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Decentralized simple adaptive control of nonlinear systems
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SUMMARY

Recently, the passivity results for linear time-invariant systems were successfully extended to nonlinear and
nonstationary systems, thus guaranteeing stability of adaptive control of nonlinear square systems. Based
on this theoretical development, this paper presents the development of a new class of direct adaptive con-
trollers, which employ a new decentralized adaptation law mechanism that is developed from the simple
adaptive control technique. The resulting direct adaptive control methodology is referred to as decentralized
simple adaptive control. A simplification of this new control algorithm, referred to as decentralized modified
simple adaptive control, is also presented. In addition, it is shown that both control methodologies can be
modified to avoid divergence in practical situations, where the trajectory tracking errors cannot reach zero.
Using Lyapunov direct method and Lasalle’s invariance principle for nonautonomous systems, the formal
proof of stability is established. As well, a numerical simulation study for a trajectory tracking problem by
a rigid-joint manipulator is presented to illustrate the new adaptive control approaches. Copyright © 2013
John Wiley & Sons, Ltd.
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1. INTRODUCTION

A well-known result in control theory that plays an important role in guaranteeing stability in adap-
tive control is the notion of passivity, which requires the plant be strictly passive (SP). For linear
time-invariant (LTI) systems, this stability condition is equivalent to requiring the input–output
transfer function be strictly positive real. However, as most real-world systems are not inherently
SP, it is known that this condition can be mitigated for LTI systems for which any constant output
feedback gain (unknown and not needed for implementation) could render the (fictitious) closed-
loop system SP. Such systems that are only separated from strict passivity by a constant output
feedback have been called almost strictly passive (ASP) and their transfer function almost strictly
positive real [1]. Many works have attempted to clearly define what classes of systems satisfy the
ASP conditions. Although some early results and proofs had been obtained in the Russian literature
for both SIMO and MIMO systems (see translations in [2,3]), these basic conditions, despite having
been recalled in [4–6], have remained unknown to the Western literature. Since then, many Western
works have independently reformulated the ASP conditions [7,8]. See introductions by Fradkov [9]
and Barkana [10] for a complete historical survey on the subject. It is now well known that the ASP
conditions required in order to guarantee stability with adaptive control are equivalent to requiring
that a square LTI system with state-space realization fA,B ,C g be a minimum phase and the product

*Correspondence to: Steve Ulrich, Department of Mechanical and Aerospace Engineering, Carleton University,
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.

†E-mail: steve.ulrich@carleton.ca

Copyright © 2013 John Wiley & Sons, Ltd.



DECENTRALIZED SIMPLE ADAPTIVE CONTROL 751

CB be a positive definite symmetric (PDS). A recent algebraic proof of this important statement can
be found in [10].

Over the years, a variety of direct adaptive control laws have been developed to address the prob-
lem of time varying the gains of a controller so that the plant closed-loop characteristics match those
defined by a reference model. However, most of the research in this area is based on the assumption
that prior knowledge of the unknown plant to be controlled is available, and/or requires the plant
to be of the same order as the reference model, and/or requires full-state feedback or observers. To
mitigate these stringent requirements, the simple adaptive control (SAC) approach was developed
by Sobel et al. [11], Barkana et al. [12] and Barkana and Kaufman [13]. Using the ASP results,
the stability of the SAC technique for square LTI systems was rigorously established by Kaufman,
Barkana and Sobel [14]. This direct adaptive output feedback method is based upon the command
generator tracker methodology [15] and requires the plant to track the ideal model, which is an ideal
representation of the plant only as far as its outputs represent the desired output behavior of the
plant. For this reason, this direct adaptive control methodology has been successfully applied for the
control of number of large-scale systems without requiring large-order adaptive controllers.

