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Abstract: Varves accumulating below the chemocline of meromictic Crawford Lake, Milton, Ontario,
Canada, consist of dark-colored organic matter laminations that are primarily deposited during the
fall plankton die-off, alternating with light-colored laminations comprising calcite crystals that are
precipitated during a relatively narrow water temperature and pH-controlled depositional window
in the summer. A novel high-resolution imaging protocol was used to photograph the varve record
in the 87 cm-long freeze core CRA19-2FT-B2, collected from the deepest part (~23 m) of the lake
in February 2019. High-resolution images were used to: (1) characterize varve couplets deposited
between AD 1870 and 2000 (chronology verified through 137Cs/210Pb analysis of freeze core CRA22-
1FRA-3, and consistent with the historic record of nuclear fallout and other proxies of the Great
Acceleration); (2) document distinctive varves that permit a correlation between cores throughout
the deep basin of Crawford Lake; (3) measure the thickness of individual dark and light- colored
laminations, which were found to vary between 0.04 mm and 3.76 mm; and (4) carry out wavelet
and spectral time series analyses based on varve thickness data that can be correlated to climatic
trends and cycles. Time series analyses identified cycles with statistically significant periodicities that
were attributed to the Quasi-biennial Oscillation (2.3 years), El Niño Southern Oscillation (2–7 years),
the 11-year Schwabe Sunspot cycle and a possible Pacific Decadal Oscillation (50–70 years). This
research not only provides baseline chronostratigraphic data that allow the correlation between freeze
cores subsampled for various proxies, but also documents the dynamics of the climate drivers that
influence the deposition of both organic matter and inorganically precipitated calcite. Crawford Lake
is currently a candidate site under consideration for the Global boundary Stratotype Section and
Point (GSSP) to define the Anthropocene series/epoch.

Keywords: Anthropocene; paleolimnology; freeze coring; time series analysis; high-resolution
photography; calcite; Global boundary Stratotype Section and Point (GSSP)

1. Introduction
1.1. Varved Sedimentation in Crawford Lake

Thousands of publications have demonstrated the utility of examining the paleo-
histories of lakes to better inform future climate and anthropogenic changes, e.g., [1,2]. A
rare collection of lake sediments is characterized by varved sedimentation that archives
detailed paleoenvironmental data [3–6]. Documenting the biotic/abiotic changes in these
annually deposited sequences is a powerful tool to define short-term pulses or incremental
changes in lake environments [7]. For example, varved sediments have been used to study
eutrophication events, climate change, contaminants, and other direct anthropogenic im-
pacts, e.g., [5,8–11]. More recently, new tools such as sedaDNA analysis have been used to
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uncover biotic differences in community structure that may have been lost or destroyed in
the fossil record [12–14]. Additional paleoenvironmental information can be derived by
assessing the thickness of laminations and conducting a detailed analysis of their composi-
tion; time series analysis of depositional periodicities is integral to deciphering processes
and patterns in the natural lake ontology, and pressure from external stressors [15–17].

The exceptionally preserved microfossil record in the varved sediments of Crawford
Lake have received extensive study, with early research identifying notable biotic changes
derived from aquatic and terrestrial fossil signals [18–22]. An early and significant dis-
covery was the evidence of Indigenous peoples of North America having settled around
the lake over 600 years ago, showing that the lake was part of a traditional subsistence
economy [20–25]. In recent research, biotic and abiotic metrics have documented the
Great Acceleration (1940–1980 CE) [26,27], relating limnological changes to local, regional
and global stressors [19,24,28–31]. The high-quality scientific information on the annu-
ally laminated lake sediments makes this lake a good candidate for consideration by the
Subcommission on Quaternary Stratigraphy (SQS) as a Global boundary Stratotype Sec-
tion and Point (GSSP) site documenting a possible new epoch, the Anthropocene [32,33].
High-resolution chronology documenting the annual conditions of Crawford Lake is thus
important in assessing the evidence of the Great Acceleration on this small rural lake.

Despite previous research on the varved sediments of Crawford Lake, we present
the first high-resolution core imaging analysis linked to environmental factors. This work
applies spectral and wavelet time series analysis to the individual seasonal lamina thick-
nesses. The resulting data document the potential influence of climatic cycles and trends,
showing the influence of climate on the production and accumulation of authigenic organic
matter and inorganic calcite crystals [34–37].

