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Abstract This paper presents a two-step symplectic geometric approach to the
reduction of Hamilton’s equation for open-chain, multi-body systems with multi-
degree-of-freedom holonomic joints and constant momentum. First, symplectic re-
duction theorem is revisited for Hamiltonian systems on cotangent bundles. Then,
we recall the notion of displacement subgroups, which is the class of multi-degree-
of-freedom joints considered in this paper. We briefly study the kinematics of
open-chain multi-body systems consisting of such joints. And, we show that the
relative configuration manifold corresponding to the first joint is indeed a sym-
metry group for an open-chain multi-body system with multi-degree-of-freedom
holonomic joints. Subsequently using symplectic reduction theorem at a non-zero
momentum, we express Hamilton’s equation of such a system in the symplectic re-
duced manifold, which is identified by the cotangent bundle of a quotient manifold.
The kinetic energy metric of multi-body systems is further studied, and some suffi-
cient conditions are introduced, under which the kinetic energy metric is invariant
under the action of a subgroup of the configuration manifold. As a result, the
symplectic reduction procedure for open-chain, multi-body systems is extended to
a two-step reduction process for the dynamical equations of such systems. Finally,
we explicitly derive the reduced dynamical equations in the local coordinates for
an example of a six-degree-of-freedom manipulator mounted on a spacecraft, to
demonstrate the results of this paper.
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Operators

L, Left composition/translation by r

R, Right composition/translation by r

K, Conjugation by r

Ad, Adjoint operator corresponding to r

adg adjoint operator corresponding to £

[&,n] Lie bracket or matrix commutator

T f Tangent map corresponding to the map f at the element m

nf Cotangent map corresponding to the map f at the element m

T M Tangent space of the manifold M at the element m

™ Tangent bundle of the manifold M

T M Cotangent space of the manifold M at the element m

"M Cotangent bundle of the manifold M

exp(§) Group/matrix exponential of £

Lie(G) Lie algebra of the Lie group G

Lie* (G) Dual of the Lie algebra of the Lie group G

Gy Coadjoint isotropy group for u € Lie*(G)

X Semi-direct product of groups

L > Euclidean metric

[|v]| A Norm of the vector v with respect to the metric h

(5 ) Canonical pairing of the elements of tangent and cotangent
space

Lx Lie derivative with respect to the vector field X

Emr Vector field on the manifold M induced by the infinitesimal
action of £ € Lie(GQ)

Lx 2 Interior product of the differential form (2 by the vector field X

X(M) Space of all vector fields on the manifold M

2%(M) Space of all differential 2-forms on the manifold M

g Exterior derivative of the differential form {2

dH Exterior derivative of the function H

M/G Quotient manifold corresponding to a free and proper action

of the Lie group G

1 Introduction

In order to better understand the behaviour of Hamiltonian and Lagrangian sys-
tems, researchers have been trying to find conserved quantities that are used to
integrate a part of dynamical equations, and derive closed-form equations for some
parameters of such systems. For example, Jacobi in 1884 introduced Hamilton-
Jacobi equations, which give the necessary conditions for integrability of a La-
grangian system [13]. Also, Emmy Noether in 1918 in her famous paper [24] proved
that any symmetry of the action functional of a Lagrangian system corresponds
to a conserved quantity. This result is an inflection point in identifying conserved
quantities, and its relation with the reduction of dynamical equations of a system.
By reducing the dynamical equations we mean expressing the differential equations
representing a (Lagrangian or Hamiltonian) system on a manifold whose dimen-
sion is less than the original phase space of the system, by quotienting a group
action and eliminating the trivial behaviour of the system or restricting the system
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to a submanifold of the phase space. In the following, we first review two existing
reduction theories for Hamiltonian and Lagrangian mechanical systems. Then, we
report the reduction methods for multi-body systems, and finally, we state the
contributions of this paper.

1.1 Background
1.1.1 Reduction Theories

From the geometric point of view, a Hamiltonian system is a vector field X on a
symplectic manifold (M, §2) (phase space) that satisfies (coordinate-independent)
Hamilton’s equation

L x.Q =dH s

where ¢ x {2 is the interior product of the vector field X with the symplectic form §2,
and the function H: M — R is the Hamiltonian of the system. In this formulation,
if H and {2 are invariant under a group action, then there exists a conserved
quantity (momentum) for the Hamiltonian system and we can reduce Hamilton’s
equation [18]. In this reduction process, we have to take care of not only the
topology of the phase space and its symplectic structure, but also the Hamiltonian
H and its corresponding Hamiltonian vector field X. As for the reduction of the
phase space along with its symplectic structure (M, £2), the symplectic reduction
theorem by Marsden and Weinstein [21] gives an instruction to find the reduced
phase space and its symplectic structure. In the following, we state this theorem,
and report its impact on the geometric mechanics literature.

Let G be a Lie group, and M be the phase space of a system. The sym-
plectic reduction theorem states that in the presence of a free and proper G-
action and an (Ad*-equivariant) momentum map M: M — Lie*(QG), for any value
u € Lie*(@) of the momentum the quotient manifold M, := M~'(u)/G,, inher-
its a symplectic form §2,,. Here, G, is the coadjoint isotropy group of u, 2, is
identified by the equality i%2 = 72, and the maps i,: M~ '(u) — M and
s M7 () — M~ (u) /G, are the canonical inclusion and projection maps [21].
The pair (M, 2,) is called the symplectic reduced manifold. This theorem by
Marsden and Weinstein made a huge impact on unifying the reduction methods
that had been previously developed for Lagrangian and Hamiltonian systems, such
as classical Routh method and the reduction of Lagrangian systems by cyclic pa-
rameters [26].

For a mechanical system, the phase space is the cotangent bundle of the con-
figuration manifold 7" Q that admits a canonical symplectic 2-form, which is
Qcan := —dp A dg, in coordinates. As the result, (T"Q, 2can) is a symplectic
manifold. The Hamiltonian of the mechanical system H: T*Q — R comes from
a (kinetic energy) metric and a (potential energy) function on Q. Let G be a
Lie group acting properly on the configuration manifold Q. The cotangent lifted
action on the phase space is symplectic. In this case, if the Hamiltonian of the
system is also invariant under the cotangent lift of the G-action, the group G is
called the symmetry group of the mechanical system, and the system is called a
mechanical system with symmetry [16,18]. In the reduction process of mechanical
systems with symmetry, we should take care of four structures, i.e., the topology
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of the phase space, the symplectic structure, the (kinetic energy) metric and the
(potential energy) function of the system.

The phase space of a mechanical system T*Q also admits a canonical Poisson
bracket {-,-} using the canonical symplectic form. For a mechanical system with
symmetry, suppose that the symmetry group G acts freely and properly on Q,
and so does it on T*Q. Clearly, the Poisson bracket is invariant under the cotan-
gent lifted action, i.e., the action is a Poisson action on (7" Q, {-,-}). The Poisson
bracket on T Q descends to a Poisson bracket on the quotient manifold (77 Q)/G.
This process, which has been introduced in [18,2], is called Poisson reduction.
The major difference between Poisson reduction and symplectic reduction is the
concept of momentum map, which is not necessary for Poisson reduction, and as
the result the induced Hamilton’s equation on the quotient phase space evolves in
a bigger space. This approach unifies the Euler-Poincaré and Lagrange-Poincaré
equations for mechanical systems with symmetry [18]. Both of the abovementioned
reduction theories for mechanical systems with symmetry were developed and ex-
tended to Lagrangian systems, in the 1990s [5,20,19].

1.1.2 Dynamical Reduction of Multi-body Systems

An example of a mechanical system with symmetry is a free-base multi-body sys-
tem, which has been studied in the field of robotics, aerospace and controls. Vafa
and Dubowsky introduce the notion of Virtual Manipulator [36], and they show
that this approach decouples the system centre of mass translation and efficiently
solves for the inverse kinematics [9]. Since the trivial behaviour of a multi-body
system due to momentum conservation is eliminated during a reduction process,
the behaviour of the system is more explicit in the reduced space. The reduction
procedures have been helpful for extracting control laws for space manipulators by
restricting the dynamical equations to the submanifold of the phase space where
the momentum of the system is constant (and equal to zero). Yoshida et al. inves-
tigate the kinematics of free-floating multi-body systems utilizing the momentum
conservation law. They derive a new Jacobian matrix in generalized form and de-
velop a control method based on the resolved motion rate control concept [35,23].
McClamroch et al. also propose an articulated-body dynamical model for free-
floating robots based on Hamilton’s equation, and apply it for adaptive motion
control [37]. In the case of underactuated space manipulators, Mukherjee and Chen
in [22] show that even if the unactuated joints do not possess brakes, the manipu-
lator can be brought to a complete rest provided that the system maintains zero
momentum. In [34] an alternative path planning methodology is developed for
underactuated manipulators using high order polynomials as arguments in cosine
functions to specify the desired path directly in joint space.

Geometric methods have also been used to reduce the dynamical model of free-
base multi-body systems and introduce effective control laws. For example, in [31,
32] Sreenath reduces Hamilton’s equation by SO(2) for free-base planar multi-body
systems with non-zero angular momentum. He uses symplectic reduction theory
to first reduce dynamical equations and then derive a control law for reorienting
the free-base system. Chen in his Ph.D. thesis [6] extends Sreenath’s approach to
spatial multi-body systems with zero angular momentum. Duindam and Strami-
gioly derive Boltzmann-Hamel equations for multi-body systems with generalized
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multi-degree-of-freedom (multi-d.o.f.) holonomic and nonholonomic joints by re-
stricting the dynamical equations to the nonholonomic distribution [10]. This is
the first attempt to reduce the dynamical equations of a generic open-chain multi-
body systems with generalized holonomic and nonholonomic joints. Furthermore,
Shen proposes a novel trajectory planning in shape space for nonlinear control of
multi-body systems with symmetry [29,27,28]. In his work he performs symplectic
reduction for zero momentum and assumes multi-body systems on trivial bundles.
Then, in [30] he extends his results to include nonholonomic constraints. Also,
in the control community, Olfati-Saber in his thesis [25] studies the reduction of
underactuated Lagrangian mechanical systems with symmetry (with zero momen-
tum) and its application to nonlinear control of such systems. Further, Bloch and
Bullo extract coordinate-independent nonlinear control laws for holonomic and
nonholonomic mechanical systems with symmetry [2,3,4].

1.2 Structure of the Paper and Statement of Contributions

In the robotics community, research on the dynamical reduction of multi-body
systems is mostly focused on the cases where the total liner and angular momentum
is zero, the symmetry group of the system is either SO(3) or SO(2), and the
configuration manifold of the system is a trivial bundle of the symmetry group over
the shape space. In the real world applications however, it is impractical to have a
system with zero angular and linear momentum. In this paper we systematically
develop a two-step reduction process (based on the symplectic reduction theorem)
for dynamical equations of holonomic open-chain multi-body systems with non-
zero momentum. We consider any symmetry group, which is a subgroup of a
Cartesian product of copies of SE(3), and we do not assume that the configuration
manifold is a trivial bundle.

