



,

where H̃ is calculated by (6.48).

7 Conclusions and Future Work

In this paper we systematically extended the existing reduction procedures for
multi-body systems to more general cases with multi-d.o.f. holonomic joints and
non-zero momentum, using the symplectic reduction theorem. Using Lie group
theory, we reviewed the notion of displacement subgroups to introduce a class
of multi-d.o.f. joints whose relative configuration manifolds are diffeomorphic to
a subgroup of a Cartesian product of copies of SE(3). We used the symplectic
reduction theorem in geometric mechanics to express Hamilton’s equation in the
symplectic reduced manifold, for holonomic Hamiltonian mechanical systems. We
then identified the symplectic reduced manifold with the cotangent bundle of a
quotient manifold. Accordingly, we developed a two-step reduction process for the
dynamical equations of open-chain multi-body systems with multi-d.o.f. holonomic
joints and non-zero momentum, for which one symmetry group is indeed the rel-
ative configuration manifold corresponding to the first joint. As for the second
step, we found some sufficient conditions, under which the kinetic energy metric is
invariant under the action of a subgroup of the configuration manifold. Finally, we
derived the reduced dynamical equations in the local coordinates for an example
of a six d.o.f. manipulator mounted on a spacecraft to illustrate the results of this
paper.

The reduction process introduced in this paper can be extended to nonholo-
nomic multi-body systems through the Chaplygin reduction theorem, which will
be the next step of this research.
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