However, although greatly reduced when compared with standard model following techniques, in
some applications the SAC technique may still present a design complexity issue arising from the
large number of parameters and coefficients to select. In fact, the calculation of the control input
involves a stabilizing output feedback control gain and two feedforward control gains, each calcu-
lated as the summation of a proportional and an integral control gain component. To mitigate this
design complexity, the modified simple adaptive control (MSAC) idea proposed by Ulrich and de
Lafontaine [16] exploited the concept that only the stabilizing output feedback gain is absolutely
necessary to guarantee the stability of the closed-loop system. In other words, with MSAC, the
feedforward control gains are ignored.

In spite of successful implementations of SAC/MSAC, the conditions required to guarantee the
stability of these adaptive algorithms for nonlinear systems remained unclear for a long time. This
is why, until recently, the SAC/MSAC adaptive algorithms were designed ad hoc and validated by
simulations. Then, recently, the almost strictly positive real results for LTI systems were success-
fully extended to nonlinear and nonstationary systems by Barkana [17], which ensured the stability
of nonstationary control applied to nonlinear square systems. In addition, this work demonstrated
the stability and applicability of a reduced SAC method that used only the integral component of
the time-varying control gains.

Based on this theoretical breakthrough, this paper presents the theoretical development of two
novel SAC-based control schemes for nonlinear systems: (1) a decentralized simple adaptive con-
trol (DSAC) methodology and (2) a decentralized modified simple adaptive control (DMSAC)
methodology. In these two control techniques, only the diagonal of the time-varying gain matri-
ces are considered. This way, the computational requirements of the new approaches are decreased
in comparison with SAC/MSAC, thus facilitating real-time implementation. Compared with central-
ized control approaches, the computational efficiency advantage of decentralized control techniques
make them attractive for applications in complex dynamical systems, such as nonlinear multilink
space robot manipulators. The stability of the developed approach for general nonlinear square ASP
systems is also formally established in the sense of Lyapunov. In addition, an illustrative example to
compare the tracking performance of the DSAC and DMSAC laws for robot manipulator systems
is provided.

2. SYSTEM AND DEFINITIONS

Consider a class of m�m nonlinear square systems described by the following formulation:

Px.t/D A.x, t /x.t/CB.x, t /u.t/ (1)

y.t/D Cx.t/ (2)
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where

x D

2
64
x1
...
xn

3
75 2Rn, uD

2
64
u1
...
um

3
75 2Rm, y D

2
64
y1
...
ym

3
75 2Rm

are the states, inputs and outputs, respectively. Note that although the nonlinear system
fA.x, t /,B.x, t /,C g does not need to be known to design the adaptive control law, sufficient infor-
mations are required to guarantee that the ASP conditions are satisfied, so that closed-loop stability
can be ensured. The following definitions and theorem applicable to the nonlinear square system
(1) and (2) will be exploited in the subsequent development. Refer to the study of Barkana [17] for
more details.

Definition 1
Any nonlinear systems fA.x, t /,B.x, t /,C g with the square state-space realization (1) and (2) is
uniformly strictly minimum-phase if its zero dynamics is uniformly stable or in other words, if
there exist two matrices M.x, t / 2 Rn�.n�m/ and N.x, t / 2 R.n�m/�n satisfying the following
relations:

CM D 0 (3)

NB D 0 (4)

NM D In�m (5)

such that the resulting zero dynamics given by

Ṕ D . PN CNA/M´ (6)

is uniformly asymptotically stable.

Definition 2
Any nonlinear systems fA.x, t /,B.x, t /,C g with the square state-space realization (1) and (2) is
SP if there exist two PDS matrices P.x, t / and Q.x, t / such that the following two conditions are
simultaneously satisfied:

PP CPACATP D�Q (7)

PB D C T (8)

where PP denotes the total derivative of P.x, t / with respect to t , when x depends on t . The Lya-
punov differential equation (7) shows that an SP system is uniformly asymptotically stable, whereas
the second relation (8) shows that

BTPB D BTC T D .CB/T D CB (9)

which implies that the product CB is PDS.
As most real-world systems are not inherently SP, a class of ASP systems can be defined through

the following definition.