The following section gives a brief review of symplectic reduction theory for
mechanical systems on cotangent bundles. In Section 3, we introduce generic multi-
d.o.f. joints, and show that for a certain class of multi-d.o.f. joints the configuration
manifold of the system is indeed diffeomorphic to a Lie group. Then, Lagrangian
and Hamiltonian of generic open-chain multi-body systems are derived in Sec-
tion 4. The main results of this paper are presented in Section 5, where we in-
troduce the notion of open-chain multi-body systems with symmetry, and show
that the relative configuration manifold corresponding to the first joint is always a
symmetry group for such systems. We derive the reduced coordinate-independent
dynamical equations of generic open-chain multi-body systems with symmetry in
a vector sub-bundle of the cotangent bundle of the p-shape space. Subsequently,
we find some necessary conditions for a reduced open-chain multi-body system
to admit a bigger symmetry group, and we repeat the reduction procedure intro-
duced in this section to further reduce the dynamical equations of these systems.
Finally in Section 6, as an example, we reduce the dynamical equations of a six
d.o.f. manipulator mounted on a spacecraft, and Section 7 concludes the paper
with some remarks.
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2 Symplectic Reduction of Holonomic Hamiltonian Mechanical
Systems with Symmetry

For a mechanical system, the Lagrangian L: TQ — R is defined by L(vq) :=
1K,(vg,vq) — V(q), where Vg € Q we have vg € T,Q, and K,: T,Q x T,Q — R
is a Riemannian metric, called the kinetic energy metric, and where V: Q — R is
a smooth function, called the potential energy function. This Lagrangian is hyper-
regular, and its corresponding Legendre transformation FLy: T,Q — T, Q is equal
to the fibre-wise linear isomorphism that is induced by the metric K:

(FLg(vq), wq) = Kq(vg,wq). Vg, wg € TqQ (2.1)

As the result, Vpg € T*Q the Hamiltonian H: T"Q — R of the system is

H(pg) == 5 Ka(FL (), FL7 (b)) + V(@) (2.2

which is the total energy of the mechanical system. We label a Hamiltonian me-
chanical system by a four-tuple (T Q, Qcan, H, K), where can € 22 (T*Q) is the
canonical 2-form on the cotangent bundle 7" Q, and H and K are defined as above.
Let G be a Lie group with the Lie algebra Lie(G). Consider an action of G on
Q, and denote the action by ®4: Q — Q, Vg € G. This action induces an action of
G on T" Q by the cotangent lift of &4, which is denoted by T"®4: T*Q — T* Q.

Lemma 21. For every g € G, the map T*®Pq is a symplectomorphism, i.e., it
preserves 2can [18].

Consider the infinitesimal action of Lie(G) on Q. For any & € Lie(G), this
action induces a vector field o € ¥(Q) such that Vg € Q,

ﬁQ(q) = % (éexp(ef)(qn . (23)

e=0

Denote the fibre-wise linear map corresponding to the infinitesimal action of Lie(G)
by ¢q: Lie(G) — T4Q, where ¢q(€) = £o(q). Likewise, we define &r-g € X(TQ)
such that Vp, € T, Q,

8 *
r-0) = | (ThatwPoo-co 1)) (2.4

Now, consider the fibre-wise linear map M: T*Q — Lie*(G), called momentum
map, which is defined by

(Mg (pq), &) = (bg(pqg), &) = (Pg,E2(q))- (2:5)

Lemma 22. The map M is an Ad*-equivariant momentum map corresponding to
the cotangent lifted action T*®4. That is,

Mo T ®g(pq) = Ady o M(pq). (2.6)

Proposition 23 (Noether’s Theorem). Let H: T*Q — R be the Hamiltonian of a
Hamiltonian mechanical system. If H is invariant under the cotangent lifted group
action, i.e., H o T*®y(pg) = H(pgq), the momentum map M, as defined above, is
constant along the flow of the Hamiltonian vector field X for the Hamiltonian H.
That is, Y€ € Lie(G) we have Lx ((M,§)) = 0.
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We call X € X(T*Q) a Hamiltonian vector field for the Hamiltonian H, if it
satisfies Hamilton’s equation:

Lx Qean = dH. (2.7)

This equation is a coordinate-independent way of formulating Hamilton’s equation
in the language of differential forms, which is used mostly in the context of geomet-
ric mechanics. This equation is equivalent to the familiar form of the Hamilton’s
equation in a chosen coordinates (g,p) for T*Q:

. . OH OH
1x can = t(4,p)(—dp A dq) = ¢dp — pdq 94 dq + B dp.
S _oH
= { . & (2.8)
= 28

We define a Hamiltonian mechanical system with symmetry to be a five-tuple
(T*Q, 2can, H,K,G), as above, where the Hamiltonian H and K are invariant
under the cotangent and tangent lifted action of G.

Theorem 24 (Symplectic Reduction Theorem [21]). Let u € Lie*(G) be a reg-
ular value of the momentum map M, and assume that the action of G on Q
is free and proper. Then the quotient manifold (T*Q), = M *(u)/Gu, where
G, = {9 € G| Adgp = p} is the coadjoint isotropy group, is a symplectic manifold,
called the symplectic reduced space, with the unique symplectic form (2, that is
identified by the equality T*m,(2,) = T*iy(Qcan). Here, the maps m,: M~ (p) —
MY (1)/Gyu and i,: M~ (n) — T*Q are the canonical projection and inclusion
map, respectively.

This theorem was first stated and proved in a paper by Marsden and Weinstein
in 1974 [21], and since then this result has been extended to non-free actions [8]
and almost symplectic manifolds [12]. An almost symplectic manifold is a man-
ifold equipped with a nondegenerate 2-form. Based on the symplectic reduction
theorem, in the presence of a group action that preserves the symplectic structure
and an Ad*-equivariant momentum map (corresponding to the symmetry group)
we say that the phase space of a Hamiltonian system along with its symplectic
2-form can be reduced to the symplectic reduced space ((TQ)u, £24). In order to
have a well-defined projection of Hamilton’s equation onto the symplectic reduced
space, the Hamiltonian of the system should be invariant under the group action,
as well. Under these hypotheses, Hamilton’s equation can be written on (7" Q),
as
Lx, 2y = dHy, (2.9)

where H,, is defined by H oi, = Hy omy, and X, oy = Trp(X 0dy).

We say that the Hamiltonian system with symmetry (7" Q, 2can, H,G) has
been reduced to the Hamiltonian system ((77Q)u, 2., Hy).

In the theory of cotangent bundle reduction, there exist two equivalent ways

to identify the symplectic reduced space with cotangent bundles and coadjoint
orbits [17]:

i) Embedding version: in which the symplectic reduced space is identified with a
vector sub-bundle of the cotangent bundle of Q := Q/G,,, called p-shape space
of a Hamiltonian system.
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ii) Bundle version: in which the symplectic reduced space is identified by a (locally
trivﬁial) fibre bundle of the coadjoint orbit through p over the cotangent bundle
of Q := Q/G, namely shape space of the Hamiltonian system.

In this paper, the embedding version of the cotangent bundle reduction is used
to write Hamilton’s equation (2.9) in the cotangent bundle of the u-shape space,
ie., T @ Prior to reporting the final result, we introduce a number of necessary
objects.

Consider a Hamiltonian mechanical system with symmetry (T Q, Q2can, K,
H,G), and Vg € G denote the action map by @4: Q — Q. Assume that the action is
free and proper. The quotient manifold Q := Q/G gives rise to the principal bundle
7: Q — Q with the base space @, and the fibres of the bundle are isomorphic to
the group G. A principal connection on the principle bundle 7: Q — Q is a fibre-
wise linear map A: TQ — Lie(G), such that A(£o(q)) = € (V€ € Lie(G) and
Vg € Q), and it is Ad-equivariant, i.e., A(TqPg(vq)) = AdgA(vg) (Vvg € T4Q).
Accordingly, for any base element g € Q the tangent space of Q can be written as
the following direct sum

T4 Q = ker(Tqm) @ ker(Ay). (2.10)

Note that, V := ker(Tm) = {€o = ¢(£)| € € Lie(G)} is called the vertical vector
sub-bundle of TQ, and H := ker(A) is called the horizontal vector sub-bundle of
TQ. As aresult, any v, € T,Q can be decomposed into the horizontal and vertical
components such that vy = hor(vg) + ver(vq), where ver(vq) := ¢q 0 Ag(vq) and
hor(vg) := vg — ver(vgq).

For any ¢ € Q and g := 7(q) € Q the restriction of the tangent map T,7: T,Q —
Tq@ to the horizontal subspace of T3Q, namely Hg, is a linear isomorphism be-
tween Hy and T5Q. Therefore, for any oy € Ty Q it defines a horizontal lift map
by

hly(vg) = (TaTlyy,) ™" (Tg)- (2.11)

The choice of the principal connection A is arbitrary; however, for a Hamilto-
nian mechanical system, we can use the Legendre transformation, which is induced
by the kinetic energy metric K, to define an appropriate principal connection.

For any ¢ € Q consider the linear map I,: Lie(G) — Lie*(G), defined by

Iq := ¢g 0 FLq 0 ¢g, (2.12)

such that the following diagram commutes:

This map is a linear isomorphism for any ¢ € Q, and it is called the locked inertia
tensor. For a Hamiltonian mechanical system with symmetry V¢, n € Lie(G) we
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have (I4(§),n) = Kq(§0(g),n0(g))- The principal connection A can now be chosen
to be the mechanical connection AM“h, which can be interpreted as the orthog-
onal projection with respect to the kinetic energy metric K, and defined by the
following commuting diagram:

Therefore, Vg € Q we have
Ag = At =1, o My 0 FL,. (2.13)

For any p € Lie*(G), let the action of G restricted to the subgroup G, =
{g€GlAdgu = p} C G be denoted by &1 Q — Q (Vh € G,). Similarly, for
this action we have a principal bundle 7#: @ — Q := Q/G,. Using the same
procedure detailed above, the locked inertia tensor I : Lie(G,) — Lie*(G,) and
the (mechanical) connection A4 : T, Q — Lie(G,) (Vg € Q) for the G,-action are
defined by

I = (80)" o FLy o 6, (214)

and
Al = ()7 o MY 0 FLg, (2.15)

respectively. Here, the map ¢} : Lie(G,) — TQ corresponds to the infinitesimal
Gu-action, and M*: T*Q — Lie*(G,) is the Ad"-equivariant momentum map for
the cotangent lifted G,-action, which are defined based on (2.3) and (2.5). Let
the map i*: G, — G be the canonical inclusion map. Denote the induced map in
the Lie algebras by i : Lie(G,) — Lie(G) and in the dual of the Lie algebras by
(¢*)*: Lie*(G) — Lie*(G,). The following diagrams commute:

Lie(G) Lie*(9)
" Pq @ [y
. by
Lie(G,) ————— > T4Q Lie*(Gu) <———— T4 Q

(¢5)"
Based on these commuting diagrams, we have the following relations:
I = (i*)" o ¢y 0FLg 0 ¢q o il = (i*)" o I4 0 ik,
Mg = (ZP‘)* 4 Mlh
Ay = (]126)71 o(i")" oMgoFLg = (]H;)i1 o (i) olg o Aqg.
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For the principal bundle 7: @ — O with the principal connection A, the
horizontal and vertical sub-bundles are H" := ker(A") and V¥ := ker(w) =
{ng = ¢"(n)|n € Lie(Gu)}, respectively. It is easy to check that V¥ C V and
H C H" as vector sub-bundles. The horizontal lift map corresponding to the
connection A" can be defined as

bl (¥g) = (TyF ) ™" (@),
where ¢ := 7(q) and vz € Tq@.
Now, consider the 1-form ay, := A*u € 2*(Q).

Lemma 25. The I-form «,, takes values in M~ (u), and it is invariant under
Gu-action.

Proof. Using the definition of the momentum map and principal connection, we
have V¢ € Lie(G)

(M(ay),§) = (au, §o) = (A, dq(£)) = (1, (Ag 0 ¢q)(§)) = (1, €)-

As the result, o, € M~ (p).

Finally, consider the action of an arbitrary element h € G,, and denote the
action simply by h-q := Py (q) and h-vg := TPy (vy). Based on the Ad*-equivariance
of A and the definition of G,, one can show that a, is G, invariant. For all
Vg € Tq Qy

{ap(h-q),b-vg) = (A;qﬂvh “vg) = (1 Ap-q(h - vq))
=t Adh*‘-Aq(vq)) = <Ad2—1u7 Aq(vg)) = (11, Ag(vq))-

O

According to the Cartan Structure Equation [1] VZ,Y € X(Q) the exterior
derivative of ay, evaluated on Y and Z is equal to

do(2,Y) = (1, dA(Z,Y)) = (1, B(Z,Y) + [A(Z), A(Y)]), (2.16)
where By(Zq,Y,) = (dA)q(horq(Z,), hory(Yy)) = —Ag([hor(Z),hor(Y)],) is the
curvature of the connection A, and [-,-] in (2.16) corresponds to the Lie bracket
in Lie(G).

Lemma 26. For all n € Lie(G,), the interior product of the 2-form doy, with ng
18 zero, i.e., lyoday, = 0.

