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Abstract—It has been long known that the Euler-Lagrange
dynamical equations of fixed-base manipulators with single-
degree-of-freedom joints can be formulated on Lie groups fol-
lowing exponential joint parameterizations. Whereas, dynamics
of symmetric vehicles can be captured using the Euler-Poincaré
equations on Lie groups, with no need to choose any local
parameterization. We combine these two geometric approaches to
develop a singularity-free Lagrangian formalism for the dynamics
of vehicle-manipulator systems. We consider vehicles whose con-
figuration manifolds are Lie sub-groups of the Special Euclidean
group, encompassing arbitrary base vehicle motions correspond-
ing to, e.g., ball, planar, or free joints. We revisit the Hamilton-
d’Alembert principle for systems on principal bundles to derive
the Lagrange-Poincaré equations for vehicle-manipulators with
possibly symmetry-breaking external applied wrenches. These
equations effectively separate the external (locked-arm system)
and internal dynamics (arm’s motion) by introducing a block-
diagonalized inertia matrix. We then incorporate the exponential
parameterization of manipulators to explicitly formulate the
reduced dynamics on Lie groups. The resulting equations are in
matrix form and can be immediately implemented in simulations
and model-based control strategies. The geometrical significance
of the proposed formalism is further demonstrated via the step-
by-step presentation of a case study.

Index Terms—Vehicle-Manipulator Systems, Lagrange-
Poincaré Equations, Singularity-Free Kinematics, Lie Groups

I. INTRODUCTION

AUTONOMOUS vehicle-manipulator systems (consisting
of a robotic arm mounted on a mobile vehicle) are

uniquely fit to precise manipulation tasks in harsh environ-
ments (see Figure 1). Manipulators provide accurate tracking
and manipulation of a target, while the mobility of their base
allows them to operate in impassable or distant environments
[1]. For example, spacecraft-manipulator systems are currently
used for handling payloads via tele-operation [2] and are pro-
posed for on-orbit servicing [3]. Similarly, aerial, underwater,
and seaborne manipulators have a demonstrated potential for
inspection and servicing [4]–[6]. For the purposes of analysis,
mission planning, and control, researchers have been devel-
oping alternative dynamic models of vehicle-manipulators as
multi-body systems [7], [8], to achieve lucid and rigorous
models that can reflect their constraints and capabilities.

The Special Euclidean (SE(3)) group is a matrix Lie group
that provides a global representation of the pose of a rigid
body [10], [11]. This representation has roots in screw theory,
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Fig. 1: Examples of vehicle-manipulator systems for under-
water recovery missions [9] and in-orbit operations (credit:
Canadian Space Agency)

originated by Ball [12] based on the work of Chasles in
the 1800s [13]. Using the exponential map of the SE(3),
Brockett pioneered the development of the Product Of Expo-
nentials (POE) formula to describe the forward kinematics of
rigid multi-body systems [14]. Having provided its geometric
connection to screw theory, Murray presented a Lie group
framework for the kinematics, dynamics, and control of fixed-
base manipulators in his book [13]. The computational and
analytical advantages of this framework was demonstrated by
Park et al. [15], who integrated the POE into the recursive
Newton-Euler and the Euler-Lagrange dynamical equations of
multi-body systems [16], [17]. It is argued that the resulting
equations reduce the complexity of the model without sac-
rificing its computational efficiency [18]. The POE has also
been incorporated in a variety of robotic applications [19]–
[22], e.g. cooperative robotics [18], parameter identification
[23]–[25], control [26], design, and motion planning [27].
Chhabra and Emami generalized the POE to include a category
of multi-dof joints whose motion can be described via Lie sub-
groups, using the exponential coordinates of the SE(3) [28].
Other researchers have also explored screw systems and Lie
group presentation to study rigid spatial mechanisms [11] and
constrained multi-body chains [29], [30].

General vehicle-manipulators are modelled as moving-base
multi-body systems with a multi-dof joint capturing the mo-
tion of the base vehicle and a chain of rigid bodies in-
terconnected by single-dof joints forming the manipulator.
Dynamic models of vehicle-manipulator systems have been
developed based on the recursive Newton-Euler approach
[6], [31], [32], Lagrangian formalism [33]–[35] and quasi-
Lagrangian formulation [36], [37]. In such models while the
exponential map of the SE(3) can provide a minimal and
global parameterization of the single-dof joints [13], [38],
[39], the exponential coordinates do not globally parametrize
multi-dof vehicles and introduce singularities that are not
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physically meaningful [40]. The matrix representation however
introduces global coordinate-independent parameterization of
the multi-dof joints in the system that avoids singularities or
the double covering problem of Quaternions [41]–[43]. Since
this representation is not necessarily minimal, forming the
dynamical equations based on it is not trivial. Duindam et al.
derived the dynamical equations of systems with general multi-
dof joints by introducing a local diffeomorphism between their
relative configuration manifold and its tangent space, based
on the exponential map of the SE(3) [44], [45]. This work
resulted in the singularity-free Boltzmann-Hamel equations
of open-chain multi-body systems with holonomic and non-
holonomic constraints [46]. Based on these equations, From
et al. developed singularity-free formulations for systems
with multi-dof joints by introducing minimal quasi-coordinates
[47], [48], and applied it to realistic multi-body mechanisms
[46], [49] such as under-water [50] and space manipulators
[51]. Although being explicit, such formulations for vehicle-
manipulator systems do not reveal symmetric properties of the
system and often can be complex and difficult to derive.

Lie groups are instrumental to exploit symmetries in multi-
body systems, by studying invariance of the energy metric
of the system under their actions [52]. Marsden and Ratiu
pioneered the utilization of these symmetries in reduction of
mechanical systems, including Poisson [53] and symplectic
[54], [55] reduction of Hamiltonian systems, and the reduction
of Lagrangian systems [56]. By taking advantage of the
invariance of systems’ Lagrangian on Lie groups, singularity-
free Euler-Poincaré equations are formed that can describe
vehicles’ motion on the SE(3) or its sub-groups [57], [58].
These equations have been employed to develop controllers
for underactuated or fully-actuated systems [59]–[61]. Hamel
combined the Euler-Lagrange and Euler-Poincaré equations
to propose a more general form of the Lagrangian reduction
in a local principal bundle [62], [63], whose work led to
defining the notion of quasi-velocities. Inspired by his work,
Scheurle and Marsden developed the Lagrangian parallel to
the symplectic and Poisson reduction to obtain a set of
reduced Euler-Lagrange equations on the tangent bundle of the
configuration manifold [64], which was later used for optimal
control purposes [65]. Bloch and McClamroch et al. built
upon this formalism in their works on nonholonomic systems
[66], and investigated its integration in and benefits to the
controlled mechanical systems [67]. Cendra et al. showed that
by exploiting symmetries in systems on a Cartesian product
of a Lie group and a manifold, Hamilton’s principle leads
to two sets of equations that combine to form the Lagrange-
Poincaré equations [68], [69]. These equations include a set
of reduced Euler-Lagrange equations on a conventional phase
space e.g., of the manipulator in a vehicle-manipulator, and
a set of Euler-Poincaré equations on the Lie group, e.g.,
representing the vehicle in a vehicle-manipulator [57]. In this
formalism the group elements do not appear in the dynamical
model [57], and hence the equations are singularity-free in the
sense of local parameterization of the Lie group. The reduction
approaches developed by or based on the works of Marsden
and his collaborators, are often formulated in an abstract
language that may conceal physical meanings and may not

immediately provide explicit dynamical equations in matrix
form. Such properties are yet to be rigorously explored in, e.g.,
multi-body systems. Further, these approaches, specifically in
the case of Lagrange-Poincaré equations, can be extended to
handle symmetry-breaking forces, which is neglected in most
treatments.

Directly or indirectly, researchers have investigated use of
the inherent symmetries of vehicle-manipulators to remove the
requirement of parameterizing the base vehicle’s motion and to
form their singularity-free equations of motion. Incorporating
the zero-momentum constraint, Dubowsky and Papadopoulos
effectively removed the vehicle’s motion on SE(3) from the
Lagrangian dynamical equations and introduced the notion of
virtual manipulator to extend the use of fixed-base manipulator
models [34], [70]. In a Hamiltonian setup, Chhabra and Emami
developed symplectic reduction [71] of holonomic and an
extended Chaplygin reduction [72], [73] of nonholonomic
vehicle-manipulator systems to remove the vehicle’s config-
uration from the equations of motion. This framework was
proved beneficial in the trajectory planning and control of
underactuated robotic systems [74], [75]. Taking advantage of
the principal bundle structure of their configuration manifold,
vehicle-manipulators can be modelled by Lagrange-Poincaré
equations. Recently, Mishra et al., without providing enough
physical insight, applied these equations from [57], [76] to
formulate the equations of motion of a free-floating spacecraft-
manipulator [77]. They exploited the block-diagonal property
of the inertia matrix in this formalism to set up a hardware-
in-the-loop simulation of space manipulators [78] and develop
an effective observer for the spacecraft’s motion [79].

This article develops a unified model applicable to any
vehicle-manipulator system, mathematically modeled as a
multi-body system. The multi-body system consists of a multi-
dof vehicle and a serial-link manipulator. Our derivations are
partially based on the Lagrange-Poincaré equations [57] and
on the Hamel equations [64], [80], built upon Lie group
treatments of robot kinematics and dynamics in the works
of Murray et al. [13], Lynch and Park [81], and Bloch [57].
Noteworthy contributions of this paper are summarized as:

1) We provide a singularity-free dynamical model of
vehicle-manipulators on Lie groups, and thus, establish a
numerically stable model that can be smoothly integrated
into model-based nonlinear control logics.

2) Using the Hamilton-d’Alembert principle and the ex-
ponential formalism for multi-body systems, we derive
the forced Lagrange-Poincaré equations that can handle
symmetry-breaking forcing and potential terms.