Definition 3
Any nonlinear systems fA.x, t /,B.x, t /,C g with the square state-space realization (1) and (2) is
ASP if there exist two PDS matrices P.x, t / and Q.x, t / and a constant output feedback gain QKe ,
such that the closed-loop system

Px.t/D
�
A.x, t /�B.x, t / QKeC

�
x.t/ (10)
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y.t/D Cx.t/ (11)

simultaneously satisfies the following relations:

PP CP
�
A�B QKeC

�
C
�
A�B QKeC

�T
P D�Q (12)

PB D C T . (13)

Theorem 1
Any uniformly strictly minimum-phase nonlinear system fA.x, t /,B.x, t /,C g with the square
state-space realization (1) and (2), and with the product CB.x, t / being PDS is ASP.

Proof
See [17].

3. CONTROL OBJECTIVE

The control objective is to design decentralized SAC-based control laws, which ensure that the non-
linear square system tracks the output vector ym.t/ of the following (not necessarily square) ideal
model:

Pxm.t/D Amxm.t/CBmum.t/ (14)

ym.t/D Cmxm.t/ (15)

where

xm D

2
64
xm1

...
xmnm

3
75 2Rnm , um D

2
64
um1

...
umpm

3
75 2Rpm , ym D

2
64
ym1

...
ymm

3
75 2Rm

are the ideal model states, inputs and outputs, respectively. To quantify this control objective, an
output tracking error, denoted by ey.t/ 2Rm, is defined as

ey , ym � y. (16)

When the system tracks the ideal model perfectly (i.e., ym D y� D Cx�), it moves along a bounded
ideal state trajectory, denoted by x�.t/ 2Rn. In other words, the ideal plant

Px�.t/D A�x�.t/CB�u�.t/ (17)

moves along x�.t/, where A� � A.x�, t / and B� � B.x�, t / and where u�.t/ denotes the ideal
control input (to be defined later).

To facilitate the subsequent analysis, a state error, denoted by ex.t/ 2Rn, is defined as

ex , x� � x. (18)

Thus, (16) can be rewritten as

ey D Cx
� �Cx D Cex . (19)

�

Assumption 1
Both the order and the number of inputs of the ideal model, nm and pm, are multiples ofm and thus,
satisfy the following relationships:

nm D knm (20)

pm D kpm (21)

where kn, kp 2R are positive integer scalars.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:750–763
DOI: 10.1002/acs



754 S. ULRICH AND J. Z. SASIADEK

4. DECENTRALIZED SIMPLE ADAPTIVE CONTROL-BASED LAWS

The standard SAC algorithm is adopted [14]:

uDKe.t/ey CKx.t/xmCKu.t/um (22)

where Ke.t/ 2 Rm�m is the time-varying stabilizing control gain matrix, and Kx.t/ 2 Rm�nm and
Ku.t/ 2 Rm�m are time-varying feedforward control gain matrices that contribute to maintaining
the stability of the controlled system and to bringing the output tracking error to zero. Each control
gain matrix is calculated as the summation of a proportional and an integral component, as follows:

Ke.t/DKPe .t/CKIe .t/ (23)

Kx.t/DKPx .t/CKIx .t/ (24)

Ku.t/DKPu.t/CKIu.t/ (25)

where only the integral adaptive control terms are absolutely necessary to guarantee the stability
of the direct adaptive control system. However, also including the proportional adaptive control
terms increase the rate of convergence of the adaptive system toward perfect tracking, as it will be
demonstrated in Section 4.2.

Proposing a DSAC adaptation mechanism, the proportional and the integral components of the
stabilizing control gain in (23), KPe .t/,KIe .t/ 2 Rm�m, are both updated by the output tracking
error, which results in the following decentralized adaptation law:

KPe .t/D diag
˚
eye

T
y

�
�Pe (26)

PKIe .t/D diag
˚
eye

T
y

�
�Ie (27)

where diagfAg denotes the diagonalization operation on the square matrix A 2 Rn�n whose
elements are denoted ai ,j , as follows:

diagfAg D

2
6664
a1,1 0 � � � 0

0 a2,2 � � � 0
...