Proof.
tngdoyy = Lng (o) — d(tng o).

The Lie derivative term is zero since «, is invariant under the G,-action (see
Lemma 25), and the exterior derivative term is zero since

tnou = (u,ma) = (g, Ao ¢*(n)) = (u,m)

is a constant function on Q, since Ao ¢ (n) =, for all n € Lie(G,). O
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By this lemma and Lemma 25 the 2-form day, is basic; hence, a closed 2-form
Bu € 2%(Q) can be uniquely defined by the relation T*%(8,) = day, and its

pullback =, by the cotangent bundle projection 7 5: T*Q — Q will be a closed

2-form on T*Q,

= T*ﬂ'@(ﬁu)-
Theorem 27. There is a symplectic embedding ¢, : (T*Q)u, 24) — (T*Q,
can — E,) onto [T%(V)}O C T*Q that covers the base Q, where Qcan 15 the

canonical 2-form on T @ and © indicates the annihilator with respect to the natural
pairing between tangent and cotangent bundle. The map ¢, is identified by

(u([Valn), TaT(vq)) = (Vg — @u(@), vq), (2.17)

Vg € My (p) and Vv, € T,Q, where -], refers to a class of elements in the
quotient manifold M~ (1) /G, [17].

Based on the above theorem, the inverse of the map ¢, exists only on [T7(V)]° €

T*Q, and it is a diffeomorphism on this vector sub-bundle. Hence, one may rewrite
the reduced Hamilton’s equation (2.9) in [T7(V)]° € T*Q as

t15(Qcan — Ep) = dH, (2.18)

where H := Hy o gt for ot [TF(V)]® — (TQ), being the inverse of ¢y,
Xo ¢u = Ty, 0o Xy, and =, can be calculated as follows. Consider two vector
fields Z,Y € X(T~ @), denote an element of O by ¢ :=7(q), and Vag € T*Q define
Zgi = TTFQZ(&&), Ya = Tﬂéy(aq)l

(Eu)a; (Z(ag), Y(ag))
= <M7 —Ag(fhor(hl(2)), hor(h1(Y))]q) + [Aq(hle(Z7)), Aq(hlq(yﬁ))]> .
(2.19)
If in Theorem 27 we assume G, = G, whose special examples are when G is
Abelian or p = 0, then the map ¢, becomes a symplectomorphism. Under this

assumption, since hl = hl and Aohl = 0, 5, can be calculated by a simpler
formulation

(8, (2(@0), V(@) = { s~ Aq([H(2), HI(Y)]a) ) (2.20)

3 Kinematics of Open-chain Multi-body Systems
3.1 Rigid Body and Observer

A 3-dimensional physical space can be modelled mathematically by a 3-dimensional
affine space, which is equipped with a vector space. A rigid body is the closure
of a bounded open subset of the affine space. This paper considers N + 1 inter-
connected rigid bodies B;’s (i = 0,---,N), each of which is a subset of an affine
space A;. We assume that Ag corresponds to an inertial observer. Considering
two rigid bodies, namely B; and Bj, a relative pose of B; with respect to Bj,
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namely rf , can be defined by an isometry between A; and A; with respect to the
Euclidean metric, i.e., 7'{ : A; — Aj. The collection of all relative poses forms a
smooth manifold, denoted by Pij7 which is diffeomorphic to the Lie group SE(3).
When ¢ = j this manifold admits a group structure, and it becomes isomorphic
to SE(3), as a group. The elements of P} correspond to the possible coordinate
transformations of A;. To simplify the notation, when i = 5 only the lower index
is used, e.g., P; := P{. The identity element and the Lie algebra of P; are denoted
by e; and Lie(P;), respectively. A relative motion of B; with respect to Bj is a
smooth curve ¢ — r!(t) € P/, and the relative velocity at time ¢ is the vector

v] (t) = (dr] /dt)(t) € T,i P

3.2 Joints

Given two rigid bodies B; and Bj, a joint is a mechanism that restricts the relative
motion of B; with respect to Bj, and specifies a subset D] of TP/. A joint can be
time dependant, called rheonomic, or time independent, called scleronomic [33]. A
special type of scleronomic joints, which is mostly considered in the literature, is
when we have D! C TP/ being a distribution on P/ that corresponds to admissible
directions of the relative velocity of B; with respect to B;. We only consider this
category of joints in this paper. We also assume in this paper that the distribution
D] is non-singular. If D] is involutive, i.e. closed under the Lie bracket of vector
fields, the joint is called holonomic; otherwise, it is a nonholonomic joint. Based on
the global Frobenius Theorem [15], for a holonomic joint D? identifies a foliation
of submanifolds of Pf The leaf Q{ - Pij that contains the initial relative pose
of B; with respect to Bj, rf-"o, is called the relative configuration manifold. The
manifold Qf is the space of all admissible relative poses of B; with respect to
Bj considering the joint constraints. The dimension of Qf is called the number of
degrees of freedom (d.o.f.) of a joint. We then define @Q; C P; and Q; C P; by the
left and right composition of @ by the element 7%, € Q%, where 1} o o= ¢
0(QZ) and Qj = R | (Q?). These submanifolds
contain the identity element of P; and P; that correspond to the initial relative
pose of B; with respect to Bj, i.e., 1], € Q].

J i o 3 - .
and rj o150 = ej, le, Qi = Lr;

3.2.1 Holonomic displacement subgroups

For a holonomic joint, we consider the left composed distribution D; := T, ; LT;; ) (DZ) C
T P;, which is involutive on P;, and its integral manifold containing e; is LQZ- C P;.

The Lie bracket on the Lie algebra Lie(FP;) is defined by the Lie bracket of left-
invariant vector fields on P; [14]. Therefore, if D; is left-invariant, i.e., Di(r;) =
Te,Lr,(Di(es)),Vr; € P;, involutivity of D; coincides with the closedness of the Lie
bracket on Dj(e;) as a linear subspace of Lie(P;), and Te,Q; = D;(e;) becomes a

Lie sub-algebra of Lie(P;). As the result, the integral manifold of D;, denoted by

Qi, is a unique d;-dimensional connected Lie subgroup of P; with the Lie algebra
Lie(Q:) = Di(ei) [7].

Definition 31. A holonomic joint is called displacement subgroup if the corre-
sponding distribution D; (defined above) on P; is left-invariant. That is, Q;, which
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Table 1 Categories of displacement subgroups

Dim. Subgroups of SE(3)/displacement subgroups
6 SE(3)=S0(3) x R3
free®
4 SE(2) xR
planar+prismatic®
3 SE(2) = SO(2) x R? SO(3) R3 H, x R?
planar ball (spherical) 3-d.o.f. prismatic 2-d.o.f. prismatic +
helical®
2 SO(2) xR R2
cylindrical? 2-d.o.f. prismatic
1 SO(2) R Hp
revolute prismatic helical
0 {e}
fixed®

@ These two subgroups are the trivial subgroups of SE(3).

b The axis of the prismatic joint is always perpendicular to the plane of the planar joint.

¢ The axis of the helical joint is always perpendicular to the plane of the 2-d.o.f. prismatic
joint.

d The axis of the revolute and prismatic joints are always aligned.

is diffeomorphic to the relative configuration manifold QZ , is a connected Lie sub-
group of P;.

We identify different types of displacement subgroups by the connected Lie
subgroups of SE(3), up to conjugation, which are tabulated in Table 1 [7]. From
this table, we can observe that the displacement subgroups consist of the six lower
kinematic pairs, i.e., revolute, prismatic, helical, cylindrical, planar and spherical
joints, and combinations of them. There also exist other types of holonomic joints,
e.g., universal joint and higher kinematic pairs, which are not included in the
category of displacement subgroups.

In this paper, we consider multi-body systems with multi-d.o.f. displacement
subgroups, or joints whose relative configuration manifolds are diffeomorphic to the
(group) multiplication of subgroups of SE(3). That is, @7 = Qi = {y1 - yn,|yx €
Y, CSEB),k=1,-+-,n;} 2 Y1 X XYy, where Y} is a Lie subgroup of SE(3).
Examples of this type of joints are the universal joint and ball bearing joint (with-
out considering the nonholonomic constraints). The relative configuration manifold
of the universal joint is diffeomorphic to the (group) multiplication of two rotations
(SO(2)) about two perpendicular axes. And the configuration manifold of the ball
bearing joint is diffeomorphic to the (group) multiplication of R? and SO(3). From
here on, by holonomic joint we mean a holonomic joint that satisfies the above
assumptions.

3.3 Open-chain Multi-body Systems

Let Bo,---,Bx be N + 1 rigid bodies and Ji,---,Jny be N holonomic joints,
which fall in the category of the joints described in the previous section.

Definition 32. A holonomic open-chain multi-body system MS(N) is the collec-
tion of N + 1 bodies connecting to each other with N holonomic joints, such that
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there exists a unique path between any two bodies of the multi-body system. In an
open-chain multi-body system, bodies with only one neighbouring body are called
extremities.

We can label the bodies in a MS(N) starting from the inertial coordinate
frame (ground), Bo, outwards. That is, we label the bodies connected to Bg by
joints successively as By, -+, Bn, (No < N), and we repeat the same procedure
for all No bodies starting from Bi, e.g., all of the bodies connected to B; by joints
are labelled as Bn,41, -, Bn,+n, and so on. Thus, we have >3, Ny = N. We
number the joints in a M S(N) using the bigger body label, e.g., we label the joint
between B; and Bj, where ¢ > j, as J;. Considering the bodies and joints in an
open-chain multi-body system as vertices and edges of a graph, respectively, we
can encode the topology of the system in an N x (N + 1) matrix. We label this
matrix by GM. The N rows of this matrix correspond to the joints, J1,--- , Jn,
and the columns represent the bodies, By, - -+, By. Row 7 of this matrix consists
of only two non-zero elements corresponding to the two bodies that J; connects.
With the choice of numbering that was explained above, we define GM as

—1if J; connects B;j_1 to B;
GMi; =4 1 fi=j—1
0 otherwise
We have the following properties of the matrix GM.
Corollary 31. Let GM; denote the Gt column of the matric GM.

i) The summation of the columns of the matrix GM is equal to zero, i.e.,

Ni1 J, [0
D OM; =
J=1 Jn |0

it) The summation of the rows corresponding to the edges (joints) that connect the
vortex (body) Bj to By for i > j, has the following form

By -+ Bj-1 Bj Bjty1 -+ Bi—1 B; Biy1 -+ By
[0--- o -10 --- 0 1 0 --- 0}.

Denote the transpose of GM by GMT. For all i,j =1,---,(N + 1)

i) ((GM)T(GM))ii= the number of neighbouring vortices (bodies) connected to
Bi_;.

w) if (GM)T(GM))ij = —1 fori # j, then the vortex (body) B;_1 is connected to
Bj_1, either with the edge (joint) Ji—1 if i > j, or with the edge (joint) J;_1
ifj>i.

Note that, for any i = 2,---, (N + 1), if (GM)T(GM));; = 1 then the body
B;_1 is an extremity. The body corresponding to the k" 1 is called the k" ex-
tremity. Accordingly, the path between By and the Eth extremity is called the k"
branch.
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Corollary 32. Let the row matriz Ph; represent the path between the vertex (body)
B; (Vi=1,---,N) and Bo. The j*" element of Ph; is equal to 1 if the path crosses
the edge (joint) J;. Then we have

By By -+ Bi-1 B; Biy1 -+ By
Phi x GM = [—1 0O--- 0 1 0 --- 0 }
Hence, the matriz of all paths, i.e.,
Phy
Ph = :
Phn
is equal to GT/[il, where GM is the matriz GM when the first column is removed.