3) We Provide explicit closed-form matrix equations for
inertia, Coriolis and potential terms in the set of reduced
dynamical equations on Lie groups, where the measurable
quantities of the system are included with respect to the
base vehicle.

The provided dynamical formalism effectively separates the
representations of the external and internal dynamics, and
eliminates the constraint equations for the vehicle. In our
treatment, we ensure conveying the physical interpretations of
all quantities and geometric structures introduced throughout
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the paper that are often left abstract in the existing literature.
The paper is structured as follows: We describe the kinemat-

ics of relative rigid motions and vehicle-manipulator systems
in Section II. The Lagrange-Poincaré treatment of the coupled
vehicle-manipulator systems is rigorously developed in Sec-
tion III, which is accompanied with a step-by-step case study.
Section IV concludes the paper with some remarks.

II. KINEMATICS OF VEHICLE-MANIPULATOR SYSTEMS ON
LIE GROUPS

In this section, we provide the kinematics framework that is
utilized throughout the article to describe the relative motion
of rigid bodies in a moving-base multi-body system.

A. Relative Pose and Velocity

Let us consider two rigid bodies in the multi-body system
indexed by i and j, and attach two orthonormal coordinate
frames to them. A relative pose gji between Body i and Body
j is a map from the coordinate frame attached to Body i to that
attached to Body j that is isometric and orientation-preserving.
The set of all such relative poses forms a smooth manifold that
is called the relative configuration manifold and is denoted by
Gj

i . Fixing a relative pose, say ḡji , there exists an identification
of Gj

i by the space of coordinate transformations of Body
i, Gi

i, through left translation, i.e., Gj
i = ḡjiG

i
i, and one by

Gj
j through right translation, i.e., Gj

i = Gj
j ḡ

j
i . The spaces of

coordinate transformations Gi
i and Gj

j are both isomorphic
to the Special Euclidean group SE(3), as Lie groups, and
their Lie algebras, respectively denoted by gii and gjj , are
isomorphic to se(3) (the Lie algebra of SE(3)). Using the
matrix representation of the SE(3), an element gji ∈ Gj

i can
be represented via

gji =

[
Rj

i
jpji

O1×3 1

]
. (1)

Here, Rj
i ∈ SO(3) is a 3× 3 matrix that describes the orienta-

tion of the coordinate frame attached to Body i relative to that
attached to Body j, and jpji ∈ R3 is the vector of relative linear
position between the origins of the same coordinate frames
expressed in the frame of Body j. The symbol O denotes a
zero matrix with appropriate dimensions. For a curve gji (t) ∈
Gj

i , the relative velocity of Body i with respect to Body j,
ġji (t) =

d
dtg

j
i (t), can be observed in the coordinate frame of

Body i or Body j via left translation iV̂ j
i = gji (t)

−1
ġji (t) ∈ gii

or right translation j V̂ j
i = ġji (t)g

j
i (t)

−1
∈ gjj , respectively.

The hat operator is the vector space isomorphism between R6

and se(3), such that,

V̂ :=

[
ω̃ v

O1×3 0

]
, (2)

for every V = [vT ωT ]T ∈ R6, where ω̃ is an element
of the Lie algebra of SO(3), denoted by so(3), and v ∈ R3,
corresponding to the angular and linear velocities, respectively.
The inverse of the hat operator is denoted by vee, i.e., V̂ ∨ =
V . The tilde operator transforms a vector ω ∈ R3 to a 3 × 3
skew-symmetric matrix, such that ω̃p = ω × p, for every p ∈

R3. Given the curve gji (t), the two relative velocity matrices
are calculated as

iV̂ j
i : =

[
(Rj

i )
T Ṙj

i (Rj
i )

T j ṗji
O1×3 0

]
∈ gii,

j V̂ j
i : =

[
Ṙj

i (R
j
i )

T −Ṙj
i (R

j
i )

T jpji +
j ṗji

O1×3 0

]
∈ gjj .

(3)

In order to change the coordinate frame of observation, one
should use the Adjoint operator (for matrix Lie groups):

j V̂ j
i = gji (

iV̂ j
i )(g

j
i )

−1. (4)

The 6×6 Adjoint matrix which transforms the R6 representa-
tions of the relative velocity vectors from the coordinate frame
i to frame j is

Adgj
i
:=

[
Rj

i (j p̃ji )R
j
i

O3×3 Rj
i

]
, (5)

such that
jV j

i = Adgj
i

iV j
i . (6)

Based on the Lie bracket of the Lie algebras gii and gjj , we
can define the adjoint operator adjV j

i
(·) := [j V̂ j

i , (̂·)]∨, where
in matrix form

adjV j
i
=

[
jω̃j

i
j ṽji

O3×3
jω̃j

i

]
. (7)

B. Constrained Relative Motion

A joint is a mechanism that restricts the relative motion of
body i with respect to body j. It defines a restricted relative
configuration manifold (by an abuse of naming convention)
Qj

i ⊆ Gj
i that contains the permitted relative poses gji of

Body i relative to Body j. In the manipulator, we exclusively
use single-dof joints, whose restricted relative configuration
manifolds are globally parameterized by the exponential map
in the next section. To capture the motion of the base vehicle
we use a class of globally parameterized multi-dof joints that
are described in the following definition.

Definition 1 (Displacement Sub-group). We call a joint dis-
placement sub-group if its restricted relative configuration
manifold Qj

i is a b-dimensional smooth embedded sub-
manifold of Gj

i and satisfies the following properties:

1) Qj
i is mapped to a b-dimensional embedded Lie sub-

group of Gi
i through the left translation map, using a

fixed ḡji ∈ Qj
i . By Qi

i := (ḡji )
−1Qj

i ⊆ Gi
i we denote the

Lie sub-group whose Lie sub-algebra is qii ⊆ gii.
2) Configurations of the joint are uniquely described by

members of a b-dimensional matrix Lie group H (with the
Lie algebra h) via a Lie group isomorphism ι : H → Qi

i,
inducing the Lie algebra isomorphism ι0 : h

∨ → (qii)
∨.

Thus, we have gji (h) = ḡji ι(h) for a joint configuration
h ∈ H . Here, we use the same notation (∧ and ∨) to
identify the isomorphism between Rb and h.

3) Every joint velocity is described by the vector V ∈ h∨ ∼=
Rb, such that the relative velocities are iV j

i = ι0(V) and
jV j

i = Adgj
i (h)

(
ι0(V)

)
, for every gji (h) ∈ Qj

i .
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Note that equivalently this category of joints can be defined
using the right translation map to introduce the Lie sub-group
Qj

j := Qj
i (ḡ

j
i )

−1 ⊆ Gj
j . The dimension b can take values in the

set {1, 2, 3, 4, 6} corresponding to different conjugacy classes
of displacement sub-groups of SE(3) [28]. Such a category
of joints can describe the configuration of a wide variety of
vehicles, e.g., rovers, drones, spacecraft, rail vehicles, etc.,
whose motion can include multiple directions. In this paper,
we do not use any explicit parametrization of H , the joint
configuration manifold of the base vehicle.

1) Parametrization of 1-dof Joints: We exclusively con-
sider 1-dof joints for the manipulator. Their restricted relative
configuration manifold Qj

i corresponds to a single admissible
direction of relative velocity, where Qj

i maps to a 1-parameter
Lie subgroup of Gi

i (Gj
j) through left (right) translation. The

exponential map of the SE(3) is a local diffeomorphism
from an open neighborhood of O4×4 ∈ se(3) to an open
neighborhood of I4 ∈ SE(3), which geometrically corresponds
to a simultaneous rotation about and translation along a fixed
vector in R3, where the ratio of translation to rotation is con-
stant. The symbol I denotes an identity matrix with appropriate
dimensions. The right (left) translation via a fixed relative
configuration ḡji ∈ Qj

i along with the group exponential map
of Gj

j (Gi
i), induced by SE(3), introduces a parametrization of

the relative configuration manifold Qj
i of 1-dof joints through

gji (q) = exp(j ξ̂ji q)ḡ
j
i = e

j ξ̂ji q ḡji ∈ Qj
i , (8)

gji (q) = ḡji exp(
iξ̂ji q) = ḡji e

iξ̂ji q ∈ Qj
i , (9)

where q is the joint parameter, corresponding to the amount
of rotation and/or translation. The twist vector jξji (iξji )
corresponds to the axis of the relative screw motion observed
from the coordinate frame of Body j (Body i). In this paper,
we only work with the right translation map for joint param-
eterization, i.e., (8). The exponential term gives the required
transformation to go from the fixed relative configuration ḡji
to any relative configuration of the joint. The twist vector and
twist matrix for different 1-dof joints can be calculated from
the following equations:

jξji =

[
jνji
jϖj

i

]
& j ξ̂ji =

[
jϖ̃j

i
jνji

O1×3 0

]
, (10)

where jϖj
i ∈ R3 is a unit vector representing the axis of

rotation of the joint observed from Body j, which for prismatic
joints becomes zero. For prismatic joints jνji ∈ R3 is a unit
vector in the direction of translation observed from Body j,
for revolute joints jνji = −jϖj

i × jρji , and for helical joints
jνji = −jϖj

i × jρji + pji
jωj

i . Here, pji is the pitch of the
helical joint, and jρji is the position vector of a point on the
joint axis observed from Body j, commonly considered to
be the position of the joint. The use of Rodrigues’ formula
provides a means for calculating the exponential term in the
parameterization of 1-dof joints [13]. Let ξ̂ ∈ se(3) such that

ξ = [νT ϖT ]T :

eξ̂q =

[
I3 νq

O1×3 1

]
, ∥ϖ∥ = 0

eξ̂q =

[
eϖ̃q (I3 − eϖ̃q)ϖ̃ν +ϖϖT νq
O1×3 1

]
, ∥ϖ∥ = 1

(11)

where the exponential term eϖ̃q ∈ SO(3) corresponds to the
rotation part of the transformation, found from Rodrigues’
formula (∥ϖ∥ = 1) [13]:

eϖ̃q = I3 + ϖ̃sin(q) + ϖ̃2
(
1− cos(q)

)
, (12)

and the term (I3−eϖ̃q)ϖ̃ν+ϖϖT νq corresponds to the linear
translation.