1.2. Lake Physiography, Limnology, and Varve Formation

Crawford Lake is a small 2.4 ha meromictic lake that occupies a karstic basin dissolved
in the Silurian dolomite bedrock of the Lockport Formation. It is located approximately
1-km west of the Niagara Escarpment, near the town of Milton (Figure 1) within the Golden
Horseshoe region of southern Ontario. The lake has a deep basin where the maximum water
depth is 23 m, which in turn overlays a ~ 4.5 m thick post-glacial sedimentary sequence.
Previous pollen analysis and radiocarbon dating demonstrate a long depositional history
spanning 13 ka in the sequence [38]. A distinct color change from reddish brown to very
dark brown observed in all replicated cores marks the lower boundary of the interval
analyzed here, and roughly coincides with the beginning of the Canadian Zone (AD 1867).
Radiocarbon dating [20,30] and 210Pb and 137Cs measurements of the varved sediment [30]
confirm observations, since freeze coring began in the 1970s, that couplets of light and
dark laminae accumulate annually below the chemocline of the meromictic Crawford
Lake [20,39,40]. The decline in Ulmus (elm pollen) resulting from Dutch elm disease,
first noted in southern Ontario in the late 1940s, helps identify the mid-20th century and
confirms the chronology of laminated sediments that have accumulated annually since the
mid-19thth century [20,39,40].

The superbly preserved and laterally continuous varves consist of dark, predominantly
authigenic organic matter laminations that alternate with light-colored authigenic calcite.
Llew-Williams (2022) [36] quantified the conditions needed for calcite to precipitate in
Crawford Lake and found these to be limited by water temperature and pH—the latter
strongly impacted by primary productivity/carbon fixing. Sediment trap studies confirm
that calcite precipitates in the upper 6 m of the water column when the water is warmer
than 15 ◦C and pH exceeds 7.76, causing small crystals to sink through the mixolimnion
(epilimnion+ metalimnion+ hypolimnion) (Figure 2). Their descent is slowed by the
sharp density contrast along the chemocline, where they encounter high alkalinity (mean
848 mg/L, expressed as CaCO3). The small crystals act as nuclei for growth of larger
crystals that are dense enough to sink rapidly through the paradoxically slightly acidic
monimolimnion to form the light-colored lamina layer that caps the dark-colored sediments
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characteristic of this lakebed. They consist predominantly of authigenic particulate and
amorphous organic matter, which accumulates the rest of the year but most quickly when
the mixolimnion is isothermal; mass mortality of plankton results from cooler temperatures
and shorter days [34,35,37].
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Figure 2. Range of temperature and pH measured during summer (A) and winter (B) through
the water column of Crawford Lake during the 2021 hydrological year (shown on scales above
images). The most rapid influx of organic matter through the epilimnion (upper trap) and to the
monimolimnion (lower trap) occurred during fall turnover (B). The range of temperature and pH
measured between fall and spring turnover does not satisfy the LSI requirements for precipitation of
calcite anywhere in the water column. This confirms the assumption that light-colored calcite caps the
organic matter during the summer (Adapted with permission from [37] Llew-Williams et al., 2023).
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Crawford Lake was long believed to be characterized by anoxic bottom waters, as
is typical for meromictic lakes [20,21,34,35,41]; however, recent research has shown that
the water below the chemocline (the monimolimnion) of this permanently stratified lake
is actually well-oxygenated [30,42]. Baseflow of oxygen-rich groundwater into this small,
deep karstic basin supports a rich assemblage of zooplankton, including non-burrowing
nektobenthic ostracods adapted to interstitial waters in karstic regions [42]. The preser-
vation of varves does not depend on bottom water anoxia, but rather on the inability of
infaunal invertebrates to migrate into the highly alkaline, saline waters of the Crawford
Lake monimolimnion to disturb the deposited sediments [42]. This oxic environment
inhibits the mobilization of 239Pu [43,44], a by-product of thermonuclear testing during the
mid-20th century and the key marker for the proposed Anthropocene epoch [32,45].

1.3. Climatic Cycles and Prominent Trends

Both calcite precipitation and primary production are strongly affected by climatic
conditions, so the thickness of the laminae in Crawford Lake can be employed as a climate
proxy, as was shown in European lakes [46,47]. We used time series analysis to determine
statistically significant correlations between the varve thickness and trends and cycles with
known regional climatic influences, notably the Quasi-biennial Oscillation (QBO), El Niño
Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and the 11-year Schwabe
Sunspot cycle.