For example, consider the following topology of an open-chain multi-body sys-
tem

Bo- B " B B, (3.21)

Ja2
B>
We have

By Bi By Bs B,
Ll-11 0 0 0

5| 0-1100
GM_J3 0—-10 1 0}
Ll 0 0 0-11

Jy Jo Js Ja

P 1 000
P 1100
PhiPhg 1010
P |1 011

Since only displacement subgroups and their combinations are considered, the
relative configuration manifold corresponding to the joint J; is diffeomorphic to
the Lie group Q; := LT?ORT?] 0Qi, where Q; =2 Y1 X - - - x Yy, is defined in Section 3.2
and 7“?,0 € P? is the initial pose of B; with respect to By, for i = 1, ..., N. Note that,

n;—times n; —times

every Q; is a d; dimensional Lie subgroup of Py X --- x Py 2 SE(3) x --- x SE(3),
where d; is the number of degrees of freedom of J;, and D := Zivzl d; is the total
number of degrees of freedom of the holonomic open-chain multi-body system. Any
state of a M S(N) can be realized by ¢ := (g1, ,qn) € Q := Q1 X---XQn, where
Q is the configuration manifold. The manifold Q along with the group structure
induced by Q;’s is also a Lie group. Let 7¢m,i € SE(3) be the initial pose of the
centre of mass of B; with respect to the inertial coordinate frame. Now, we define
the map F: Q — SE(3) X --- x SE(3) =: P by

F(q) := (@1Tem1, q1q2Tem,2, -+ »q1 - qNTem,N)- (3.22)
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Here, if the joint J; is a combination of displacement subgroups, by ¢; we mean
the multiplication of the elements of the subgroups of SE(3), i.e., ¥;’s. This map
determines the pose of the centre of mass of all bodies with respect to the inertial
coordinate frame. Note that, the i*" component of this map consists of the joint
parameters of all joints that connect By to B; in the open-chain multi-body system.

For any motion of the open-chain multi-body system, i.e., a curve t — ¢(t) €
Q, the velocity of the centre of mass of the bodies with respect to the inertial
coordinate frame (absolute velocity) is calculated by p := £ F(q(t)) = TyF(4) €
Tr(q(t))P- Based on Corollary 32, we can explicitly write the tangent map Ty F
using the matrix Ph. First, we substitute the zero elements in the matrix Ph by
6 x 6 block matrices of zero. Then, Vi = 1,--- , N we substitute all of the elements
in Ph; that are equal to 1 by the linear maps in the following form:

T(Rr.,..)T (R, ¢ )T (L1], 00);

where the maps Le: SE(3) — SE(3) and Re: SE(3) — SE(3) are the left and
right translation maps on SE(3), respectively. Here, [, ¢ and [],. ¢» are the prod-
uct of some elements of the relative configuration manifolds Q; C Py & SE(3),
considered as elements of SE(3). In order to specify which joints contribute to
the left or right translation maps, in Ph; we look at the 1s that are on the left
or right of the corresponding element, respectively. If there does not exist any
element equal to 1 on left (right), then we put the argument of the left (right)
translation map equal to the identity element of SE(3). Finally, T4 F is the right
multiplication of the resulting matrix by

Tptr - 0
TqL::Tthl@"'@TQNLN: >
0 - Tyein
where for all ¢ = 1,--- , N, ¢;: Q; — SE(3) is the canonical inclusion map and

Tuvi: TQ; — TSE(3) is the induced map on the tangent bundles.
This simple procedure becomes clear in an example. Consider the topology of
the system in (3.21), we have

TRy,,,, O6x6 Osx6 O6x6
T,F = TRy, ,TRq, TRy, ,TLq, O6x6 06 x6 T
4 TRTcm,:x TRC]:; 06><6 TRT‘cm.:sTLlh 06><6 -

TRT‘cm,4TRQS¢I4 O6x6 TRTcmATRtMTqu TRTcm,4TL<I1¢Z3

4 Lagrangian and Hamiltonian of an Open-chain Multi-body System

As mentioned in Section 2, the Lagrangian of an Open-chain Multi-body System
L: TQ — Ris L(vg) = £ K4(vg,vq) — V(g). In this section, we describe how the
Lagrangian L and subsequently the Hamiltonian H of an open-chain multi-body
system is calculated.

Let h; for ¢ = 1,--- N be the left-invariant kinetic energy metric for the
rigid body B; in the open-chain multi-body system. They induce the metric h :=
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h1@®---® hyn on P, which is left-invariant. The kinetic energy metric of an open-
chain multi-body system is defined by K := T*F(h), where T*F(h) is the pull
back of the metric h by the map F. That is, Vg € Q and Vvg, wq € T;Q we have
Kq(vg, wq) = hF(q) (TyF(vq), TyF(wyq))
= he (TF(q)LF<q)*1(TqF(Uq))7 TF(q)LF(q)*l(TqF(wq))) ) (4.23)
where ¢ is the identity element of the Lie group P and Ly is the left translation

map by an element p € P. Furthermore, we can simplify the above expression by
calculating the following linear map for multi-body systems:

Tr(q)Lr(g-1(TqF)

= (Ads, @@ Ad s )T, (Tu(Lypr o) @& Ty (L o))
Adoy e 0 To(Lgprou) -+ 0
= : - : Tq : : )
0 o Ad s 0 o Ty (Lyr 0 0)

where J;: Lie(P) — Lie(P) is the linear map that is calculated in the following,
similar to T4 F' in the previous section. In the matrix Ph, we start with substituting
the zero elements by 6 X 6 block matrices of zero. Then, Vi = 1,--- | N we substitute
all of the elements in Ph; that are equal to 1 by the linear maps in the form of
Ad([q, ¢,)-1- The map Jy for the example (3.21) can be calculated as

idsg O6x6 0O6x6 O6x6

B Adq;1 ids Osxe6 Osxe
Jq = Adqg—1 Osx6 ids Osxe
Ad(gyq,)-1 Osx6 Ad,-1 ide

In this paper, wherever we consider a non-zero potential energy function it is
induced by a constant gravitational field g in Ag, which is defined in Section 3.2
as the 3-dimensional affine space corresponding to the inertial coordinate frame.
Using the Euclidean inner product of R®, which is denoted by < -,- >, the
potential energy function for an open-chain multi-body system is defined as

N
V(g) =Y < mig,00 — Fi(q)(0:) >, (4.24)

i=1

where m; is the mass of the rigid body B;, and F;(q): A; — Ao is the it" com-
ponent of the map F' that is considered as an isometry between A; and Ag. The
points Op € Ap and O; € A; are the base points for the affine spaces Ap and A;,
where O; is located at the centre of mass of B;.

Subsequently, using the Legendre transformation one can define the Hamilto-
nian H: T*Q — R for an open-chain multi-body system by

H(pq) = (g, FL; " (pg)) — L(FL; " (pg)). (4.25)

Here, we remind the reader that FL: TQ — T*Q is the fibre-wise invertible Leg-
endre transformation induced by the kinetic energy metric, i.e., Yuq,wq € T49Q,




18 Robin Chhabra, M. Reza Emami

(FLg(vq), wq) = Kq(vg,wq). Accordingly, a holonomic open-chain multi-body sys-
tem can be considered as a Hamiltonian mechanical system described by the four-
tuple (T Q, 2can, H, K). Here, the metric K and the Hamiltonian H are defined
by (4.23) and (4.25), respectively.

5 Reduction of Holonomic Open-chain Multi-body Systems

Based on the definition of the kinetic energy metric K for a holonomic open-chain
multi-body system, we immediately find the following symmetry for K.

Theorem 51. For a holonomic open-chain multi-body system, the action of G =
Q1 on Q by left translation on the first component leaves the kinetic energy metric
K invariant. For any g € G we denote the action map by $q: Q — Q such that

Vg = (q1, - ,qn) € Q we have P4(q) = (991,92, "+ ,qN)-

Proof. For any g € G, let T®y: TQ — TQ be the induced action of G on the
tangent bundle. For simplicity, Vg € Q and Yvq € T, Q we respectively write @q(q)
and T;P4(vq) as g- ¢ and g - vg. Then, Yw, € T4 Q we have
Kg.q(g - vg,8 - wyq)
= he ((TF(@q)LF(g-q)*l)(TEl'qF)(g vq), (Tr(g-q)Lr(g-q)-1)(Ta-qaF) (8- wg))
= he ((TF(g-q)LF(gq)*l)(Tq(F 0 @y))(vq), (TF(B-q)LF(gq)*l)(Tq(F © 439))(“’(1))
= he (Tr(g-0) Lr(g-a) ) (Ta(Lig,..-q) © F))(va)
(Tr(gq)Lrg-q)-)(Ta(Lg. g) © F))(wq))
= he (Ttg, )P (a) (L (@)1 © Lig,w ) ) (Ta(Lg, .- g © F))(va)
(T, oy F (@) (LP(g)~1 © Lig, =) (Ta(L(q,-- ) © F))(wq))
= he (Tq(LF(q)*1 0 F)(vq), Tg(Lp(g)-1 © F)(wq))
= he ((TF(q)LF(q)*l)(TqF)(”q)v (TF(q)LF(q)*l)(TqF)(wq)) = Kq(vg, wq).

The first equality is based on the definition of the metric K, and the third and
fourth equalities are true since the following diagram commutes.

Q

O

For the special case of open-chain multi-body systems in space where the poten-
tial energy function is equal to zero, this theorem indicates that the Hamiltonian
of the system is also invariant under the cotangent lifted action of G. In general,
there exist joints for which the potential energy function V' defined by (4.24) is
also invariant under the G-action, e.g., if Q1 corresponds to a planar joint with
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the direction of the gravitational field g being perpendicular to the plane of the
joint. For such first joints, the Hamiltonian of the system H becomes invariant
under the cotangent lifted action of G. From here on, we always assume that V' is
also invariant under the G-action, unless otherwise stated. Accordingly, the five-
tuple (T Q, Q2can, H, K,G) with the group action defined in Theorem 51 is called
a holonomic open-chain multi-body system with symmetry, which is a mechanical
system with symmetry.

For a holonomic open-chain multi-body system with symmetry, the G-action is
basically the left translation on Qj. Therefore, the quotient manifolds Q = Q/G
and Q@ = Q/G, are equal to (Q2 X -+ x Qn) and (Q1/Gu X Q2 X -+ x Qn),
respectively. We remind the reader that Vi € Lie®(G) the subgroup G,, C G is the
coadjoint isotropy group corresponding to G. For any ¢1 € Q1, let g1 € Q1/G,

denote the equivalence class corresponding to ¢i. Indeed, Vg = (q1,--- ,qn) €
Q the quotient maps 7: @ — Q and 7: @ — Q are defined by 7 := 7(q) =
(g2, ,qn) and §:=7(q) = (q1, 92, - ,qn), respectively.

For an open-chain multi-body system with symmetry, we then calculate the
infinitesimal action of £ € Lie(G) on Q at ¢ = (¢1,...,qn) by

fol@)= o (exp(e€)an, gz, an) = (601,00,
e=0

This relation indicates that the map ¢ is the right translation of a Lie algebra

element on Qj, i.e.,
Te, Rq,
0

bq == : . (5.26)
0
Accordingly, based on (2.5) Vpg := (p1, -+ ,pn) € T"Q the momentum map

M: T*Q — Lie*(G) for a holonomic open-chain multi-body system can be deter-
mined by the following calculation,

(Mq(pq),€) = ((p1,- - ,pn), (€q1,0,- -+ ,0)) = (p1,éq1) = (T7, Ry p1, ).
As the result,
M, = ) = [T5, Ry, 0 0]. (5.21)
Denote the block components of the kinetic energy tensor K, which is equal to
the Legendre transformation in the case of Hamiltonian mechanical systems, by
Kij(q)dg; ® dgj for i,j =1,--- , N. Hence, we have FL, = Zﬁ’jzl Kij(q)dg; ® dg;
or equivalently
Kui(q) -+ Kin(q)
FL, = : :
Kni(g) -+ Knn(q)
Lemma 52. For all g € Q we have the following equality:
(Tg, Ly ) (K11(@) (T, L) (T4, L= ) (K12(@)) -+ (Tg, Ly—2)(K1n (@)
(K21(2)(Ta, L) K22(q) e Kan (@)
FLq = . . .

(Rn1@)(To L) Ew@ - Kww@
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where § = 7(q) and K;;(7) = Kij((e1,7)).
Proof. By Theorem 51, Yvg, wq € T,Q and § = 7(q) € Q we have
Kq(vq, wq) = K(el,ﬁ) (T'qqiql—l’l)q7 Tquflwq).