C. Vehicle-Manipulator System Kinematics

A vehicle-manipulator system moving with respect to an
inertial frame I can be modelled as an open-chain multi-
body system. To avoid complexity in notation, we only study
a single-branch arm, i.e., a serial-link multi-body system.
The extension of this work to multi-branch manipulators is
straightforward. A serial-link multi-body system is a collection
of n+1 bodies indexed by {0, 1, · · · , n}, where 0 corresponds
to the base vehicle and n corresponds to the end-effector, and
n + 1 joints between the consecutive bodies labeled by the
succeeding body’s index. We attach reference frames to each
link at its preceding joint and express its inertial parameters
in these local frames. The pose of the base vehicle relative to
the inertial frame I is described by a displacement sub-group
joint (Definition 1) with the b-dimensional restricted relative
configuration manifold QI

0. This manifold is identified via a
Lie group H through the isomorphism ι and the left translation
by a fixed relative pose ḡI0 ∈ QI

0. We choose the initial
relative configuration of the vehicle in a robotic operation as
the aforementioned fixed pose ḡI0 . To avoid singularities due
to parameterization, we will directly work with members of H
when formulating the kinematics and dynamics of the system.
Since we only consider 1-dof joints for the manipulator sys-
tem, the relative configuration manifolds Qi−1

i (i = 1, · · · , n)
of consecutive manipulator links, are parameterized using the
exponential map:

gi−1
i = exp (i−1ξ̂i−1

i qi)ḡ
i−1
i ∈ Qi−1

i (13)

where i−1ξ̂i−1
i is the joint axis defined in (10), qi is the joint

parameter, and ḡi−1
i belongs to Qi−1

i . Let Qm denote the
n-dimensional configuration manifold of the manipulator. A
member of this manifold consists of a set of joint parameters
of the manipulator qm = (q1, · · · , qn) ∈ Qm. We also denote
the (b+n)-dimensional configuration manifold of the vehicle
manipulator by Q := H ×Qm.

1) Forward Kinematics: Given a base vehicle configuration
h ∈ H and a set of joint angles qm ∈ Qm, the relative pose
of each body in the system with respect to a chosen frame
is a smooth map on Q based on the cascade of a sequence
of relative poses between the intermediate bodies. For the
purposes of this study, the reference frame can be the base
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vehicle’s or the inertial frame. The relative pose between Body
i ∈ {1, . . . , n} and the inertial frame is obtained as:

gIi (h, qm) = gI0(h)g
0
i (qm), (14)

where the base vehicle’s configuration is

gI0(h) = ḡI0ι(h) ∈ QI
0, (15)

and based on (13), the product of exponentials formula [13]
leads to

g0i (qm) = eξ̂1q1 . . . eξ̂iqi ḡ0i . (16)

Here, ḡI0 and ḡ0i = ḡ01 · · · ḡi−1
i are respectively fixed poses of

the vehicle relative to I and Body i relative to the vehicle
(commonly chosen to be the initial pose). Also,

ξi := Adḡ0
i−1

i−1ξi−1
i ∈ (g00)

∨, (17)

represent the manipulator’s joints twists expressed in the base
vehicle’s initial coordinate frame. In order to calculate the
kinetic energy of the system, we further require to find the
pose of the center of mass of Body i with respect to I, denoted
by gIcm,i, as:

gIcm,i = gIi ḡ
i
cm,i = gI0e

ξ̂1q1 ...eξ̂iqi ḡ0cm,i, (18)

where ḡicm,i and ḡ0cm,i = ḡ0i ḡ
i
cm,i are the constant pose of the

coordinate frame attached to the center of mass of Body i with
respect to the corresponding joint coordinate frame and the
base vehicle’s frame in its initial configuration, respectively.
The end-effector forward kinematics is then defined for the tip
of the nth link:

gIe (h, qm) = gI0(h)e
ξ̂1q1 ...eξ̂nqn ḡ0nḡ

n
e . (19)

Example 1. Here, the kinematics of a manipulator mounted on
a planar vehicle is formulated. The motion of the vehicle can
be modeled by a 3-dof planar joint as can be seen in Figure 2.
The multi-body system consists of three bodies, a base vehicle
and two links connected via 1-dof revolute joints. The centers
of mass are located at the middle of each body.

x

y

z
x0

y0
z0

z1
y1

x1

ϖ1

z2

x2 ϖ2

l1

2× l0

l2

Fig. 2: Sample Rover-Manipulator’s Geometric Representation

The fixed initial absolute pose of the vehicle joint which is

the same as the pose of its center of mass is

ḡI0 = ḡIcm,0 =

[
I3

[
0 0 l0

]T
O1×3 1

]
. (20)

The configuration of the vehicle is well-described by the
matrix Lie group H = SE(2) ⊂ R3×3, such that

gI0(h) = ḡI0

[ Rh O2×1

O1×2 1

] [
ph
0

]
O1×3 1

 (21)

for every h =

[
Rh ph
O1×2 1

]
∈ H with Rh ∈ SO(2) and

ph ∈ R2. The fixed relative poses of the first link and its
center of mass are

ḡ01 =


0 0 1 0
0 −1 0 0
1 0 0 l0
0 0 0 1

 & ḡ1cm,1 =

 I3

 l1
2
0
0


O1×3 1

 .

(22)
The first arm link is attached to the vehicle at 0ρ01 =[
0 0 l0

]T
, and its corresponding revolute joint generates

rotation about 0ϖ0
1 =

[
1 0 0

]T
, and 0ν01 =

[
0 l0 0

]T
,

resulting in:

ξ1 =


0
l0
0
1
0
0

 , eξ̂1q1 =


1 0 0 0
0 cosq1 −sinq1 l0sinq1
0 sinq1 cosq1 l0(1− cosq1)
0 0 0 1

 .

(23)
Therefore, pose of Body 1 relative to the vehicle is g01(q1) =

eξ̂1q1 ḡ01 . The second link is attached to the first at the fixed
relative linear position 1ρ12 =

[
l1 0 0

]T
in the first link’s

frame, which corresponds to the 0ρ02 =
[
0 0 l01

]T
,where

l01 = l0 + l1. The corresponding revolute joint generates
rotation about 0ϖ0

2 =
[
0 1 0

]T
and 0ν02 =

[
−l01 0 0

]T
:

ξ2 =


−l01
0
0
0
1
0

 , eξ̂2q2 =


cosq2 0 sinq2 −l01sinq2
0 1 0 0

−sinq2 0 cosq2 l01(1− cosq2)
0 0 0 1

 .

(24)
The fixed relative poses corresponding to the second link are

ḡ12 =


1 0 0 l1
0 0 −1 0
0 1 0 0
0 0 0 1

 & ḡ2cm,2 =

 I3

 l2
2
0
0


O1×3 1

 .

(25)
Therefore, pose of Body 2 relative to the vehicle is
g02(q1, q2) = eξ̂1q1eξ̂2q2 ḡ01 ḡ

1
2 . Finally, the end-effector is at the

tip of the last link and is assumed to be oriented in a manner
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to match the orientation of the last link,

g2e = ḡ2e =

 I3

l20
0


O1×3 1

 . (26)

Hence, the end-effector forward kinematics is computed
through gIe (h, q1, q2) = gI0(h)e

ξ̂1q1eξ̂2q2 ḡ01 ḡ
1
2 ḡ

2
e .

2) Differential Kinematics: In this section, we formulate
the absolute velocity of rigid bodies in a vehicle-manipulator
system expressed in the inertial or body frame, using ap-
propriate Jacobian mappings. Let h ∼= q00 ⊆ g00 be the Lie
algebra of H ∼= Q0

0 := (ḡI0)
−1QI

0 ⊆ G0
0 with the isomorphism

ι0 : h∨ → (q00)
∨. We study the differential kinematics of the

system based on the left-trivialization of TH , i.e., elements in
the form (h,V, qm, q̇m) ∈ H × h∨ × TQm. Note that through
ι0, every element of h maps to a body velocity of the vehicle.

Lemma 1. In matrix form, the velocity of Body i relative to
the inertial frame can be expressed in the inertial or Body i
coordinate frame as

IV I
i = IJI

i

[
V
q̇m

]
& iV I

i = iJI
i

[
V
q̇m

]
, (27)

where the inertial and body Jacobian matrices are
IJI

i (h, qm) = AdgI
0(h)

0JI
i & iJI

i (qm) = Ad(g0
i )

−1
0JI

i ,
(28)

and the base Jacobian matrix is
0JI

i (qm) =
[
ι0 ξ1 · · · Ad

eξ̂1q1 ···eξ̂i−1qi−1
ξi O6×(n−i)

]
,

(29)
where the twists ξi (i = 1, . . . , n) have been defined by (17).