...
. . .

...
0 0 � � � an,n

3
7775 . (28)

The components of the feedforward control gain matrices KPx .t/,KIx .t/ 2 Rm�nm and
KPu.t/,KIu.t/ 2R

m�pm are updated as follows:

KPx .t/DR
T diag

˚
Reyx

T
m

�
�Px (29)

PKIx .t/DR
T diag

˚
Reyx

T
m

�
�Ix (30)

KPu.t/D T
T diag

˚
Teyu

T
m

�
�Pu (31)

PKIu.t/D T
T diag

˚
Teyu

T
m

�
�Iu (32)

with

RD

2
6664
Im
Im
...
Im

3
7775 2Rnm�m, T D

2
6664
Im
Im
...
Im

3
7775 2Rpm�m (33)
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and where �Pe , �Ie 2 Rm�m, �Px , �Ix 2 Rnm�nm and �Pu , �Iu 2 Rpm�pm are positive definite
diagonal matrices that control the rate of adaptation.

The adaptive algorithm can be rewritten in the following concise form:

uDK.t/r.t/ (34)

where K.t/ 2Rm�.mCnmCpm/ and r.t/ 2RmCnmCpm are respectively defined as

K.t/,
�
Ke.t/ Kx.t/ Ku.t/

�
DKP .t/CKI .t/ (35)

r ,
�
eTy xTm uTm

�T
. (36)

With this representation, the total proportional and integral adaptive control gains, denoted by
KP .t/,KI .t/ 2Rm�.mCnmCpm/, are updated as follows:

KP .t/D S
T diag

˚
Seyr

T
�
�P (37)

PKI .t/D S
T diag

˚
Seyr

T
�
�I (38)

where �P , �I 2R.mCnmCpm/�.mCnmCpm/, and the scaling matrix S is given by

S D

2
6664
Im
Im
...
Im

3
7775 2R.mCnmCpm/�m. (39)

4.1. Error dynamics

The time derivative of (18) is

Pex D Px
� � Px D A�x�CB�u� �Ax �Bu. (40)

By adding and subtracting Ax� to (40) and rearranging give

Pex D Aex C .A
� �A/x�CB�u� �Bu. (41)

By adding and subtracting Bu� to (41) results in

Pex D Aex C .A
� �A/x�CB.u� � u/C .B� �B/u�. (42)

By adding and subtracting B QKeey to (42) and substituting ey from (19) in the first term of the
right-hand side of (42) yield

Pex D
�
A�B QKeC

�
ex C .A

� �A/x�CB.u� � u/C .B� �B/u�CB QKeey . (43)

Noting that the tracking error ey along the ideal trajectory is zero, the underlying tracking problem
assumes that there exists an ideal control input

u�.t/D QKxxm.t/C QKuum.t/ (44)

that can keep the plant along an ideal trajectory x�.t/ that would asymptotically perform perfect
tracking. Thus, by substituting (34) and (44) into (43) gives

Pex D
�
A�B QKeC

�
exC.A

��A/x�CB QKxxmCB QKuum�BK.t/rC.B
��B/u�CB QKeey . (45)

Equation(45) can be rewritten as

Pex D
�
A�B QKeC

�
ex C .A

� �A/x�C .B� �B/u� �B
�
K.t/� QK

�
r (46)

with QK 2Rm�.mCnmCpm/ defined as

QK ,
�
QKe QKx QKu

�
. (47)

Finally, substituting K.t/ from (35) yields

Pex D
�
A�B QKeC

�
ex C .A

� �A/x�C .B� �B/u� �BKP .t/r �B
�
KI .t/� QK

�
r . (48)
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4.2. Stability analysis

The proof of stability must considers the adaptive system defined by both (38) and (48), in order to
show the asymptotic convergence of the errors and that the adaptive control gains are bounded. This
is demonstrated through the following theorem.