By the definition of Legendre transformation in (2.1), we can rewrite this equation
as

(FLq(va)s wq) = (FL(e, ) (Ty® 1) (va), Ta®yr (wg))

= (T34 FLe, gy (Ta, 1) (va), 0 )

We prove the equality in the lemma, since we have

To®yr =To Ly @idpg = | "

TyLyt 0
ra|’

where idTﬁé is the identity map on T50. OJ

Based on this lemma we calculate the locked inertia tensor Iy = ¢35 0 FLg 0 ¢q
for a holonomic open-chain multi-body system by

I = (7, Ry ) Kni (@) (T, Ryy) = Ad K (@)Ad 1. (5.28)

Consequently, using (2.13) we determine the (mechanical) connection A corre-
sponding to the G-action, for a holonomic open-chain multi-body system:

Ay =17 oMy oFL,

Ki1 -+ Kin
= (Adtn )Fll(q)il(Ad;) [Te*l qu 0--- 0} : ..
Kn1 -+ KNnN
= Adg, [ququl Ku(7) 'Ki2(g) - ?11@_1F1N(§)]
= Ady, [quLq;1 Aq] , (5.29)

where the last line of (5.29) is the consequence of Lemma 52, and the fibre-wise
linear map A: TQ — Lie(G) is defined by the last equality.

According to (2.11), Vg € Q and Yug € Tg@ the horizontal lift map hlg : Tq@ —
T4 Q becomes

= [T Fae]

idp g

where ¢ = (¢1,7).
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Using the decomposition T'Q = H @ V introduced in the previous section, we
then show that Vg € Q the map hory: T4Q — Hq, which maps any vector in the
tangent space T, Q to its horizontal component, is

hory = idr, o — verq = idr,0 — ¢q 0 Aq

Tequl
0
=idro— | . | Ad, [qu L Aq]

0
0+ 0 —Te, Lo, A7
=1 : (5.30)
0:+0 idyg

We consider the principal bundle 71: Q1 — Q1/G, to locally trivialize the
Lie group Q1. Let U, C Q1/G, be an open neighbourhood of €1, where € is the
equivalence class corresponding to the identity element e; € Q1. We denote the
map corresponding to a local trivialization of the principal bundle 71 by X: G X
U, — Q1. This map can be defined by embedding U, in Q1, for example by using
the exponential map of Lie groups. We denote this embedding by Xp: Uy — Q1
such that Vg1 € Q1/G, we have x,(q1) = exp(¢) for some ¢ € C, where C C
Lie(Q1) is a complementary subspace to Lie(G,) C Lie(G). Accordingly, Vh € G,
we define the map X by the equality X((h,q1)) := bxn(q1). It is easy to show that
the map ¥ is a diffeomorphism onto its image [11]. Using this diffeomorphism, any
element ¢ € 7, (U,) C Q1 can be uniquely identified by an element (b,§1) €
Gu X Uy. As the result, we have ¢ = (¢1,9) = (X((h,41)),q). Note that, from
now on, for brevity we write ¢ = (h,q1,q). Accordingly, by Lemma 52, for all
q=(h,¢1,9) € Gu x U, x Q we can calculate A" as

A = Ady [TyLy-1 AL], (5.31)

where § = 7(q) = (¢1,9) € U, x Q and Ag: T;(U, x Q) — Lie(Gy) is calculated
by

A= [RE @ R/ @ B @ B @ - K@ K@) (532

Here, according to the local trivialization that we chose we have the following form
for the tensor FL4

K ((0,0) K29 ((0,9) K ((0.D) - Kig((0,9)
Ky ((0,) K& 9 ((0,9) K39 ((0,@)) - K11\1f/ “((h,))
FL, = | K3y ((5,2) Kf‘/g"«h@) Kxn((0,9) - Kn((0.0) |,

K9 ((60,0) K2/9(0,0) Kna((0,) - Knn((5:0)
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where ¢ = (h,9), 1 = X(h,¢1), and we have the following equalities:

[Klg“((bﬁ)) K29 ((6,9))]
K5 ((0,9) K9 ((0,9))

G G
|: K12 ((ha(})) KlN((hv@) — T(*h,al)% [KIQ(%([LED) . KlN(%(hsz‘))] ,

= Tly,q)X (K11 (X(5,2))) T(o,3) X

Q

K9 ((0,9) -+ K9 ((0.0)
K5 ((0,0) K5/ ((0,9)] [ Ka1(X(5,9))

: : = : Tin,a)X-

K30((0,9) K/ (0,)]  LEn1(X(6,2)

=

G _ G >Q1/G, _ 1/Gu G, _
And, we have K7 () = K7* (e ), K7/ (@) = K79 ((€,8)), and K/ (4) =
Klgi"((eu7 q)) for alli=2,--- ,N. Here, e, € G, is the identity element of the Lie
group G, C G = Q. _

Now, for any h € G, and Vg = (h,q1,9) € Gu x U, x Q, we calculate the
horizontal lift map hl,: T3(U, x Q) — T4 Q for the principal bundle 7: @ — Q by

—(Te, Ly) A% }

hlg = idr, v, ®idy 5

(5.33)

where idr; v, is the identity map on the tangent space Tg, Uy. Let p € Lie* (G) be
a regular value of the momentum map M. For a holonomic open-chain multi-body
system with symmetry, the level set of the momentum map M at p becomes

M () ={pg= (p1,+ ,pn) € T"Q|p1 = T, Rip} CTQ.

Furthermore, we determine ay, = A*p € 2'(Q) in the local trivialization by

TF ~ Ly 5y-1 Tr ~\Lep g)-1
_ ,q1)(h,q1) * — ,q1) 7 (h,q1) o
au(g) = { (h,q )Ag q }Ad(h,ql)“* [ (h,q )Ag @ }Ad(ewa)u7 (5.34)
where (h,q1)"1 = x ! (()Z(b, q~1))_1), by definition. The second equality is true by
the definition of the map Y, and because h € G,,.

Lemma 53. Based on Theorem 27, the inverse of the map ¢, : Mhl/gu — 7:‘@
is defined on [T7(V)]° and in the local trivialization Vpg = (P1,P) € Tz (Up x Q),
N T s Rep.a)-1( )]

>y = (CR R CR DRV ) 5.35

o' 00 = [p LR, o] o3

Proof. First we show that p € [T7(V)]° if and only if p1 = 0. For any p € [T7(V)]°
and V¢ € Lie(G) = Lie(Q1) we have

<(ﬁl7ﬁ)aT%(§Q)> = <¢Z(075175)7§> = <T:1R111 (Oaﬁl)a§> =0.

The first equality is true based on the definition of £g and the local trivialization
that is chosen. The second equality is the consequence of the definition of the map
¢ in (5.26). Since the above equality should hold for every £ € Lie(G) and the
right translation map is a diffeomorphism Vg1 € Q1, we have p1 = 0. Now, based
on (5.34) and the definition of the map ¢, in Theorem 27 we have the desired
equation in the lemma. O
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Based on the definition of ﬁ(ﬁa) = Hy 0 ¢, ' (p7) and the above lemma, we
calculate H on [T7(V)]° using the local trivialization:

IT/~ 1 * — * *
HEg) = 5 (A, g7+ A(AdTe, 7)),
; FL(;i,Zth) (AdZeu,al)Mv P+ A%(Ad?e‘“%)u))> + V(elM (7176)' (536)

Now we are ready to state the main result of this section in the following
theorem.

Theorem 54. Let o € Lie*(G) be a regular value of the momentum map M. A
holonomic open-chain multi-body system with symmetry (T*Q Qcan,H,K G) is
reduced to a Hamiltonian mechanical system ([T%( )1° € T*Q, (Rean :M)|[T7T(V)]U H,K),
where Qc,m is the canonical 2-form on T*Q H is defined by (5.36) and K is a
metric on Q such that Yug, wg € Ty Q we have

Ky(ug, wg) = Kq(hlg(ug), hlg(wg)).

Here, in the local coordinates =), is calculated as follows. Let 5! T*@ — é be the
canonical projection map of the cotangent bundle and let T7rQ (T* é) —TQ be
its induced map on the tangent bundles. For every aq € T*Q and VU, W € X(T~ Q)

we introduce Uz = Ty WQ(Z/{ ;) and wg =Ty TI'Q(W ). In the local trivialization,
we have § = (q1,9) € Uy x Q, g = (t1,u) and Wz = (W1,W):

- ~ oS L 0Ag_ 0AG .
(:M)aq(l/laq,Waq) = <,u, _AdX;L(Zil) ([Agu, Agw] + ( 86‘1111 u— ( 8qq u)w>

+ K A u+ (T, (gil)RX“(ql)fl)(Tq”lXu)(ﬂl) + Adxu(ti)Aﬂj) )
( AZ (Txw@) B @) T xu) (01) + Ady, @) A7 w)] ’
(5.37)

where x,: Uy — Q1 is the embedding that is used to define the local trivialization
map X.- B

Finally, in local coordinates we have X = (al,ﬁ, P) as a vector field on [T7(V)]°.
Hamilton’s equation in the vector sub-bundle [T7(V)]° of the cotangent bundle of
p-shape space reads

A 0H OH oH

L(&'l,ﬁ,ﬁ)(fdﬁ/\ dg—=,) = o ——dp + 90 —=dq1 + 7 ——=dg,

where =y, is calculated by (5.87).
Proof. In order to prove (5.37), we start with (2.19):

(Eﬂ)aq ags qu)

= (1, — Aq([hor (R1(@)), hor (Rl(@))]q) + [Aq (hly (@), Aq (hly ()] ) -
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Using the local trivialization, we write ¢ = (b, 41,q) € G, x Uy x Q, and accordingly
u = (u1,u) and w = (w1,w). By (5.33), the horizontal lift of & and w can be
calculated as
hlo(ig) = (—(Te, Lo) AL, @1, 0),  hly(@g) = (—(Te, Ly) AL, @1, ),
and using (5.30), the terms hor(hl()) and hor(hl(@)) are
~(Ttene) Lo,y Aq, ),
~(Te,.e0) Lv.a)) Aq, ).
Now, by (5.29) we have
Aq(Bly (7)) = Adgy gy (T Ly, (— (T, L) ALT, 1) + Aqu) . (5.38)

Using the definition of the local trivialization map Y we have
Tw,a0 Lv,a) (—(TeuLh)Agﬁ,Tu)

= Tox, @) L@ 1o (Tthml)(—(Teth)A;iﬂ) + (Txu(%)Lb)(TiJ}Xu)(ﬂl))

= Ady, @) (=A58) + (T, @) L@ ) Ta xu) (@),

where x,: Uy — Q1 is the embedding map that is defined using the exponential
map. Therefore, we have

Aq(hlg(iz)) = Ady (*A‘ﬁ + (D@ B @) T xu) (@) + Adxu@)Aq@) ~
Similarly,
Aq(Bly (7)) = Ady (= AL + (T, @) R, o)1) (T i) (@1) + Ady, (3) Aq)
Since for all g € G and £, 7 € Lie(G) we have the equality Adg[¢,n] = [AdgE, Adgn]:
[Aq(hlq (g)), Aq(hlq (7))
= Ady [(*Agﬂ + (Teu@) Bu@ 1) T xu) (Un) + Adx,,@)Aqﬂ) :

(—Af%@ + (D@ Bu@n ) T xu) (1) + Admam“ﬁ)] -

For all ¢ € Q, to calculate the Lie bracket [hor(hl(@)), hor(hl(@))], we express the
vector fields hor(hl(@)) and hor(hl(w)) in coordinates:

~ _ 0 _0
horg (hly(2g)) = (=(T(e, &) L(v.3,)) Aqt) 30,31 g

~ . 0 _ 0
horg (hly(@g)) = (—(Tie,.2) Ly.a1)) Aq0) a06.q0) T
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In any coordinates chosen for Q; (i=2,---,N), G, and Q1/G, we have

[hor (11(3)), hor (51())]

0 0
= [((Tee. 51Lo.59)Aq) =2 (Tie. 5Ly 7)) AqW) ——
[(( (eus€1) (haql)) qu) 3(b,q1) (( (eu,€1) (f),ql)) qw) a(thl)]
0 _ 0 . 0 _0
+ [U%aw%} + [((T(ewa)L(hﬁl))Aﬁw) W’u%}
14] 1o}

— [((Tte,..2) Lv,a1)) Aqm)

ab.3) o7

Based on the definition of the Lie bracket for Lie groups, Vg € Q the first bracket
on the right hand side can be written as

[(Tee,..e0) Ly,a1)) A0)

0 _ 0
30,31 (Tee,.) Lv,1)) Aq0) W]

o 1s]
= ((Teep L)) A7, Aq]) 5=
0

ow _
+ <(T(ewa>L<n,al>)AaW ((T(ewénL(n,an)Aw)) 306,40

o . d
- ((T(eu,'él)L(m))Aam ((T(ewa)L(b,cm)A?lv)) a0

The second bracket is equal to

[ﬂg @g] — %ﬂ g — @w 2
o' 9g  \og )og \og ) oqg
We calculate the third bracket as
1o} 0 ou 0
Tee. e Lya)A0) =—==,0=—] = | =—=<Te. e L(y.5.))Aq0 | =—
(e A59) s 5] = (g5 Wb 470 7
0Az ow 0
— | (Tte. ey Ln.g 2% ) W+ (Tte. ) Ly.5.))Ag—==T | ==~
<( (en,€1) (hv‘h))( aq U‘)w ( (en,€1) (hs‘Zl)) q@”) 3(6,(11)
Similarly, the last bracket can be calculated. Accordingly, using (5.29),

Ag([hor(hl(@)), hor(hl(w))]4)

N O0Az_\ _ 0A=_\
= Ad(y,q,) ([Aqﬂt, Agw] + ( 8qu> - ( aﬁq“> w> .