Proof . In an open-chain multi-body system, there exists a
distinct path between the inertial frame and each body in the
chain. The velocity of Body i in the multi-body system relative
to the inertial frame is found by adding up all the relative
velocities of neighbouring bodies:

IV I
i = IV I

0 + IV 0
1 + · · ·+ IV i−1

i , (30)

where all the individual relative velocities must belong to
the common Lie algebra (gII)

∨. The relative velocity of
Body i with respect to its neighboring Body i − 1 for all
i ∈ {0, 1, · · · , n} and expressed in the inertial frame is

IV i−1
i = AdgI

0g
0
i−1

i−1V i−1
i , (31)

where the relative velocity i−1V̂ i−1
i ∈ gi−1

i−1 corresponding to
Joint i can be obtained from (3). Substituting (31) in (30),
IV I

i = IV I
0 +AdgI

0

0V 0
1 +AdgI

0g
0
1

1V 1
2 + · · ·+AdgI

0g
0
i−1

i−1V i−1
i .
(32)

Considering the fact that a vehicle-manipulator’s planning and
control system often works within the frame of the base
vehicle, we express the contributions of the manipulator and
the base vehicle in the velocity of Body i ∈ {1, . . . , n} in the
vehicle’s coordinate frame:

IV I
i = AdgI

0
(0V I

0 + 0V 0
i ). (33)

The relative poses corresponding to the joints in the manipu-

lator chain are parameterized using (13):
0V 0

i =0V 0
1 + Ad

eξ̂1q1

(
Adḡ0

1

1V 1
2

)
+

· · ·+ Ad
eξ̂1q1 ···eξ̂i−1qi−1

(
Adḡ0

i−1

i−1V i−1
i

)
=ξ1q̇1 + · · ·+ Ad

eξ̂1q1 ···eξ̂i−1qi−1
ξiq̇i.

(34)

The base’s velocity can be identified via a left translation by
gI0 to the Lie algebra of the base

0V̂ I
0 = (gI0)

−1ġI0 ∈ q00 ⊆ g00. (35)

As QI
0 = ḡI0Q

0
0, each element gI0 and its derivative can be

identified by gI0 = ḡI0g
0
0 and ġI0 = ḡI0 ġ

0
0 for a unique g00(t) ∈

Q0
0, which provides

0V I
0 =

(
(g00)

−1ġ00
)∨ ∈ ι0(h

∨) ⊆ (g00)
∨. (36)

Given the element V̂ ∈ h corresponding to the base vehicle’s
body velocity, we have

0V I
0 = ι0V. (37)

Substituting (37) and (34) into (33), we find
IV I

i (h,V, qm, q̇m) = AdgI
0(h)

(ι0V + 0V 0
i (qm, q̇m)). (38)

By appropriately defining 0JI
i as (29) we arrive at the equa-

tions in the statement of the lemma. ■

Since these velocities will be paired with body inertia
matrices in calculating the kinetic energy, we have represented
the absolute velocity of each body in both the inertial and
body coordinate frames. The body velocity iV I

i is independent
of gI0 ; and hence, the kinetic energy of the system will
be symmetric with respect to the action of the Lie group
associated with the configuration of the base vehicle.

Example 2. We now present the differential kinematics of
the described sample vehicle-manipulator in 1. The constant
isomorphism corresponding to the base vehicle’s velocity is

ι0 =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

 . (39)

The rover’s restricted body velocity is:

V =

0vI0,x
0vI0,y
0ωI

0,z

 . (40)

To calculate the inertial velocities of all bodies in the system,
which are essential for the calculations of the dynamics later
on, we must calculate the spatial and body Jacobians of each of
the bodies, based on (28) and (29). For this, we first calculate
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the base-vehicle Jacobians:

0JI
0 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0

 & 0JI
1 =


1 0 0 0 0
0 1 0 l0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 1 0 0


(41)

0JI
2 =


1 0 0 0 −l1 − l0cosq1
0 1 0 l0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 cosq1
0 0 1 0 sinq1

 (42)

where we have used the Ad
eξ̂1q1

calculated based on (5):

Ad
eξ̂1q1

=


1 0 0 0 l0(1− cosq1) l0sinq1
0 cosq1 −sinq1 l0(1− cosq1) 0 0
0 sinq1 cosq1 −l0sinq1 0 0
0 0 0 1 0 0
0 0 0 0 cosq1 −sinq1
0 0 0 0 sinq1 cosq1

.
(43)

We can similarly find Ad
eξ̂2q2

based on (5):

Ad
eξ̂2q2

=


cosq2 0 sinq2 0 (l01)(cosq2 − 1) 0
0 1 0 (l01)(cosq2 − 1) 0 (l01)sinq2

−sinq2 0 cosq2 0 −(l01)sinq2 0
0 0 0 cosq2 0 sinq2
0 0 0 0 1 0
0 0 0 −sinq2 0 cosq2

.
(44)

Then, the spatial Jacobians can be found:
IJI

0 = AdgI
0

0JI
0 & IJI

1 = AdgI
0

0JI
1 & IJI

2 = AdgI
0

0JI
2

(45)
where, based on (5), we have

AdgI
0(h)

=


[

Rh O2×1

O1×2 1

] [̃
ph
l0

] [
Rh O2×1

O1×2 1

]
O3×3

[
Rh O2×1

O1×2 1

]
 .

(46)
The inertial velocities of each of the bodies are then found
based on (27).

III. VEHICLE-MANIPULATOR SYSTEM DYNAMICS

In this section, we present an intrinsic formulation for
the dynamics of vehicle-manipulator systems evolving on the
Cartesian product of the Lie group H representing the base
motion and the smooth manifold Qm capturing the manipula-
tor’s configuration. In the derivation of the equations we use
the principal bundle structure of the configuration manifold.
The equations are in the form of Lagrange-Poincaré equations
combining a reduced set of Euler-Lagrange equations for the
arm motion on Qm and a set of Euler-Poincaré equations for
the vehicle motion on H . This introduces a decomposition of
the equations of motion into the singularity-free dynamics of
the base vehicle and the manipulator dynamics. The decom-
position also allows for studying the effects of internal and
external forces and their couplings in an elucidated fashion.

The dynamics of the vehicle-manipulator system can be de-
rived through the Hamilton-d’Alembert principle, based on the
applied forces to the system and the Lagrangian L : TQ → R
defined as:

L = K − U, (47)

where K : TQ → R is the total kinetic energy, and U : Q → R
is the potential energy. The kinetic energy of the vehicle-
manipulator system is the sum of the kinetic energies of all
bodies in the chain. Using absolute velocities in the body
coordinate frames:

K(h, ḣ, qm, q̇m) =
1

2
≪i V I

i ,
i V I

i ≫

=
∑ 1

2
iV I

i

T
(iMi)

iV I
i .

(48)

where the body velocity iV I
i is found from (27). The inner

product ≪,≫ is defined based on the left-invariant metrics
iMi : g

i
i → (gii)

∗, where (·)∗ denotes the dual of a vector
space, found from Body i’s inertia properties in the respective
joint coordinate frame:

iMi = Ad−T
gi
cm,i

[
mi × I3 O3×3

O3×3 Ii

]
Ad−1

gi
cm,i

. (49)

Here, mi is the mass of Body i and the 3 × 3 matrix Ii is
the same body’s moment of inertia. The body velocities can
be collected in a vector form

[
(0V I

0 )
T · · · (nV I

n )
T
]T

, and
each substituted from (27) to find

0V I
0

...
nV I

n

 =


0JI

0 (qm)
1JI

1 (qm)
...

nJI
n(qm)


[
V
q̇m

]
. (50)

We introduce the total Jacobian matrix of the multi-body
system J as

J (qm) := diagn
0{Adḡ0

i
}


0JI

0 (qm)
1JI

1 (qm)
...

nJI
n(qm)

 , (51)

where the function diagn0{·} is the block diagonal matrix of
its arguments for i = 0, . . . , n (note that Adḡ0

0
= I6×6).

Therefore, 
0V I

0
...

nV I
n

 = diagn0{Ad−1
ḡ0
i
}J

[
V
q̇m

]
, (52)

and the kinetic energy in (48) becomes

K =
1

2

[
V
q̇m

]T
M(qm)

[
V
q̇m

]
, (53)

for the generalized mass matrix

M(qm) = J T (diagn0{Mi})J . (54)

Here, Mi is the inertial mass matrix of Body i oriented in its
initial configuration:

Mi := Ad−T
ḡ0
i
(iMi)Ad−1

ḡ0
i
. (55)
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Since the resulting kinetic energy is independent of the pose
of the base, we can drop the metric used in the definition of
the Lagrangian L to h∨ × TQm. The potential U can also be
dropped to Qm if it is assumed invariant. We discuss inclusion
of H-dependent potentials in Remark 1.

Lemma 2. For a symmetric potential energy independent
of base configuration (elements of H), the Lagrangian of
a vehicle-manipulator system on TQ drops to a reduced
Lagrangian ℓ0 : h∨ × TQm → R:

ℓ0(V, qm.q̇m) =
1

2

[
V
q̇m

]T
M(qm)

[
V
q̇m

]
− u, (56)

where M(qm) : (h
∨ × TqmQm) × (h∨ × TqmQm) → R is

the reduced kinetic energy metric, given in (54), and u :=
U(I, qm) : Qm → R is the reduced potential energy.

Lemma 3. The total Jacobian defined in (51) can be decom-
posed into a constant matrix Ξ and a configuration-dependent
matrix L:

J (qm) = L(qm)Ξ. (57)

where

Ξ :=

[
ι0 O6×n

O6n×b diagn1{ξi}

]
=

[
ι0 O6×n

O6n×b Ξm

]
, (58)

with each ξi defined in (17). Further,

L(qm) :=


I6 O6×6 · · · · · · O6×6

Ad11 I6 O6×6 · · · O6×6

Ad12 Ad22 I6 · · · O6×6

...
...

...
...