Theorem 2
When applied to a square nonlinear system satisfying the ASP conditions given by (12) and (13)
and under the assumptions that the parameters vary slowly in comparison with the control dynamics,
such that A� � A and B� � B are close to zero, and that the ideal model satisfies Assumption 1,
the adaptive control law given by (22) with DSAC adaptation mechanism (23)–(27) and
(29)–(32) ensures that all adaptive control gains are bounded under closed-loop operation, and
results in asymptotic convergence of the state and output tracking errors, in the sense that��ey��! 0 and kexk! 0 as t !1

where k � k denotes the standard Euclidean norm of a vector.

Proof
Let V 2R be a continuously differentiable positive-definite symmetric function given by

V D eTx Pex C tr
h�
KI .t/� QK

�
��1I

�
KI .t/� QK

�T i
. (49)

The time derivative of (49) is obtained as

PV D PeTx Pex C e
T
x
PPex C e

T
x P Pex C tr

h
PKI .t/�

�1
I

�
KI .t/� QK

�T i

C tr
��
KI .t/� QK

�
��1I

PKTI .t/
�

.
(50)

By substituting ey from (19), KP .t/ from (37), PKI .t/ from (38) and Pex from (48) into (50) gives

PV D eTx

h
PP CP

�
A�B QKeC

�
C
�
A�B QKeC

�T
P
i
ex

� 2eTx PBS
T diag

˚
SCexr

T
�
�P r

� rT
�
KI .t/� QK

�T
BTPex � e

T
x PB

�
KI .t/� QK

�
r

C
��
A� �A

�
x�C

�
B� �B

�
u�
�T
Pex C e

T
x P

��
A� �A

�
x�C

�
B� �B

�
u�
�

C tr
h
ST diag

˚
SCexr

T
�
�I�

�1
I

�
KI .t/� QK

�T i

C tr
��
KI .t/� QK

�
��1I �Idiag

˚
SCexr

T
�
S
�

.

(51)

Using the ASP conditions (12) and (13), the expression in (51) can be simplified as

PV D� eTxQex

� 2eTx C
TST diag

˚
SCexr

T
�
�P r

� rT
�
KI .t/� QK

�T
Cex � e

T
x C

T
�
KI .t/� QK

�
r

C
��
A� �A

�
x�C

�
B� �B

�
u�
�T
Pex C e

T
x P

��
A� �A

�
x�C

�
B� �B

�
u�
�

C tr
h
ST diag

˚
SCexr

T
� �
KI .t/� QK

�T i

C tr
��
KI .t/� QK

�
diag

˚
SCexr

T
�
S
�

.

(52)

Due to the diagonal forms of the results inside the trace functions, the following terms cancel one
another:

tr
h
ST diag

˚
SCexr

T
� �
KI .t/� QK

�T i
� rT

�
KI .t/� QK

�T
Cex D 0 (53)
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and similarly

tr
��
KI .t/� QK

�
diag

˚
SCexr

T
�
S
�
� eTx C

T
�
KI .t/� QK

�
r D 0. (54)

Thus, (52) can be simplified to

PV D� eTxQex � 2e
T
x C

TST diag
˚
SCexr

T
�
�P r

C Œ.A� �A/x�C .B� �B/u��TPex

C eTx P Œ.A
� �A/x�C .B� �B/u��.

(55)

Under the condition that the system parameters vary slowly in comparison with the control dynam-
ics, one may assume that ultimately A� � A and B� � B are close to zero. In this particular case,
(55) can be approximated by

PV D�eTxQex � 2e
T
x C

TST diag
˚
SCexr

T
�
�P r . (56)

The Lyapunov derivative PV in (56) is uniformly negative definite with respect to ex , but only neg-
ative semidefinite with respect to the entire state space Œex ,KI .t/�. Stability of the adaptive system
is therefore guanranteed from Lyapunov stability theory, and all state errors (and output errors), as
well as adaptive control gains are bounded.