Finally, knowing that h € G,,, we have the equation for =, in the theorem.
Regarding Hamilton’s equation, we should note that based on Lemma 53 the
restriction of cqn to [TF(V)]° is equal to —dp A dg, in coordinates. O

Corollary 55. Let us assume that G, = G, in the above theorem. A holonomic
open-chain multi-body system with symmetry (T*Q, can, H, K, G) is reduced to

a Hamiltonian mecham’ial system (T*Q, Recan — Eu, H, K), where Qcan 1is the
canonical 2-form on T*Q,

T7(— 1 —_ * — — * —
H(pg) = 5 (.5 + A5 FLE! (15 + Az) ) + Ver,a), (5.39)
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and K is a metric on Q such that Vug, wg € T4Q we have

K?(ﬂﬁ: ﬁ?) =Ky (hlq (ﬂ?)’ hlg (wﬁ) )

Here, in the local coordinates =), is calculated by a simpler formulation. Let mg: T°Q —
Q be the canonical projection map of the cotangent bundle and let Trg: T(T*Q) —

TQ be its induced map on the tangent bundles. For every ag € T*Q and YU, W €
X(T*Q) we introduce Ug = Ta,mgUz,) and Wg = Ta,m5g(Wa,). We have

_ R — o 0Ag_._  ,0A7_.
(S sy W) = (g, ] — (G + (Gww) . (6.40)
q q
Finally, in local coordinates we have X = (q,P) as a vector field on T*Q.

Hamilton’s equation in the cotangent bundle of shape space reads

= OH _  O0H ._
L (—dpAdT— E,) = Tﬁdp + quq,

where =y, is calculated by (5.40).

We show the isotropy groups for different types of displacement subgroups
in Table 2. Note that, for different values of p € Lie*(G), the isotropy groups
are isomorphic to the groups listed in the table, and the isomorphism map is
conjugation by an element of SE(3). In this table we consider the configuration
manifold of the first joint as a Lie sub-group of SE(3) whose Lie algebra is a vector
space isomorphic to so(3) @ R3, where so(3) is the Lie algebra of SO(3). For any
element £ € se(3), we call its component in R® the linear and the one in so(3) the
angular component of ¢, where se(3) denotes the Lie algebra of SE(3).

Table 2 displacement subgroups and their corresponding isotropy groups

displacement Gu (1= (pho, pw)®)

subgroups

Q=g Mo # 0, pw #0 Bow # 0,0 =0 B =0,p0 #0 Hv = Ko =
SE(3) SO(2) xR SE(2) xR SO(2) xR SE(3)
SE(2) xR R2 (SE(2) xR)®  SE(2) xR R? (SE(2) xR)®  SE(2) xR
SE(2) R SE(2) R SE(2)
S0(3) S0(2) SO(3)

R3 R3 R3

Hp x R? R Hp x R? R Hp x R?
SO(2) x R SO(2) xR SO(2) xR SO(2) xR SO(2) xR
R? R? R2

SO(2) S0O(2) SO(2)

R R R

Hy Hy, Hy,

@ f1y is the linear component and p, is the angular component of the momentum.
b If the linear momentum is in the direction of the allowed direction of rotation in the space.
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5.1 Further Symmetries of Open-chain Multi-body Systems

In this subsection we introduce a number of sufficient conditions under which the
kinetic energy metric of a holonomic open-chain multi-body system admits further
symmetries. That is, the system is invariant (in the sense that was presented in the
previous section) under the action of other groups in addition to the one presented
in Theorem 51. We investigate two approaches:

AP1) Identifying symmetry groups due to left invariance of the kinetic energy metric
honP = SE(3)x---x SE(3). See Section 4 for the definition of the metric h.
AP2) Identifying symmetry groups by studying the metric K on Q.

5.1.1 Identifying Symmetry Groups using AP1

As for the approach AP1, we consider the embedding F': @ — P, defined by (3.22),
which determines the pose of the centre of mass of all bodies with respect to the
inertial coordinate frame.

F(q) = (qlrcm,h q192Tcm,2,** ,q1 - qNTcm,N)y

where rem,i (i = 1,---, N) is the initial pose of a coordinate frame attached to
the centre of mass of body B; with respect to the inertial coordinate frame, i.e.,
Bo.

For any element (p1,0, - ,pn,0) € P we define the group action 9'(\‘{1)(“,_
: P — P by

',PN,n)

9%1.0,-»»,”,0)()3) = (p1,0p1, (P1,0P2,0)p2, -+, (P1,0- - PN,0)PN),

where p = (p1,--- ,pn) € P. Since the metric h on P is left-invariant, it is also
invariant under this action. That is, we have T*@{\é’l.of“ ,pN,o)(h) = h. This action
induces an action on Q by the embedding F', if and only if the image of the map F,
i.e., F'(Q), is invariant under the action eV for a Lie subgroup of P. We denote this
Lie subgroup by G1 x - - - Gn, where G; C SE(3) (¢ =1,--- , N) is a Lie subgroup of
SE(3). Then the induced action on Q, denoted by @f\émw % o) Q — Q,is defined
by ¢'E\'£1,0«"' PN,0) = F71 © 9'(/\!3/1,0«'" JPN,0) ° F’ where (pl,O, e ’pN’O) € gl X gN'
Here, F~!: F(Q) — Q is only defined on the image of the map F. In order to
identify the group G1 x - -+ X Gy, we impose the condition that F'(Q) is invariant
under the action of this group. By the definition of the map F' and Qaﬁ’lym”
we have

N
@(Pl,o,"‘ JPN,0) © F(q)

= (p1,0q17cm,1, (P1,092,0)q1G27cm,2, -+ , (P1,0***PN,0)q1 " * - NTem,N)

SPN0)?

The image of F' is invariant under the group action if and only if we have the
following conditions:

P10 € Q1,
a1 'peoq € Qo, Vg1 € Q1

(g1 anv—1)""pno(gr- -qn-1) € On. Vg1 € Q1 and -+ and Vgn—_1 € Qn—1
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Hence, the biggest symmetry group Gi X ---Gy that leaves the kinetic energy
metric K invariant under the induced action & is equal to

Gix - Gn ={ (1,0, ,PN,0)| P10 € Qu,p20 € [ (1Qaqr V),

q1€Q1
PN € ﬂ (g1 gn-1)Qn(q1---qn-1) )} C Q1 x --- x Qn.
(h?_Ql
qN-1€EQN_1

Noteworthy examples of open-chain multi-body systems whose kinetic energy met-
ric K is invariant under the action of this group include but not limited to the
systems with identical multi-degree-of-freedom joints and systems with commuta-
tive joints. In general, this symmetry group may be as small as G1 = Q1, specially
when most of the joints are actuated, since the actuation force can break the
symmetry.

5.1.2 Identifying Symmetry Groups using AP2
For any velocity vector ¢ € T,Q, we denote the left translation of ¢ to Lie(Q) by

—1. —1. —1. .
T= (11, ,7n):=¢q¢ §=(q¢1 ¢1,- - ,qy 4n) € Lie(Q)

Now let ZTZ] (¢, =0,---,N) be the relative twist of the body B; with respect to
Bj and expressed in the coordinate frame attached to B;. In order to determine the
kinetic energy of an open-chain multi-body system we need to have the relative
twist of each body B; with respect to By and expressed in a coordinate frame
attached to the centre of mass of B;, i.e.,

iTl-O(q, T) = Adr;}, (Ad(qz,“q’)—l (Tl) + -+ Adq’—l (7'1'71) + Ti)
for a sequence of bodies from By to B; [7]. Then the kinetic energy of a multi-body
system can be calculated by

N

1 .. 1 i

LKalad) = 2170 R (5.41)
=1

where h; denotes the left invariant metric corresponding to the body B; and he ;
is its restriction to se(3), and || - ||n, , refers to its induced norm on se(3). In the
second approach AP2, first the case of a multi-body system with only three bodies
and two joints is investigated in the sequel, and the result is generalized for the
case of N bodies.

Let G1 = Q1 and G2 C Q2 be a Lie subgroup of Q2, and consider the action
of G1 X G2 by left translation on the configuration manifold Q@ = Q1 x Qo, i.e.,
V(g1,92) € G1 X G2 we have (q1,¢2) — (g1q1,92¢2) for all ¢ = (q1,¢2) € Q. It is
easy to show that under this action the kinetic energy of the system becomes

1

. . 1
iK(Blthsz(h)(glql’ngQ) = 5 (” AdT-;%=1T1 ||}21:,1 + H Ad";,ll,z (Ad(gzw)*”—l + TQ) HIZLE,2> ’

where (g1d1,g2¢2) denotes the left translation of the velocity vector (¢i,42) to
(9191,92¢2). As it was expected, the kinetic energy remains invariant under the
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Gi-action. We define the metric h% := Ad’ 1 (he,2) on se(3) corresponding to the
cem,2

body Ba. Kinetic energy is invariant under the action of G1 X G2 if and only if it is
invariant under the infinitesimal action of all elements w € Lie(G2) at the identity
element e2 € Go. Hence, we have the following necessary and sufficient condition
for the metric K to be invariant under the action of Gi x G2 by left translation:

0

Oe

1
<§ | Ad(exp(—com)an)-1T1 + T2 ||ﬁ,2> = hy(Ad, 1ade (1), Ad, 171 + 72) = 0.
(5.42)

e=0
Vg2 € Q2, V11 € Lie(Q1) and V7o € Lie(Q2)

The largest Lie sub-algebra of Lie(Q2) whose elements satisfy the above condition
is the Lie algebra of G2, and G2 can be identified by integrating this Lie sub-algebra
on Q». Noteworthy examples of the systems that admit such a symmetry group
are any two commutative joints, a planar cart with a rotary joint orthogonal to
it, and a planar cart moving on a rotating disc. With similar calculations, we can
extend this result to the case of open-chain multi-body systems with N+ 1 bodies,
and write the necessary and sufficient condition (5.42) as

-

Il
N

h:(Ad(qZ...(1‘)—1adw(7'1), Ad(qz...q‘)—l (m+-+ Ad(qT“qi)Tg)) =0. (5.43)

Vg€ Qi (i=2,---,N) and V7 € Lie(Q;) (¢=1,---,N)

where hi := Ad’_. (h.;). Note that, the expression in the parentheses in the

second argument of h{ is the relative twist of B; with respect to By and expressed
in a coordinate frame attached to Bi. Based on this condition, we may derive a
sufficient condition for the metric K being invariant under the action of G x G
by left translation.