...
Ad1n Ad2n Ad3n · · · I6

 (59)

where

Adji = Ade−ξiqi ···e−ξjqj , i ≥ j ∈ {1, · · · , n}. (60)

Proof. By substituting the body and base Jacobians from (28)
and (29) into the definition of the total Jacobian in (51), we
observe that the resulting J is equal to the product L(qm)Ξ
as in the statement of the lemma. Note that the block diagonal
elements of the matrix L have been substituted by the identity
matrix, since for every i ∈ {1, · · · , n} we have the identity:

Adeξiqi ξi = ξi. (61)

■

The matrix L can be further decomposed into block com-
ponents that will be used in the definition of the mechanical
connection:

L =

[
I6×6 O6×6n

Lm0 Lm

]
(62)

where

Lm0 :=


Ad11
Ad12

...
Ad1n

 & Lm =


I6×6 O6×6 · · · O6×6

Ad22 I6×6 · · · O6×6

...
...

...
...

Ad2n Ad3n · · · I6×6

 .

(63)

It can be observed from the definition of the mass matrix in
(51), (54), and (59) that:

ℓ0 =
1

2

[
V
q̇m

]T [
M0 M0m

MT
0m Mm

] [
V
q̇m

]
− u, (64)

where the block components M0 : h
∨ → (h∨)

∗, Mm : TQm →
(h∨)

∗ and M0m : TQm → (h∨)
∗ are given by:

M0 = ιT0 (M0 + LT
m0(diagn1{Mi})Lm0)ι0, (65)

M0m = ιT0 Lm0
T (diagn

1{Mi})LmΞm, (66)

Mm = ΞT
mL

T
m(diagn

1{Mi})LmΞm. (67)

Definition 2. We define the spatial mechanical connection [57]
AI : H×h∨×TQm → h∨ on the principal bundle H×Qm →
Qm based on the left translation action of H to be the map that
assigns to each (V, q̇m) the corresponding absolute velocity of
the locked system expressed in the inertial coordinate frame:

AI(h,V, qm, q̇m) := Adh(V +A(qm)q̇m), (68)

with the fiber-wise linear mapping A : TQm → h∨ defined as

A(qm) := M−1
0 (qm)M0m(qm). (69)

We define the body mechanical connection A0 : H × h∨ ×
TQm → h∨ on the principal bundle H × Qm → Qm based
on the right action of H as the map that assigns to each
(V, q̇m) the corresponding absolute velocity of the locked
system expressed in the base vehicle’s coordinate frame:

A0(h,V, qm, q̇m) := V +A(qm)q̇m. (70)

Note that A0 is independent of the elements of H . ■

Both mechanical connections are defined on the tan-
gent bundle of the configuration manifold TQ = TH ×
TQm, where the component TH has been conveniently left-
trivialized. The vertical and horizontal sub-bundles of the
connections AI and A0 are the same, and are respectively
identified by:

Verq := {(Ωloc, 0)|Ωloc ∈ h∨} ⊂ h∨ × TqmQm,

Horq := {(V, q̇m)|V +Aq̇m = 0} ⊂ h∨ × TqmQm.
(71)

The corresponding vertical and horizontal projection maps are:

verq(V, q̇m) := (V +Aq̇m, 0),

horq(V, q̇m) := (−Aq̇m, q̇m).
(72)

Let
Ωloc := V +Aq̇m ∈ h∨ (73)

be the absolute velocity of the locked system about its center
of mass expressed in the vehicle’s coordinate frame. These two
projection maps allow the decomposition of motion/dynamics
into two complementary directions, conveniently parameter-
ized by Ωloc and q̇m.

Lemma 4. By the change of variables (V, q̇m) 7→ (Ωloc, q̇m),
the Lagrangian of a vehicle-manipulator system ℓ0 in (64)
transforms into

ℓcm =
1

2

[
Ωloc

q̇m

]T [
M0 Ob×n

On×b M̂m

] [
Ωloc

q̇m

]
− u (74)
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with a block-diagonal mass matrix for expressing the kinetic
energy of the system. Here, we have defined

M̂m := Mm −ATM0A. (75)

Proof. The proof is a straightforward computation. ■

Based on lcm in (74) and Ωloc in (73), we can now introduce
the generalized momentum of the locked system about its
center of mass P ∈ (h∨)

∗ represented in the base vehicle’s
coordinate frame:

P =
∂lcm

∂Ωloc
= M0Ωloc, (76)

= M0V +M0Aq̇m. (77)

Let t 7→ q(t) ∈ Q be a smooth curve. A variation of q(t),
where a ≤ t ≤ b, with fixed end points q0 = q(a) and qf =
q(b) is a smooth map β : [a, b] × R → Q that satisfies the
conditions β(t, 0) = q(t), β(a, ϵ) = q0, and β(b, ϵ) = qf .
This variation defines the vector field

δq(t) = (δh(t), δqm(t)) =
∂β(t, ϵ)

∂ϵ
|ϵ=0 ∈ Tq(t)Q (78)

along the curve q(t), such that δq(a) = δq(b) = 0. The
operator δ always refers to variation of an entity, i.e., its
composition with β and taking the derivative with respect to
ϵ on the curve q(t). Let us define the variation

η̂ := h−1δh ∈ h, (79)

as the left translation of the variation of the curve h(t) ∈ H
to the lie algebra h, with the conditions

η(a, ϵ) = η(b, ϵ) = 0. (80)

A generalized force exerted at the coordinate frame attached
to Body j consists of a linear force fj ∈ R3 and an angular
moment τj ∈ R3, where

[
fT
j τTj

]T ∈ ({gjj}∨)∗ is called
a body wrench. The power generated by a wrench can be
calculated by the pairing with the body twist of the frame
where the wrench is applied

〈[
fT
j τTj

]T
, jV i

j

〉
.

Lemma 5. A vehicle-manipulator system with the Lagrangian
in (47) and the applied force F = (F0, Fm) ∈ T ∗Q ∼= T ∗H×
T ∗Qm satisfies the Hamilton-d’Alembert principle:

δ

∫ b

a

L(q, q̇)dt−
∫ b

a

⟨F, δq⟩ dt = 0, (81)

for variations of the type δq, if and only if ℓcm in (74) satisfies
the Hamilton-d’Alambert principle [57]:

δ

∫ b

a

lcm(Ωloc, qm, q̇m)dt−
∫ b

a

(
⟨Fη, η⟩+ ⟨Fm, δqm⟩

)
dt = 0

(82)
for a variation of the type:

δΩloc = η̇ + [V, η] +Aδq̇m + δAq̇m, (83)

and
Fη = T ∗

I LhF0 ∈ (h∨)∗. (84)

The mapping T ∗
I Lh : T

∗
hH → (h∨)∗ is the dual of the tangent

map corresponding to the left translation at the identity I ∈ H .

Here, Fη is the applied body wrench at the vehicle’s coordinate
frame.

Proof . To show the equivalence of the first terms appearing in
(81) and (82), we need to compute the variation δΩloc induced
on h×TqmQm by the variation δh. This variation can be found
from the chain rule, using the definition in (73):

δΩloc = δV + δ(Aq̇m) (85)

Knowing that for a curve on H the order of the variation
and differentiation operators is interchangeable, i.e. δḣ(t) =
d
dtδh(t), the variation of V is derived from

δV̂ = δ(h−1ḣ) = −(h−1δh)(h−1ḣ) + (h)−1 d

dt
δh

= −η̂V̂ + ˙̂η − dh−1

dt
δh

= −η̂V̂ + ˙̂η + (h−1ḣ)(h−1δh)

= −η̂V̂ + V̂ η̂ + ˙̂η = [V̂, η̂] + ˙̂η = (η̇ + adVη)
∧.

The adV : h → h operator for the Lie algebra h ∼= q00 ⊆ g00 is
defined according to the Lie algebra isomorphism ι0 and (7).
As a result:

δΩloc = η̇ + adVη +Aδq̇m + δAq̇m. (86)

To show the equality of the forcing terms appearing in (81) and
(82), we start with the virtual work ⟨F, δq⟩ corresponding to
the generalized forces F = (F0, Fm) with the components F0

and Fm collocated with the vehicle and the arm joint velocities,
respectively. Therefore,

⟨F, δq⟩ = ⟨F0|δh⟩+ ⟨Fm, δqm⟩ . (87)

Note that ⟨·|·⟩ denotes the pairing between elements of T ∗
hH

and ThH . We define the mapping TILh : h
∨ → ThH as the

tangent map corresponding to the left translation at the identity
I ∈ H . Hence based on (79), TILhη = δh and rewriting the
virtual work:

⟨F0|δh⟩ = ⟨F0|TILhη⟩ = ⟨T ∗
I LhF0, η⟩ = ⟨Fη, η⟩ , (88)

This completes the proof. ■

From a practical perspective, we consider three types of
forces acting on the system: (i) vehicle wrenches collocated
with the base vehicle’s body velocity f0 ∈ (h∨)∗, (ii) arm
forces collocated with the joint velocities fm ∈ T ∗Qm, and
(iii) the external wrench acting at the end-effector fe ∈
({gee}∨)∗. The equivalent body wrench at the vehicle fe,0 and
forces at the joints fe,m due to fe can be calculated based on
the principle of virtual work:〈

fe,
(
(gIe )

−1δgIe
)∨〉

=

〈
fe,

eJI
e

[
η

δqm

]〉
= ⟨fe,0, η⟩+ ⟨fe,m, δqm⟩ ,

(89)

where the Jacobian eJI
e is calculated based on (28) and (29).