Furthermore, LaSalle’s invariance principle for nonautonomous systems [14, 18–21] can be used
to demonstrate the asymptotic stability of the tracking errors. As demonstrated in [14, p. 43], for
a negative semidefinite Lyapunov derivative of the form (56), all system trajectories are contained
within the domain �0 D

˚
Œex ,KI .t/�jV.Œex ,KI .t/�, t /� V

��
ex0 ,KI0.t/

�
, 0
��

(where the sub-
script fg0 denotes the initial condition), and the entire state space Œex ,KI .t/� ultimately reaches the
domain �f D �0 \ �, where � denotes the domain defined by the Lyapunov derivative identi-
cal to zero. In other words, the state space Œex ,KI .t/� ultimately reaches the domain defined by
V.Œex ,KI .t/�, t / � 0. Because PV .Œex ,KI .t/�, t / is negative definite in ex , the system ends with
ex � 0. Finally, because ex � 0 implies ex.t/ D ey.t/ D 0, asymptotic stability of the state and
output tracking errors is guaranteed.

Remark 1
Compared with the stability results obtained by Barkana [17], the additional negative term in (55)
introduced by considering KP .t/ in the DSAC algorithm contributes to the negativity of the Lya-
punov derivative function and thus, improves the rate of asymptotic convergence of the states and
output tracking errors.

Remark 2
It is well recognized that to prevent undesirable divergence of the integral time-varying control
gains under nonideal conditions, the basic adaptive algorithm must be suitably modified. One pos-
sible modification is the so-called � -modification, pioneered by the work of Narendra et al. [22]
that studied the effects of disturbances on stability of conventional model reference adaptive control
(MRAC) systems and widely popularized in the work of Ioannou and Kokotovic [23, 24], and then
by Barkana and Kaufman [25, 26] and by Narendra and Annaswamy [27]. The first sigma modifi-
cation for SAC (or implicit MRAC) was proposed by Fradkov [3] and Fomin et al. [28]. With this
adjustment, the time-varying integral control gains are obtained as follows:

PKIe .t/D diag
˚
eye

T
y

�
�Ie � �eKIe .t/ (57)

PKIx .t/DR
T
�
diag

˚
Reyx

T
m

�
�Ix � diag f�xRKIx .t/g

�
(58)

PKIu.t/D T
T
�
diag

˚
Teyu

T
m

�
�Iu � diag f�uTKIu.t/g

�
(59)

and similarly,

PKI .t/D S
T
�
diag

˚
Seyr

T
�
�I � diag f�ISKI g

�
(60)
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where �e 2 R.m�m/, �x 2 R.nm�nm/, �u 2 R.pm�pm/ and �I 2 R.mCnmCpm/�.mCnmCpm/ denote
the forgetting coefficient matrices. With this modification to the DSAC algorithm, the Lyapunov
derivative function becomes

PV D� eTxQex � 2e
T
x C

TST diag
˚
SCexr

T
�
�P r

� 2tr
h
ST diag f�ISKI .t/g�

�1
I

�
KI .t/� QK

�T i
. (61)

Thus, according to Lyapunov–Lasalle theorem, the application of the DSAC algorithm with the for-
getting terms results in bounded error tracking. Note that, although it affects the proof of stability,
the use of the DSAC control law with this adjustment is preferable in most practical applications.
Indeed, without the forgetting terms the integral adaptive gains are allowed to increase for as long as
there is a tracking error. When the integral gains reach certain values, they have a stabilizing effect
on the system, and the tracking error begins to decrease. However, if the tracking error does not
reach zero for some reasons, the integral gains will continue to increase and eventually diverge. On
the other hand, with the forgetting terms, the integral gains increase as required (e.g., due to large
tracking errors), and decrease when large gains are no longer necessary. In fact, with the forget-
ting terms, the integral gains are obtained as a first-order filtering of the tracking errors and cannot
diverge unless the tracking errors diverge.

Remark 3
In the general case given by (55), it can be shown that the term

.A� �A/x�C .B� �B/u� (62)

is bounded. Nevertheless, (62) affects the proof of stability, and the tracking errors converge to
the final magnitude of (62). However, it is clear that the Lyapunov derivative (55) is negative
semidefinite for large ex , which guarantees that the system is stable with respect to boundedness.