Proposition 56. For an open-chain multi-body system, the metric K is invariant
under the action of G1 X Ga, as defined above, by left translation, if Vo € Lie(G2)
and V11 € Lie(Q1) we have

adw(’rl) =0.

Similarly, we can derive sufficient conditions for the metric K being invariant
under the action of a group in the form of Gi X --- X Gn by left translation. Here
Gi C Q; is a Lie subgroup of Q; fori =2, --- | N. However, since it is very unlikely
that we have the invariance of K under the action of such a big group, we do not
go through the calculations for this most general case.

Finally, suppose that B;, is an extremity of the open-chain multi-body system.
Consider the action of G;, as a Lie subgroup of Q;, by right translation. The kinetic
energy of the system after the action of an element g;, € G;, becomes

N

1 . . 1 ; 1 ;
S Kan i, dgi) = 5 0 17 17, +5 I Adg 1 Adr, ol I, . (5.44)

=1
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The kinetic energy metric is invariant under this action if and only if it is invariant
under the infinitesimal action of any element p € Lie(G;,) at the identity element.

0

Oe|._

i0

1 i
(31 Ao A P T ) (5.45)

= hgo (adQ(Achm.z‘U 107_’2))7 Ad?‘cm.m 107—2)) =0, (546)
for all i“’rl%, i.e., all admissible relative twists of B;, with respect to the inertial
coordinate frame and expressed in the same frame. The largest Lie sub-algebra of
Lie(Qj;,) that satisfies the above condition is Lie(G;,), and G;, C Q;, is identified
by integrating this Lie sub-algebra on Q;,. Therefore, the kinetic energy K is
invariant under the G; -action by right translation on Q;, if and only if we have
the above condition.

5.2 Further Reduction of Holonomic Open-chain Multi-body Systems
Let N = G2 x ---Gn be a Lie subgroup of Q@ = Qg X --- X 9N, i.e., Gi is a Lie

subgroup of Q; fori=2,---, N. We define the action of N on Q, i.e., $n: Q — Q,
by left translation on Q. For any element n = (n2,--- ,nx) € N we have

Pu(q1,7) = (41,122, - ,nNqN).

Hence, the tangent and cotangent lift of the A -action are

idy 5, 0 00 o
- 0  TgLn, -+ 0 v2
T (vg) = . S : :
0 0 - TynLuyl loN
iy 5, 0 0 B
% =~ ~ 0 T:zqun;1 0 §2
15, @ ®Pn1(Pg) = : : . : :
0 0 o Tivan Lyt | PN

Let us assume that the HamiltoniaanINand the meﬁric~f( of a reduced holonomic
open-chain multi-body system (T Q, 2can — =, H, K) are invariant under the
cotangent and tangent lift of the N-action, respectively. We also have that for all
¢ € Lie(N) the infinitesimal generator of the cotangent lifted action ;.. 5 satisfies
the following conditions:

which indicate that the 2-form =, is basic with respect to the N -action.
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The map corresponding to the infinitesimal A/-action ¢~5§: Lie(N) C Lie(Q) —
TQ is calculated by

0 e 0
~ Tez(th 0’52) 0
¢g = . . : ;
0 TEN(RQN O’[N)
where 7;: G; — Q; is the canonical inclusion map for i = 2,--- | N. As the result,

we define the momentum map My (T Q — Lic*(N) by

07;,(Rg, 0%2) -+ 0
0 0 < T9 (Rgy ©TN)

Now, we have the locked inertia tensor I;: Lie(N) — Lie*(N') and the mechanical
connection corresponding to the N-action Az: T;Q — Lie(N) calculated by

ﬁa = $2~ o ]FZ{?O 5{?,
Az =T" oMz oFLg,

where, IFE(;: Tgé — Tgé is the Legendre transformation induced by the metric
K:
(FLg(vg), wg) := Kg(vg,wg). Vg, wg € T5Q

We use the local trivialization introduced in the previous section to locally trivialize
the principal bundle 0 — @//\/ , and find the principal connection .AV[Z': Tgé —
Lie(N) in the form of (5.29). We may also locally trivialize the principal bundle
N — N /Ny, where Ny is the 1botropy group of N for ¥ € Lie*(N'), and calculate
the mechanical connection A T; Q0 — Lie(Ny) corresponding to the principal
bundle 7: @ — O := Q/Ng using (5.29). Then we calculate the Hamiltonian
H:T*0 — R by the equality

H:=Hgyopy, (5.47)

where Hy: IVIil( /Ny — R is the induced Hamiltonian on the reduced phase
space defined in (2.9), and @y : M (19)/./\[19 — [T7V]° C T*Q is defined in Lemma
53. Here, VC TQ is the vertical vector sub-bundle for the principal bundle Q —
/N Plus, HC TQ is the corresponding horizontal vector sub-bundle of this
principal bundle.
Finally, we are ready to report the main result of this section in the following
theorem, by repeating the reduction procedure detailed in the previous section.

Theorem 57. Let 9 € Lie*(N) be a regular value of the momentum map M.
Under the above-mentioned assumptions, a reduced holonomic open-chain multi-
body system with symmetry (T*Q, an - =, H K ,N') can be further reduced to
a mechanical system ([TWV]O - T*Q an — E - =y, H K) in the sense that




32 Robin Chhabra, M. Reza Emami

was introduced in Theorem 54. Here, an is the canonical 2 form on T™ Q H is
defined by (5.47) and K is a metric on Q such that Vg, Wy € TAQ we have

Kq(tg, ©g) = Kq(hlg(tg), hlz(@g)),

where q := 7(q), and ﬁlq: TqA@ — ﬁfi is the horizontal lift map for the principal
bundle 7: Q Q The 2-form =y € 022 (T* Q) s calculated in the local coordinates
by (5.37). Plus, the basic 2- form =, € Q*(T* Q) (with respect to the N -action,) is
projected to the 2-form =, € Q*(T* Q).

Finally, in local coordinates we have X = (@,9) as a vector field on [TR(V)]°.
Hamilton’s equation in the vector sub-bundle [TR(V)]° of the cotangent bundle of
¥-shape space reads

= -, oH oH .
L(aﬁ)(*dp ANdGg—E, — Ey) = a—ﬁdp + Bitjdq‘

6 Case Study

In this section we study the dynamics of an example of a holonomic open-chain
multi-body system. We derive the reduced dynamical equations of a six-d.o.f. ma-
nipulator mounted on top of a spacecraft whose initial configuration is shown in
Figure 1.

Using the indexing introduced in the previous section and starting with the
spacecraft as B1, we first number the bodies and joints. The following graph shows
the topology of the holonomic open-chain multi-body system.

By

Ja

Bs

We then identify the relative configuration manifolds corresponding to the
joints of the robotic system. The relative pose of Bi with respect to the iner-
tial coordinate frame is identified by the elements of the Special Euclidean group
SE(3). We identify the elements of the relative configuration manifold correspond-
ing to the first joint, which is a six-d.o.f. free joint, by

X
Q= {9 = |FrOIRXOE262) 101 oy 2 e Robx,0y.02 €81,
[000] 1
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X

Fig. 1 A six-d.o.f. manipulator mounted on a spacecraft

where we have

1 0 0
Rx(0x) = |0 cos(fx) —sin(fx)
0 sin(fx) cos(fx) |
cos(fy) 0 sin(fy)]
Ry (0y) = 0 1 0
—sin(fy) 0 cos(fy)

cos(fz) —sin(0z) 0:
Rz(0z) = |[sin(fz) cos(0z) 0O
0 0 1]

The second joint is a three-d.o.f. spherical joint between B> and Bi, and its

corresponding relative configuration manifold is given by

0
0b = { v} = | BxWx)Ry(¥v)Rz(¢z) |1

[000]

0 Yx, Yy, iz €S
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Fig. 2 The coordinate frames attached to the bodies of the robot

The third joint is a one-d.o.f. revolute joint between B3 and Bz, and its relative
configuration manifolds is

1 0 0 0

Q2 _ 7‘2 _ 0 COS(’!/Jl) —sin(dn) lz
3 3 0 sin(¢1) cos(¢p1) 0
0 0 0 1

€ SE@3)| ¢ €S

The forth and fifth joints are one-d.o.f. revolute joints whose axes of revolution
are assumed to be the Xj-axis (i = 4,5). The relative configuration manifolds of
these joints are identified by

1 0 0 c
0 cos(¢b2) —sin(y2) I3

3_ ) 3 _ 1
Qi=q(ri= 0 sin(¢2) cos(yp2) 0 ESE@)|v2 €8 ¢,
0 0 0 1
1 0 0 —c

3 3 |0 cos(vp3) —sin(¢y3) I3 1
@=075= 0 sin(¢3) cos(¢p3) O € SE@)|¥s €8
0 0 0 1
Here, l1,---,l5 are defined in Figure 2, and the distance between Js and Js is
assumed to be 2c.

We assume that the initial pose of By with respect to the inertial coordinate
frame 7"(1),0 is the identity element of SE(3). We have located the coordinate frame
attached to Bj on its centre of mass. Hence, in matrix form we have r(f,o =Tem,1 =
ida, where id4 is the 4 x 4 identity matrix. For the second body, the initial relative
pose with respect to By is

1000
. 01010
207 10010]"

0001
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and we have

100 0
er g = 010l1+l2/2
ems 001 0

000 1

The initial relative pose of Bz with respect to Bs is

1000

2= 01012 ,
’ 0010
0001

and the relative pose of the centre of mass of Bs with respect to the inertial
coordinate frame is

100 0
" 5= 01011+l2+13/2
e 001 0
000 1

Here we have assumed that the centre of mass of B> and B3 are in the middle of
the links. For the forth and fifth bodies we have (i = 4,5)

100 *£c
r?oz 010 I3
’ 001 0|’
000 1
100 c 100 —c
emg = 010L+la+13+1s em s = 010l +la+13+15
em 001 0 yems 001 0 ’
000 1 000 1

where the plus and minus signs correspond to the body B4 and Bs, respectively.

With the above specifications of the system we identify the configuration
manifold of the holonomic open-chain multi-body system in this case study by




36 Robin Chhabra, M. Reza Emami

Q=01 X ---x Qs, where

Ry (0y)Rx (0x)Rz(0z) €SE®)

Q1{q1
Qo= q2 = R
[00

[000]

—-R |l

—= N e 8

€ SE(3)|R = Rx(vx)Ry (Yy)Rz(vz) ¢,

0] 1
o 0 0
_ |0 cos(y1) —sin(w1) 2(11 + l2) sin®(11/2)
=99 = |0 gin(r) costh) (i1 + o) sin(r) | € SEG) (o
0 0 0 1
1 0 0 l
. |0 cos(12) —sin(h2) 2(11 + Iz + 13) sin® (1p2/2)
Qi == 0 sin(tp2) cos(p2)  —(l1 + l2 + 13) sin(th2) €SE@E) ¢
0 0 0 1 |
o 0 0 1
B |0 cos(3) —sin(h3) 211 + l2 + 13) sin® (13 /2)
D5 =90 = 10 Gin(hs) cos(ibs) —(s + I + la) sin(ess) | € FEG)
0 0 0 1

In order to calculate the kinetic energy for the system under study, we need to
5—times

first form the function F': Q@ — P = SE(3) x - -+ x SE(3), which determines the
pose of the coordinate frames attached to the centres of mass of the bodies with
respect to the inertial coordinate frame.