The equivalent wrench and forces are computed as:

fe,0 = JT
e,0fe ∈ (h∨)∗ (90)

fe,m = JT
e,mfe ∈ T ∗Qm, (91)
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where the end-effector Jacobians are:

Je,0(qm) := Ad−1
g0
n

Ad−1
ḡn
e
ι0, (92)

Je,m(qm) := Ad−1
g0
n

Ad−1
ḡn
e

[
ξ1 · · ·Ad

eξ̂1q1 ···eξ̂n−1qn−1
ξn
]
. (93)

Thus, the total body wrench collocated with the vehicle
velocity (Fη) is found from:

Fη = f0 + JT
e,0fe ∈ (h∨)∗, (94)

and the total force collocated with the joint velocities is:

Fm = fm + JT
e,mfe ∈ T ∗Qm. (95)

Theorem 1 (Lagrange-Poincaré Equations for Vehicle–
Manipulator Systems). Given a vehicle-manipulator system
with the vehicle configuration h ∈ H , a set of joint angles
qm ∈ Qm, input wrenches f0 ∈ (h∨)∗, fm ∈ T ∗Qm,
and fe ∈ ({qee}∨)∗ that are collocated with the vehicle’s
body velocity, the joint velocities, and the end-effector’s body
velocity, respectively, and the Lagrangian L in (47) that is
invariant with respect to the base vehicle’s configuration, the
singularity-free dynamical equations of the system reads:

−Ṗ + adTVP = f0 + JT
e,0fe (96)

M̂mq̈m + Ĉmq̇m + N̂m +
∂u

∂qm
= fm −AT f0

+ (JT
e,m −ATJT

e,0)fe, (97)

V = (h−1ḣ)∨ = M0
−1(P −AT q̇m) (98)

with the manipulator mass matrix M̂m(qm) defined in (75),
the locked mass matrix M0 defined in (67), and

Ĉm(qm, q̇m) =

n∑
i=1

∂M̂m

∂qi
q̇i −

1

2


q̇Tm

∂M̂m

∂q1

q̇Tm
∂M̂m

∂q2
...

q̇Tm
∂M̂m

∂qn

 (99)

N̂m(qm, q̇m, P ) = AT adTVP −
( n∑

i=1

(
∂A
∂qi

)q̇i

)T

P

+


q̇Tm

∂A
∂q1

T

...
q̇Tm

∂A
∂qn

T

P +
1

2


PT ∂M−1

0

∂q1

PT ∂M−1
0

∂q2
...

PT ∂M−1
0

∂qn

P, (100)

where A is found from (69).

Proof. The equations of motion of a vehicle-manipulator
system with the Lagrangian in (47) between two fixed con-
figurations q0 = q(a) and qf = q(b) under the effect of the
applied force F = (F0, Fm) ∈ T ∗Q can be formed using
the Hamilton-d’Alembert principle for a variation of the type
δq with fixed endpoints, i.e., δq(a) = δq(b) = 0. Based on
Lemma 5, the reduced Lagrangian ℓcm then has to satisfy the
Hamilton-d’Alembert principle in (82) for variations defined
in (83) and forces defined in (87). Using the chain rule,

and recongizing that lcm = kcm(Ωloc, qm, q̇m) − u(qm), the
Hamilton-d’Alembert principle in (82) can be re-written as:∫

(

〈
∂kcm

∂Ωloc
, δΩloc

〉
︸ ︷︷ ︸

(I)

+

〈
∂kcm

∂qm
, δqm

〉
+

〈
∂kcm

∂q̇m
, δq̇m

〉
︸ ︷︷ ︸

(II)

)dt

−
∫

(⟨Fη, η⟩︸ ︷︷ ︸
(III)

+ ⟨Fm, δqm⟩+
〈

∂u

∂qm
, δqm

〉
︸ ︷︷ ︸

(IV )

)dt = 0, (101)

The term (I) in 101 is expanded using the definition of the
variation δΩloc in Lemma 5:

(I) =

∫
(

〈
∂kcm

∂Ωloc
, η̇ + adVη

〉
︸ ︷︷ ︸

(I.A)

+

〈
∂kcm

∂Ωloc
, δ(Aq̇m)

〉
︸ ︷︷ ︸

(I.B)

)dt.

(102)

Calculation of the Euler-Poincaré Equation in (96): The
term (I.A) in (102) is rewritten using the definition of the
momentum P in (76):

(I.A) =

∫
(⟨P, η̇⟩+ ⟨P, adVη⟩)dt

=

∫ (
−

〈
Ṗ , η

〉
+

〈
adT

VP, η
〉)

dt

=

∫ 〈
−Ṗ + adT

VP, η
〉
dt.

(103)

Collecting the terms (I.A) and (III) from (103) and (101)
respectively, expanding the forcing term based on (94), and
noticing the arbitrariness of variation η provides the Euler-
Poincaré formula for the dynamics of the base vehicle as
presented in the left hand side of (96).

Calculation of the Mass Matrix M̂m in (97): The term (II)
in (101) can be expanded via integration by parts:

(II) =

∫ 〈
∂kcm

∂qm
, δqm

〉
dt−

∫ 〈
d

dt

∂kcm

∂q̇m
, δqm

〉
dt

=

∫ 〈
∂kcm

∂qm
− d

dt

∂kcm

∂q̇m
, δqm

〉
dt.

(104)

Using the definition of the kinetic energy and lcm in (74), the
following chain rule can then be utilized in (104) to find that
the mass matrix in (97) is in fact M̂m:

d

dt

∂kcm

∂q̇m
= M̂mq̈m +

d

dt
(M̂m)︸ ︷︷ ︸
Ĉ1

q̇m. (105)

Calculation of the Coriolis Matrix Ĉm in (97): The two parts
of the Coriolis matrix come from the expansion of (104). The
time-derivative of the mass matrix in (105) can be written in
coordinates:

Ĉ1q̇m =
d

dt
(M̂m)q̇m = (

n∑
i=1

∂M̂m

∂qi
q̇i)q̇m. (106)

Remembering the definition of the kinetic energy in (74) and
the definition of the momentum P in (76), the second term in
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(104) can be expanded via a chain rule:

∂kcm

∂qm
=

1

2


q̇Tm

∂M̂m

∂q1

q̇Tm
∂M̂m

∂q2
...

q̇Tm
∂M̂m

∂qn


︸ ︷︷ ︸

Ĉ2

q̇m +
1

2


PT ∂M−1

0

∂q1

PT ∂M−1
0

∂q2
...

PT ∂M−1
0

∂qn

P

︸ ︷︷ ︸
N̂1

. (107)

Collecting the terms Ĉ1 and Ĉ2 in (106) and (107) (the terms
that are dependant on q̇m) completes the calculation of Ĉ in
(99).

Calculation of N̂m in (97): The term (I.B) in (102) is
expanded after substituting the momentum P from (76):

(I.B) =

∫
⟨P,Aδq̇m + δAq̇m⟩ dt

=

∫
(AT ⟨P, δq̇m⟩+ ⟨P, δAq̇m⟩)dt

=

∫
(−

〈
AT Ṗ , δqm

〉
︸ ︷︷ ︸

I.B.1

−
〈
ȦTP, δqm

〉
+ ⟨P, δAq̇m⟩︸ ︷︷ ︸

I.B.2

)dt.

(108)

Ṗ from (96) is susbstituted into the term (I.B.1) in (108):

(I.B.1) = −
∫ 〈

AT (adT
VP − Fη), δqm

〉
dt

=

∫
(
〈
ATFη, δqm

〉
+

〈
−AT adT

VP︸ ︷︷ ︸
N̂2

, δqm

〉
)dt.

(109)

The term I.B.2 in (108) can be expanded as:

(I.B.2) =

∫
(−

〈
{

n∑
i=1

(
∂A
∂qi

)q̇i}TP, δqm

〉

+

〈
P,

n∑
i=1

(
∂A
∂qi

δqi)q̇m

〉
)dt

=

∫
(−

〈
{

n∑
i=1

(
∂A
∂qi

)q̇i}TP, δqm

〉
+
〈
P,

[
∂A
∂q1

q̇m · · · ∂A
∂qn

q̇m
]
δqm

〉
)dt

=

∫ 〈
−{

n∑
i=1

(
∂A
∂qi

)q̇i}TP +


q̇Tm

∂A
∂q1

T

...
q̇Tm

∂A
∂qn

T

P

︸ ︷︷ ︸
N̂3

, δqm

〉
dt.

(110)

The N̂m matrix as presented in (100) is formed by collecting
the terms N̂1, N̂2 and N̂3 from (107), (109) and (110),
respectively.

We collect the terms M̂mq̈m, Ĉmq̇m and N̂m, the force and
potential in the term (IV ) of (101), and the force ATFm in
(109). Then, by noticing the arbitrariness of the variation δqm
and expanding the forces Fη and Fm based on (94) and (95),

this results in the internal dynamics equation in (97). ■

Calculation of the closed-form of Ĉm ∈ Rn×n and N̂m ∈
Rn×1 requires the knowledge of the evolution of the partial
derivatives of the locked mass matrix, the manipulator mass
matrix and the connection A with respect to each of the joint
parameters which are presented in detail in Section III-A.

Remark 1. Note that, for simplicity, the preceding formal-
ism has been developed under the assumption of having a
symmetric potential function u(qm) which is independent of
h ∈ H . Whereas, one can incorporate a symmetry-breaking
potential function u(h, qm) (e.g. gravity potential for an aerial
manipulator or an inclined rover-manipulator) in a similar
manner to the treatment of Fη . This potential can not be
dropped to Qm any more as was done in (56) and adds the
following term to (101) in the proof of (96) and (97):〈

∂u

∂h
|δh

〉
=

〈
T ∗
I Lh

(∂u
∂h

)
, η

〉
=: ⟨fu, η⟩ , (111)

where fu ∈ (h∨)∗. The problem is explicitly computing the
partial derivative of u on an abstract manifold. We argue that
we can instead calculate fu, regardless of the choice of any
local coordinates for H . We use the fact that the configuration
manifold of the vehicle is a matrix Lie group embedded in
a (matrix) vector space. Accordingly, the first term in (111),
which is the directional derivative of the function u along
the vector field δh (defined on the curve h(t) ∈ H), can be
calculated as:〈
∂u

∂h
|δh

〉
=

d

dϵ

∣∣∣
ϵ=0

u(h+ ϵδh, qm) =
d

dϵ

∣∣∣
ϵ=0

u(h+ hϵη̂, qm).