Remark 4
To further decrease the number of operations required to implement the DSAC controller, a modified
version of the algorithm, referred to as the DMSAC law can be developed. The DMSAC algorithm is
obtained by retaining only the error-related adaptive gainsKPe .t/ andKIe .t/. In fact, as mentioned
in [1], only the stabilizing control gain matrix Ke.t/ is absolutely required for the stability of the
adaptive system. With this modification, the following DMSAC control approach is obtained:

uDKe.t/ey D ŒKPe .t/CKIe .t/� ey (63)

where KPe .t/ and KIe .t/ are adapted with the decentralized adaptation law (26) and (27).
�

5. APPLICATION EXAMPLE

In this section, the applicability of both adaptive control schemes for a nonlinear Euler–Lagrange
system is demonstrated. To facilitate the following demonstration, we let the nonlinear rigid-joint
dynamics of a planar manipulator be written in the task space as follows:

ƒ.q/ Rxr.t/C….q, Pq/ Pxr.t/D F.t/ (64)

where the actual end-effector position is denoted by xr 2R2, and where ƒ.q/,….q, Pq/ 2R2�2 and
F.t/ 2 R2 denote the PDS pseudo-inertia matrix, the centripetal–Coriolis matrix in task space and
the control force vector, which are respectively defined as

ƒ.q/D J�T .q/M.q/J�1.q/ (65)

….q, Pq/D J�TC.q, Pq/J�1.q/Cƒ.q/J.q/ PJ�1.q/ (66)

F.t/D J�T .q/�.t/ (67)

where PJ�1.q/ is defined as
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PJ�1.q/D
d

dt

˚
J�1.q/

�
. (68)

The nonlinear system dynamics given by (64) can be expressed in a standard state-space
representation with

A.q, Pq/D

�
0 I2
0 �ƒ�1.q/….q, Pq/

	
B.q/D

�
0

ƒ�1.q/

	
. (69)

Defining the scaled-position-plus-velocity output matrix as

C ,
�
˛I2 I2

�
. (70)

where ˛ 2R is a known scaling factor related to the sensors, and the state vector is given by

x D

�
xr
Pxr

	
. (71)

It is easy to see the product CB.q/ is PDS, as follows:

CB.q/D
�
˛I2 I2

� � 0

ƒ�1.q/

	
Dƒ�1.q/ > 0. (72)

Moreover, a simple selection of matrices that satisfies (3)–(5) is

M D

�
I2
�˛I2

	
N D

�
I2 0

�
. (73)

Computing

A´ DNA.q, Pq/M D�˛I2 (74)

and thus

Ṕ D A´´D�˛´ (75)

which shows that the zero dynamics is stable, and the nonlinear dynamics is minimum phase. This
demonstrates that a two-link rigid-joint manipulator system is ASP.

The ideal model was designed to incorporate the desired input-output plant behavior, and aside
from the scaling parameter which is assumed to be known, the ideal model is not based on any
modeling of the plant. The matrices Am and Bm are designed in terms of the ideal damping ratio �
and undamped natural frequency !n as follows:

Am D

2
664

0 0 0 0

0 0 0 0

�!2n 0 �2�!n 0

0 �!2n 0 �2�!n

3
775 Bm D

2
664

0 0 1 0

0 0 0 1

�!2n 0 0 0

0 �!2n 0 0

3
775 (76)

and the output matrix Cm is defined as

Cm ,
�
˛I2 I2

�
. (77)

The following control gains and parameters were used:

�PeD15I2 �IeD30I2 �PxD�PuD10I4 �IxD�IuD15I4 �e D 0.018I2 �x D �u D 0.5I4

The integral structure of the integral time-varying gains is computed online via a standard Tustin
algorithm. All integral control gains were initialized to zero, and the ideal model parameters were
selected as � D 0.9, !n D 10 rad/s and ˛ D 2.5.