F(q1, -+ ,q5) = (q17cm,1,q192Tem,2, G1G243Tem,3, 41G24394Tem 4, §1G24345Tcm,5)

Using (4.23), we can calculate the kinetic energy metric for the open-chain multi-
body system. In matrix form we have the following equation for the tangent map

Ty(Lpgy-1 F): TyQ — Lie(P)

Ady e 0 Ty (Ly-1001) - 0
Ty(Lpq-F) = S TJa : : ;
0 o AdT;:M5 0 coe Ty (ngl os5)
where we have
ide O6x6 O6x6 O6x6 O6x6
Adq; ids O6x6 Osx6 O6x6
Ty = Ad(qzqa)—l Adqa—l ide  Oexe Osx6 ,

‘Ad(%qs%)*1 Ad(‘]a%)*l Adqzl ids Osxo
Ad(q,zngs)—l Ad(qzqs)’l Adqgl 06><6 ’Lda
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and where idg is the 6 x 6 identity matrix. Let us denote the standard basis for
se(3) by {E1,- -, Es}, such that

(0001 0000 0000
0000 0001 0000
Er=1o000|" 2= (0000 ®*= 0001
10000 0000 0000
[00 0 0 0010 0-100
00-10 0000 1 000
Ea=1010 0[P~ 21000 P~ [0 0 00
100 0 0 0000 0000
Using the introduced joint parameters, we have the following equalities:
(R, (02)RY' (6x) Ry (6y) 03x3
_ cos(fz) cos(0x)sin(fz) O
qu(qul ou)= 03x3 —sin(fz) cos(fx)cos(fz) 0| |’
I 0 —sin(0x) 1
—l1 sin(yy) 0 -l
0 0 0
_ |l1cos(ypy) cos(pz) —lisin(ypz) 0O
Taa (g2 02) = | cosfpy ycos(z)  sinpz) 0 |
cos(vy ) sin(vz) cos(¥z) 0
—sin(¢y) 0 1
Ty(Ly-r013) = [000+12100]",

Tyi(Lgr0ta) =[000 +12+13100]"

Tys(Lyrr015) = [001+12+13100]" .

Note that, Vro € SE(3) that is in the following form (Ro € SO(3) and po =
[po,1,P0,2,p0,3]" € R?)

o = Ro po
O1x3 1 ’
we calculate the Ad,, operator by
_ | Ro poRo
Adry = |:03><3 Ro |’
where
0 —po,3 po,2
po=|po3z 0 —po1
—po,2 Do,1 0
is a skew-symmetric matrix. We choose the standard basis {E1, - , E¢} for se(3).

For this case study, the left-invariant metric h = h1 @ --- @ he on P is identified,
in the above basis, by the following metrics on the Lie algebras of copies of SE(3)
corresponding to the bodies:
m;ids 0O3x3
jei 00
O3x3 | O Jyi O ’
0 0 jz,i

he,i >—
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where ¢ = 1,--- |5, idz and 03x3 are the 3 x 3 identity and zero matrices, respec-
tively, m; is the mass of B;, and (jz,i,Jy,i,J=,i) are the moments of inertia of B;
about the X, Y and Z axes of the coordinate frame attached to the centre of mass
of B;. Note that, we chose this coordinate frame such that its axes coincide with
the principal axes of the body B;. For the body B; (i = 2,--- ,5), since we assume
a symmetric shapes with Y;-axis being the axis of symmetry, we have j i = j .
Finally, in the coordinates chosen to identify the configuration manifold (joint
parameters), we have the following matrix form for FL,

hep -+ 0 Kii(q) -+ Kis(q)
FLy =T (L@ F) | + - 1 | Ta(Lpg—F) = T
0 - hes Ks1(q) -+ Kss5(q)

and the kinetic energy is calculated by
.. 1.7 .
Kq(d:4) = 54" FLag,

where, with an abuse of notation, ¢ is the vector corresponding to the speed of the
joint parameters.

We assume zero potential energy for this holonomic open-chain multi-body
system, Hence, we have the Hamiltonian of the system as

1 _
H(q,p) = §pTFLq 'p,

where p is the vector of generalized momenta corresponding to the joint parame-
ters.

In the following, we derive the reduced Hamilton’s equation for this system,
with the initial total momentum g = [0 p1 0 p2 0 O}T € se*(3) represented in
the dual of the standard basis for se(3). That is, the system has a constant linear
momentum in the direction of Yp, equal to p1, and a constant angular momentum
in the direction of Xo, equal to u2. The kinetic energy (and hence the Hamiltonian)
of the this multi-body system is invariant under the action of G = Q; = SE(3).
The isotropy group corresponding to p is

cos(fy) Osin(fy) — £2sin(fy)

ol 0 T o y
9 =492 | sin(0y) 0 cos0y) —222 sin?(9y /2) |  SFE) (-
0 0 0 1

which is a Lie subgroup of G, and it is isomorphic to SO(2) x R. Now, consider
the action of G = SE(3) by left translation on Q;. Using the joint parameters,
V(xo,y0, 20, 0x,0,0v,0,02,0) € G we have

gb(Ioqyoxznygx,nvey,oﬂz,o)(q) = (Ry(@y’o)Rx (ngO)RZ(OZvO) [‘T Y Z}T + [l‘o Yo ZO]T
, Ry (0y,0)Rx (0x,0)Rz(02,0)Ry (0y)Rx (0x)Rz(0z),7q)
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where § = (Vx, ¥y, ¥z, %1, %2,1%3). We have the principal G-bundle 7#: Q — Q =
Qo X - -+ x Qs, and using the joint parameters its corresponding principal connection
A: TQ — se(3) is defined by (5.29)

z
Ay = By (On)Rx(0)R2(02) |v| Ry 0r)Rx 0x)R202) | 1,11 4q],
03x3 Ry (0y)Rx (0x)Rz(0z)
where we have
/; 0 —z vy
yl=12 0 —=x|,
z —y x 0
R (02)Ry' (0x)Ry " (0y) 033
T — cos(0z) cos(fx)sin(fz) 0
atg T O3x3 —sin(fz) cos(fx)cos(0z) 0| |’
0 —sin(fx) 1
Az = [Ku(@ 'Ki2@ - Ku@ '"Kwv@)],
where Fli(ﬁl: Kii(e1,q) for i =1,---, N, and consequently, the horizontal lift
map hlg: T30 — T4 Q is
Ry (0y)Rx(0x)Rz(0z) 03x3
_ cos(0z) —sin(fz) 0 A
hl, = 03x3 sin(6z)/ cos(0x) cos(0z)/ cos(fx) 0 a0,
sin(fz) tan(fx) cos(fz)tan(fx) 1
idg

where ids is the 6 x 6 identity matrix. Then, we use the principal bundle 7: Q —
Q/G, to introduce the local trivialization of G = Q. The Lie algebra of G, as a

vector subspace of se(3) is spanned by {EQ, %El + E5}7 and a complementary

subspace to this subspace is spanned by {E1, F'3, E4, Eg}. Now, Vg1 € U, C Q1/Gu
we introduce the embedding x,: U, — Q1

(@) = | O B202)

— N o8

O1x3

which identifies the elements of Q1/G,, by elements of an embedded submanifold
of Q1, and in the local coordinates its induced map on the tangent bundles is

1000
0000
0100
Tl?lXM: 0010
0000
0001
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Subsequently, we define the local trivialization of the principal bundle 7: Q —
Q/Gu by X: Gu x Up — Q1

%((KL ‘71)) = bxﬂ(gl)z

and its induced map on the tangent bundles (in the local coordinates) is calculated
as

0 (k2 +2)cos(fy) —zsin(fy) cos(fy) sin(fy) 00
1 0 0 0 0 0
~ 0 —(£2 4 2)sin(y) — z cos(fy) —sin(fy) cos(fy) 0
Toax= |y " 0 0 0 1 0 ’
0 1 0 0 00
0 0 0 0 01

where we use (y, 0y ), (z,2,0x,0z), and (x,y, z,0x,0y,0z) as the local coordinates
for the manifolds G,, Q1/ Gy, and Q1, respectively. Accordingly, we can calculate
the map A%: T(g, 7)(Up x Q) — Lie(Gy) using the following equalities:

g = [RY @R @ K@ Ky @ - K@ KR @)

" Q1/G,
[K (0, @) K™ (0:D)) g & (501 (300,0)) T %

g
Ky ((h,4)) Kgl/g“((h@)

% ((0,3) T ((6,0)
(

et G = Tl X [Kra(X0,) - Kan (10D

And, we have K1 (§) = KV*((e,@)), K2/ 9% () = K29 ((en, §)), and KU (q) =

Kg“((eu,a)) for all i = 2,---,N. We also have the reduced Hamiltonian on
[Ta(V)]*:

AdT g AdT
H(pg) = % Pt A (f{dz qu)“} () 5+ A?Zﬁ‘ii’;) u} . (6.48)
where

0

R%(02)R% (0x) 033 11

0

Adies 0 = | pz 0,5 0x) 0| R0 RS (0) b

z
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In order to calculate the 2-form =), we compute the following matrices in the local
coordinates:

(100 zsin(fx) ]
00z —xzcos(fx)
010 —zsin(fx)
TXu(El)RXu(al)*l(TZIHXH) = 001 0 )
000 —sin(fx)
(000 cos(fx) |
[ =]
_ . _ |Rx(0x)Rz(0z) |0|Rx(0x)Rz(0z)
Ady, @) 2
03x3 " Rx(6x)Rz(02)
Dg: = —A% + [Ty, @) B, @) (Taxu) Ady, @) Ad]
01" [ w1 cos(fx)sin(6z) r
1 1 cos(0x) cos(0z)
Fr o= 0 Ade o = —p1 sin(fx)
R 72 Xu(@) = |y (zcos(0z) — @ sin(fx) sin(0z)) + pa cos(02)
0 —p1(zsin(fz) + xcos(0z) sin(fx)) — p2sin(fz)
0 L —prz cos(Ox)
Finally, we have the following expression for the 2-form =,:
6
= 0A7  0A7 a (4l ak Lk -
Sp = ;Z:lfa << o5, og, ) =D EiR(ALAT — AGAT) | (dg, A dg;)
i<ja= <k
+ 30> (i + el (DL DY — DL DE)) (dav A diy)
i<y i<k
= Z Yo (@)dGyr A dgye,
i<y’
where a,l, k,i,7 € {1,--- ,6}and 4,5 € {1,---,10}. Here, in the local coordinates
Zi: (I7Z7 0X7€ZvwX7¢Y’wZ7wl7¢27w3)7q: (wX7¢Y7¢ZJ/117¢271/)3)7 and for the
standard basis for se(3), i.e., {E1, -, Eg}, we have

6
[E1, Bx] =Y £ Ea,
a=1

6
Fa =Y Faldr)Ba,
a=1

[A1(g) - A§(Q)
Ag=1 1 . ]
1AS(g) - A&(Q)
[D1(q) -+ Afo(Q)
Dg=| : .
D5 (@) -+ DSo(@)
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As the result, in matrix form we have the following reduced equations of motion
for the holonomic multi-body system under study:

-1

0 —-Ti2(Q) - <o =T110(q) oH

. T12(q) 0 —223(q) -+ —7210(9) Era

?]TI . . . 04><6:| 8%
q| = : T - e : —idg o |

P Tio(q) - Yso(q) 0 —TYo10(q) 9

Yh10(q) - - T910(Q) 0 oH

[06x4 ids] O6x6 op

where H is calculated by (6.48).

7 Conclusions and Future Work

In this paper we systematically extended the existing reduction procedures for
multi-body systems to more general cases with multi-d.o.f. holonomic joints and
non-zero momentum, using the symplectic reduction theorem. Using Lie group
theory, we reviewed the notion of displacement subgroups to introduce a class
of multi-d.o.f. joints whose relative configuration manifolds are diffeomorphic to
a subgroup of a Cartesian product of copies of SFE(3). We used the symplectic
reduction theorem in geometric mechanics to express Hamilton’s equation in the
symplectic reduced manifold, for holonomic Hamiltonian mechanical systems. We
then identified the symplectic reduced manifold with the cotangent bundle of a
quotient manifold. Accordingly, we developed a two-step reduction process for the
dynamical equations of open-chain multi-body systems with multi-d.o.f. holonomic
joints and non-zero momentum, for which one symmetry group is indeed the rel-
ative configuration manifold corresponding to the first joint. As for the second
step, we found some sufficient conditions, under which the kinetic energy metric is
invariant under the action of a subgroup of the configuration manifold. Finally, we
derived the reduced dynamical equations in the local coordinates for an example
of a six d.o.f. manipulator mounted on a spacecraft to illustrate the results of this
paper.

The reduction process introduced in this paper can be extended to nonholo-
nomic multi-body systems through the Chaplygin reduction theorem, which will
be the next step of this research.
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