(112)

We choose a basis {ζ̂i ∈ h|i = 1, . . . , b} for h and evaluate
each component of fu in this basis by

ηifui := ηi ⟨fui, ζi⟩ =
d

dϵ

∣∣∣
ϵ=0

u(h+ ηihϵζ̂i, qm), i = 1, . . . , b

where η̂ =
∑b

i=1 ηiζ̂i. Knowing that the right hand side is
linear in ηi:

fui =
d

dϵ

∣∣∣
ϵ=0

u(h+ hϵζ̂i, qm). i = 1, . . . , b (113)

We can now form the vector fu ∈ (h∨)∗ in the chosen basis.
This wrench appears on the right hand side of (96), and the
term AT fu shows up on the right hand side of (97).

A. Closed Form Equations for Configuration-Dependent Ma-
trices

In the singularity-free Lagrange-Poincaré equations in (96)
and (97), there are terms involving ∂M0

∂qi
, ∂M̂m

∂qi
and ∂A

∂qi
.

The purpose of this section is to provide closed-form matrix
equations for such terms in the dynamical equations, using
the exponential parameterization of the manipulator joints. It
can be observed from the definitions (65)- (67), (69), and (75)
that these partial derivatives can be calculated, knowing the
partial derivatives of the matrices Lm0 and Lm with respect
to the joint coordinates qi. It is worth noting that we need
not calculate the derivatives of Ξ and the mass matrices Mi,
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as they only depend on the system’s initial configuration, and
geometry and physical properties of the rigid bodies.

Lemma 6 (Calculation of derivatives of Lm0 and Lm). Based
on (63), the partial derivatives of Lm0 and Lm are calculated
by

∂Lm0

∂qi
=


∂Ad1

1

∂qi
∂Ad1

2

∂qi
...

∂Ad1
n

∂qi

 (114)

∂Lm

∂qi
=


I6×6 O6×6 · · · O6×6
∂Ad2

2

∂qi
I6×6 · · · O6×6

...
...

...
...

∂Ad2
n

∂qi

∂Ad3
n

∂qi
· · · I6×6

 , (115)

where

∂Adkj
∂qi

=


−Adi+1

j adξiAd
k
i j > i ≥ k ∈ {1, . . . , n}

−adξiAd
k
i j = i ≥ k ∈ {1, . . . , n}.

O6×6 Otherwise
(116)

Proof. The proof is straight forward computation presented in
Appendix 1. ■

1) Derivatives of M0 and M0m: From (65) and (66), for
every i = 1, . . . , n we have

∂M0

∂qi
= ιT0 (

∂LT
m0

∂qi
(diagn

1{Mi})Lm0)

+ LT
m0(diagn1{Mi})

∂Lm0

∂qi

)
ι0, (117)

and

∂M0m

∂qi
= ιT0 (

∂LT
m0

∂qi
(diagn1{Mi})Lm0)

+ LT
m0(diagn1{Mi})

∂Lm

∂qi

)
Ξm, (118)

where the partial derivatives of Lm0 and Lm are expressed in
(114) and (115).

2) Derivatives of M̂m and A: From (75), the derivative of
the arm mass matrix with respect to qi is calculated:

∂M̂m

∂qi
=

∂Mm

∂qi
− ∂(ATM0A)

∂qi
, (119)

where

∂Mm

∂qi
= ΞT

m

(∂Lm
T

∂qi
(diagn1{Mi})Lm

+ Lm
T (diagn1{Mi})

∂Lm

∂qi

)
Ξm, (120)

with the partial derivative of Lm found from (115), and

∂(ATM0A)

∂qi
=

∂AT

∂qi
M0A+AT ∂M0

∂qi
A+ATM0

∂A
∂qi

. (121)

Here, it is evident that

∂A
∂qi

= M−1
0

∂M0

∂qi
M−1

0 M0m +M−1
0

∂M0m

∂qi
, (122)

where we used the definition of the principal connection in
(69), and ∂M0

∂qi
and ∂M0m

∂qi
are calculated in (117) and (118),

respectively. The procedure explained in this section, provides
the closed form matrix equations for all of the terms appearing
in the Lagrange-Poincaré equations, in an algorithmic fashion.
This procedure is appropriate for simulation or model-based
control purposes.

Example 3. In this section, we derive the governing dynamical
equations of the sample two-link rover-manipulator system de-
scribed in 1, in an algorithmic fashion. The equations include
a set of second order nonlinear differential equations for the
manipulator and two sets of first order differential equations
for the vehicle motion. The knowledge of inertia properties
of the bodies, the manipulator configuration qm =

[
q1 q2

]T
,

its velocity q̇m =
[
q̇1 q̇2

]T
, the locked momentum of the

system P , and the applied wrenches f0, fu, and fe are used
to derive the dynamics.

First, we set up the constant dynamic properties used to
form the inertia matrices M0 and M̂m. The body inertia
matrices of each of the three bodies in the chain relative to
their respective joint frames are found from (49):

0M0 =

[
m0 × I3×3 O3×3

O3×3 I0

]
(123)

1M1 =


m1 × I3×3

 0 m1l1
2 0

−m1l1
2 0 0
0 0 0


 0 −m1l1

2 0
m1l1
2 0 0
0 0 0

 I1 −

 1
2m1l

2
1 0 0

0 1
2m1l

2
1 0

0 0 0



 (124)

2M2 =


m2 × I3×3

 0 m1l2
2 0

−m1l2
2 0 0
0 0 0


 0 −m2l2

2 0
m2l2
2 0 0
0 0 0

 I2 −

 1
2m2l

2
2 0 0

0 1
2m2l

2
2 0

0 0 0



. (125)

We find the inertia matrices of each body with respect to
the rover’s frame M0, M1 and M2 based on (55) using the
calculated body inertia matrices in (123), (124) and (125), and
the adjoint maps Adḡ0

1
and Adḡ0

2
based on (5):

Adḡ0
1
=


0 0 1 0 l0 0
0 −1 0 0 0 l0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0



Adḡ0
2
=


0 1 0 0 0 −l01
0 0 1 0 l01 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

 . (126)
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The twists corresponding to the joints are collected into:

Ξm :=

[
0 l0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −(l0 + l1) 0 0 0 1 0

]T
.

(127)

Second, we formulate the configuration-dependent matrices
M0, M̂m and A. The adjoint maps Ad11, Ad12 and Ad22,
defined in (60), are found using the adjoint maps Ade−ξ1q1

and Ade−ξ2q2 in (43) and (44):

Ad11 = Ade−ξ1q1 , Ad22 = Ade−ξ2q2 , Ad12 = Ad22Ad
1
1.

(128)
The matrices Lm0 and Lm are calculated based on (63) and
(128):

Lm0 :=

[
Ad11
Ad12

]
& Lm :=

[
I6×6 O6×6

Ad22 I6×6

]
. (129)

Knowing the inclusion map ι0 as presented in (39), the inertia
matrices observed from the rover’s frame M0, M1 and M2,
and the L elements calculated in (129), we can find the inertia
matrix blocks M0, M0m and Mm based on (65), (66), and (67).
The connection A can thus be calculated from M0 and M0m

based on (69). This allows the calculation of the generalized
mass matrix M̂m according to (75).

Third, we collect all forces applied to the system, including
the potential terms (fu,

∂u
∂qm

), the joint torques forming fm,
and the external wrenches applied at the rover and the end-
effector, i.e., f0 and fe, respectively. We present a constant
gravity vector via g⃗ ∈ R4 with its last component being 0,
which is not necessarily in the z0 direction. Therefore, the
potential function of the multi-body system is the sum of the
potentials of all three bodies:

u =

2∑
i=0

ui = u0+u1+u2 := m0

〈
g⃗, gI0(h)

[
0 0 0 1

]T〉
+m1

〈
g⃗, gI0(h)e

ξ̂1q1 ḡIcm,1

[
0 0 0 1

]T〉
+m2

〈
g⃗, gI0(h)e

ξ̂1q1eξ̂2q2 ḡIcm,2

[
0 0 0 1

]T〉
. (130)

The wrench fu corresponding to the derivative of the potential
function with respect to the base pose is computed from (113)
for the standard basis of se(2):

ζ̂1 =

0 0 1
0 0 0
0 0 0

 , ζ̂2 =

0 0 0
0 0 1
0 0 0

 , ζ̂3 =

0 −1 0
1 0 0
0 0 0

 .

Each component takes the following form:

fui =
d

dϵ

∣∣∣
ϵ=0

u0(h+ hϵζ̂i, qm)

+
d

dϵ

∣∣∣
ϵ=0

u1(h+ hϵζ̂i, qm)

+
d

dϵ

∣∣∣
ϵ=0

u2(h+ hϵζ̂i, qm). i = 1, 2, 3 (131)

Note that the only term dependent on h ∈ H in u is gI0 . We

compute the term

Γ1(h) =
d

dϵ

∣∣∣
ϵ=0

gI0(h+ ϵhζ̂1)

=
d

dϵ

∣∣∣
ϵ=0

ḡI0

[ Rh O2×1

O1×2 1

] [
ph + ϵRh

[
1 0

]T
0

]
O1×3 1


= ḡI0

O3×3

[
Rh

[
1 0

]T
0

]
O1×3 0

 ,

and similarly,

Γ2(h) =
d

dϵ

∣∣∣
ϵ=0

gI0(h+ ϵhζ̂2) = ḡI0

O3×3

[
Rh

[
0 1

]T
0

]
O1×3 0

 ,

Γ3(h) =
d

dϵ

∣∣∣
ϵ=0

gI0(h+ ϵhζ̂3) = ḡI0

Rh

[
0 −1
1 0

]
O2×2

O2×2 O2×2

 .