Two simulation experiments were conducted, the first without (DMSAC) and the second with
(DSAC), the time-varying control gain matricesKx.t/ andKu.t/. Specifically, the DMSAC control
law is given by (63) whereKPe .t/ andKIe .t/ are adapted with the decentralized adaptation law (26)
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Figure 1. Trajectory tracking results obtained with the decentralized modified simple adaptive control con-
troller. The dashed line corresponds to the desired end-effector position xrd .t/, and the solid line corresponds

to the actual end-effector position xr .t/.

Figure 2. Trajectory tracking results obtained with the decentralized simple adaptive control controller. The
dashed line corresponds to the desired end-effector position xrd .t/, and the solid line corresponds to the

actual end-effector position xr .t/.

and (27) and the DSAC control law is given by (22) with the control gain adaptation mechanisms
(26), (27) and (29)–(32). Note that in this specific example, Kx.t/ and Ku.t/, can both be defined
as a proportional and a derivative component, each of these multiplying its associated position and
velocity signals, respectively, that is,

Kx.t/D
�
Kxp .t/ Kxd .t/

�

Ku.t/D
�
Kup .t/ Kud .t/

�
.

The trajectory tracking results obtained with the DMSAC controller and the DSAC controller are
depicted in Figures 1 and 2, respectively. The positioning overshoots achieved with the DMSAC
controller are 0.142 m, 0.115 m and 0.101 m for the first, second and third direction change,
respectively. Comparison with trajectory tracking results of zero overshoot for the proposed DSAC
controller indicates that the DSAC yields improved tracking performance. This is also demonstrated
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Figure 3. Trajectory tracking errors .ey.t/D ym.t/�y.t// obtained with the decentralized modified simple
adaptive control controller.

Figure 4. Trajectory tracking errors .ey.t/D ym.t/� y.t// obtained with the decentralized simple adaptive
control controller.

Figure 5. Adaptation history of the decentralized modified simple adaptive control controller gain Ke.t/.

Figure 6. Adaptation history of the decentralized simple adaptive control controller gain Ke.t/.

in Figures 3 and 4, where an increased damping of the tracking errors with smaller settling times
are obtained with the DSAC strategy. However, this increase in performance comes at the expense
of greater complexity in the controller structure. The successive increase in tracking performance
along each side of the trajectory for the DMSAC strategy is explained by analyzing the adaptation
history of the control gains depicted in Figure 5, which shows that the gains are increasing after each
direction change and thereby, providing improved tracking results. In must be noted that this par-
ticular behavior is mainly due to the specific control parameters selected herein and that a different
behavior could be obtained with different parameters. On the other hand, the time-varying control
gains for the DSAC algorithm shown in Figures 6–8 do not exhibit such behavior, thus providing
similar tracking performance at each corner of the trajectory.
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Figure 7. Adaptation history of the decentralized simple adaptive control controller gains Kxp .t/ and
Kxd .t/.

Figure 8. Adaptation history of the decentralized simple adaptive control controller gains Kup .t/ and
Kud .t/.

6. CONCLUSION

This paper first reviewed the concept of ASP for nonlinear and nonstationary systems, based on
which two new control methodologies, DSAC and DMSAC, were proposed. The DMSAC method-
ology represents a simplification of the DSAC method, in that the feedforward control gain matrices
are ignored. Both decentralized adaptive control methodologies consider only the diagonal elements
of the control gain matrices. As a result, compared with the existing SAC scheme for nonlinear sys-
tems, the number of control parameters is reduced, and the efficiency of the calculations is greatly
improved. In addition, the stability analysis revealed that the rate of asymptotic convergence of the
states and output tracking errors are improved, compared with the recently-developed reduced SAC
control methodology for nonlinear systems. Further investigation was carried out in order to mod-
ify both methodologies to avoid divergence of the integral control gains in situations where perfect
tracking cannot be achieved. As anticipated, the injection of knowledge about the ideal model in the
DSAC control structure leads to improved trajectory tracking results compared with DMSAC, as
demonstrated with the simulation results.
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