Therefore, for i = 1, 2, 3

fui =m0

〈
g⃗,Γi(h)

[
0 0 0 1

]T〉
+m1

〈
g⃗,Γi(h)e

ξ̂1q1 ḡIcm,1

[
0 0 0 1

]T〉
+m2

〈
g⃗,Γi(h)e

ξ̂1q1eξ̂2q2 ḡIcm,2

[
0 0 0 1

]T〉
.

The derivatives of the potential function with respect to the
manipulator joint angles q1 and q2 in (97) are calculated as:

∂u

∂qm
=

[
∂u
∂q1
∂u
∂q2

]
=

[
∂u1

∂q1
+ ∂u2

∂q1
∂u2

∂q2

]
, (132)

where
∂u1

∂q1
=m1

〈
g⃗, gI0ξ1e

ξ1q1 ḡ0cm,1

[
0 0 0 1

]T〉
,

∂u2

∂q1
=m2

〈
g⃗, gI0ξ1e

ξ1q1eξ2q2 ḡ0cm,2

[
0 0 0 1

]T〉
,

∂u2

∂q2
=m2

〈
g⃗, gI0e

ξ1q1ξ2e
ξ2q2 ḡ0cm,2

[
0 0 0 1

]T〉
. (133)

Given fm, f0, fe, fu, and having calculated A and Je,m in (69)
and (93), we expand the right hand side of the Euler-Poincaré
equation (96) and Euler-Lagrange equation (97), based on (94)
and (95):

Fη = f0 + fu + JT
e,0fe,

Fm +ATFη = fm −AT (f0 + fu) + (JT
e,m −ATJT

e,0)fe.

Last, we find the evolution of the system states qm, q̇m, V
and P . Knowing M0, A and the momentum P and manip-
ulator configuration q̇m, the rover’s restricted body velocity,
V =

[
0vI0,x

T 0vI0,y
T 0ωI

0,z
T
]T

is calculated based on (98):

V = M0
−1(P −AT q̇m). (134)

We calculate the rate of change of the momentum Ṗ using
(96):

Ṗ = ad∗
VP − f0 − (Je,0)

T fe + fu, (135)
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where ad∗
V = adT

V is defined according to (7) as:

adV =

 0 −0ωI
0,z

0vI0,y
0ωI

0,3 0 −0vI0,z
0 0 0

 , (136)

and the jacobian Je,0 is calculated based on (92) using the
adjoint maps Adg0

2
and Adḡ2

e
found in 2 and the inclusion

map ι0 in (39):

Je,0 = Ad−1
g0
2

Ad−1
ḡ2
e
ι0. (137)

The derivatives of the L matrix can be calculated from (114)
and (115):

∂Lm0

∂q1
= −

[
adξ1Ad

1
1

Ad22adξ1Ad
1
1

]
&

∂Lm0

∂q2
= −

[
O6×6

adξ2Ad
1
2

]
(138)

∂Lm

∂q1
= O12×12 &

∂Lm

∂q2
=

[
O6×6 O6×6

adξ2Ad
2
2 O6×6

]
, (139)

where the adjoint maps adξ1 and adξ2 are found based on (7):

adξ1 =

[
0ϖ̃0

1
0ν̃01

O3×3
0ϖ̃0

1

]
& adξ2 =

[
0ϖ̃0

2
0ν̃02

O3×3
0ϖ̃0

2

]
, (140)

where 0ϖ0
1 , 0ϖ0

2 , 0ν01 and 0ν02 have been defined in 1. This
allows the calculation of M0

∂q1
, M0

∂q2
, M0m

∂q1
, M0m

∂q2
, A

∂q1
, A

∂q2
,

Mm

∂q1
and Mm

∂q2
from (120), (121), (122), (117) and (118),

respectively. Next, we can calculate M̂m

∂q1
and M̂m

∂q2
from (119)

based on M0

∂q1
, M0

∂q2
, A

∂q1
, A

∂q2
, Mm

∂q1
and Mm

∂q2
.

Knowing the manipulator configuration qm and velocities
q̇m, and the partial derivatives Mm

∂q1
and Mm

∂q2
, we can calculate

the Coriolis matrix Ĉm from (99):

(Ĉm) =
∂M̂m

∂q1
q̇1 +

∂M̂m

∂q2
q̇2 −

1

2

[
q̇Tm

∂M̂m

∂q1

q̇Tm
∂M̂m

∂q2

]
. (141)

Knowing P and q̇m, and having calculated A, A
∂q1

, A
∂q2

, M0

∂q1
,

M0

∂q2
, and adV , we can find the N̂m matrix from (100). The

evolution of the internal states of the manipulator can thus be
calculated from (97):

q̈m = M̂−1
m

(
fm −AT f0 + (JT

e,m −AT (Je,0)
T )fe

− Ĉmq̇mN̂m − ∂u

∂qm
−AT fu

)
.

IV. CONCLUSION

In this paper, we developed the dynamical equations of
a category of vehicle-manipulator systems based on the
Hamilton-d’Alembert principle. Due to the inherent symmetry
of the kinetic energy, the resulting equations are structured
similar to the Lagrange-Poincaré equations. We conclude the
paper with a number of remarks regarding the advantages of
the proposed formalism.

1) The formalism can capture a wide variety of vehicles
whose configuration is described by an embedded Lie
sub-group of SE(3). To keep the validity of the equations
at every pose of the vehicle, we avoided parameterizing
the vehicle’s configuration manifold. Hence, the equations

are considered singularity-free and can improve the nu-
merical stability of simulations or provide global model-
based laws for controlling vehicle-manipulator systems.

2) The equations were derived in the fashion that can
incorporate any forcing functions naturally appearing in
robotic operations and can handle symmetry-breaking po-
tential functions, without the requirement to parameterize
the vehicle’s motion.

3) We adopted the geometric exponential formalism to study
the manipulator’s motion on Lie groups. This provided us
with the ability to present the complete set of differential
equations in matrix form.

4) The resulting model is ready to be applied without the
need for extensive knowledge of the underlying geometry,
since tangible physical explanations of all variables and
geometric structures and explicit closed-form equations
for dynamic matrices were provided.

Throughout the paper, we were committed to the practical
consistency of the model with real-life robots by formulating
the kinematic properties with respect to the vehicle and
accompanying the derivation with a step-by-step case study.

The effectively separated external and internal dynamics
in the proposed formalism makes it suitable for hardware-
in-the-loop simulation of moving-base manipulators, which
is one of the future directions of our current research. We
propose to further extend the model to incorporate the effects
of a non-inertial reference frame, e.g, spacecraft-manipulators
operating relative to a moving orbital frame. We also put
forward the idea to exploit the independence of dynamics from
the vehicle’s pose to develop singularity-free full-pose output-
tracking control laws on Lie groups.
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APPENDIX

Appendix 1. The derivative of each adjoint map Adkj at the
identity with respect to qi is found via

∂

∂qi
Adkj (.) = Adi+1

j [Adki , ξi], (142)

or
∂

∂qi
Adkj (.) = −Adi+1

j adξiAd
k
i (.), (143)

where adξi is found from (7) and the terms involving Ad•• are
defined in (60).

Taking the derivative of Adkj in (143) when j > i ≥ k:

∂Adkj
∂qi

=
∂

∂qi
Ade−ξjqj ···e−ξkqk

(.)

=
∂(e−ξjqj · · · e−ξkqk(.)eξkqk · · · eξjqj )∨

∂qi
=

(
e−ξjqj · · · e−ξi+1qi+1(−ξi)

e−ξiqi · · · e−ξkqk(.)eξkqk · · · eξjqj

+ e−ξjqj · · · e−ξkqk(.)

eξkqk · · · eξiqi(ξi)eξi+1qi+1 · · · eξjqj
)∨

=
(
e−ξjqj · · · e−ξi+1qi+1(
(−ξi)e

−ξiqi · · · e−ξkqk(.)eξkqk · · · eξiqi

+ e−ξiqi · · · e−ξkqk(.)eξkqk · · · eξiqi(ξi)
)

eξi+1qi+1 · · · eξjqj
)∨

= Ade−ξjqj ···e−ξi+1qi+1

((−ξi)e
−ξiqi · · · e−ξkqk(.)eξkqk · · · eξiqi

+ e−ξiqi · · · e−ξkqk(.)eξkqk · · · eξiqi(ξi))∨

= Ade−ξjqj ···e−ξi+1qi+1

((−ξi)Ade−ξiqi ···e−ξkqk (.)

+ Ade−ξiqi ···e−ξkqk (.)(ξi))
∨

= Ade−ξjqj ···e−ξi+1qi+1 [Ade−ξiqi ···e−ξkqk (.), ξi]

= Adi+1
j [Adki (.), ξi].

(144)

By using the definition of adξi as

adξi(.) = [ξi, (.)] = −[(.), ξi] (145)

one can find:
∂

∂qi
Adkj (.) = −Adi+1

j adξiAd
k
i (.) j > i ≥ k ∈ {1, . . . , n}.

(146)
On the other hand, when in (143) we have j = i ≥ k:

∂Adkj
∂qi

=
∂

∂qi
Ade−ξjqj ···e−ξkqk

(.)

=
∂(e−ξjqj · · · e−ξkqk(.)eξkqk · · · eξjqj )∨

∂qi
=

(
(−ξi)e

−ξiqi · · · e−ξkqk(.)eξkqk · · · eξjqj

+ e−ξjqj · · · e−ξkqk(.)eξkqk · · · eξiqi(ξi)
)∨

= ((−ξi)Ade−ξiqi ···e−ξkqk (.)

+ Ade−ξiqi ···e−ξkqk (.)(ξi))
∨

= [Ade−ξiqi ···e−ξkqk (.), ξi]

= [Adki (.), ξi]

= −adξiAd
k
i (.) j = i ≥ k ∈ {1, . . . , n}.

(147)
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