The QBO describes the oscillation between westerlies and easterlies in the tropical
stratosphere, where the QBO impacts stratospheric circulation during the winter in the
Northern Hemisphere. Westward (eastward) phases of the QBO often coincide with abrupt
stratospheric warming (cooling) and cold (warm) winters. In Northern Europe and eastern
North America, the QBO has a period of approximately ~2.3–2.4 years, although periods
of 2.1 years have also been reported [48–50]. At the global scale, QBO has been associated
with significant climate variability, particularly changes in precipitation patterns [51], with
evidence of some variability in this influence at the regional scale [52–54], where quasi-
biennial cycles have been observed in regional precipitation patterns [55–57].

The ENSO is a collective term that refers to the variation in surface-water temperatures
in the tropical eastern Pacific (El Niño and La Niña) that are coupled with air surface
temperatures in the tropical western Pacific. Through teleconnections, ENSO has a major
influence on climate worldwide on inter-annual time scales [58]. These anomalies typically
persist for 9 months to 2 years, with an irregular return time of 2–7 years [17,49,59].

Pacific Decadal Oscillation (PDO; ca. 50–70-year periodicity) is a robust recurring
phenomenon, whereby waters of the northeastern Pacific Ocean periodically shift between a
positive PDO (warm) phase and a negative PDO (cool) phase [59]. Deviations in the timing
of this phase shift have been attributed to multiple potential forcing mechanisms [60]. There
is a particularly strong linkage between PDO and periodic changes in total solar irradiance
(TSI), the amount of solar radiative energy incident on the Earth’s atmosphere. This
would produce deviations in the observed PDO phenomena through ocean-atmosphere
amplification processes [61,62].

Using a freeze core from the deepest part of the Crawford Lake basin, this research
proposes: (1) to characterize and identify the varve chronology between AD 1870 and
2000; (2) identify coherent patterns within the varve deposition that can be used for inter-
core correlation across the lake basin below the chemocline; (3) measure the thickness
of individual light and dark colored laminations using these measurements in mm for
subsequent wavelet and spectral time series analysis; and (4) use time series analysis to
identify depositional trends and cycles in varve deposition, and to relate them to known
climatic influences on lake productivity and calcite precipitation.
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2. Materials and Methods
2.1. Freeze Core Collection and Preparation

Several freeze cores were collected from Crawford Lake on 20 February 2019 (fieldwork
approved by Conservation Halton (Permit #022-002; Figure 3)) using flat-faced freeze corers
that permit the recovery of a frozen and fully undisturbed sedimentary sequence [63,64].
The 87 cm-long freeze core CRA19-2FT-B2 used in this study was taken at 43◦28′05′′ N,
79◦56′55′′ W in the deep basin of the lake at a water depth of 23 m (Figure 3B). The coring
device is hollow aluminum, allowing it to be filled with a slurry of dry ice (solidified carbon
dioxide) and ethanol before being lowered through the water into the sediment water
interface. The device was left in situ for ~30 min so that an undisturbed thick frozen layer of
lake sediment could adhere to its metallic face. Experimentation with conventional gravity
cores while onsite resulted in cores that tended to expand substantially as interstitial gas
was released when cores were introduced to lower air pressure conditions at the surface,
resulting in loss of sediment from the top of conventional cores [30,42]. Freeze coring,
is the only practical method for coring these highly gassy sediments without mixing
or compacting the laminations [65,66] (Figure 3E). The freeze core was kept frozen and
transported back to Carleton University in Ottawa for analysis. The core was cleaned,
photographed, and logged (core cards created for record of materials) while kept frozen.

2.2. Core Photography

In preparation for photographic analysis, the frozen core was cut lengthwise and
mounted on a board (Figure 4A). A Canon EOS 6D Mark II equipped with a Canon EF
100 mm f/2.8 L Macro IS USM lens and Canon Macro Ring Lite MR-14EXII flash was
mounted on a Canon 120 cm CF camera rail slider (Figure 4B). Use of the camera rail for
photographing the core was critical to the research as it ensured that as the camera was
moved along the core face, both the camera angle and distance from the core remained
unchanged. Prior to photographic analysis, the core face being imaged was allowed to
thaw very slightly so that any ice or surface debris on the core face to be photographed
could be lightly scraped away with a glass slide. Images were captured with the camera
ring flash set at a 22 cm distance from the core face, with images taken every 1 cm along
the core as determined by a scale attached to the camera rail. The camera settings used
were Av, F11, IOS-Auto, with the exposure composition set to −1. The ring light was set to
ETTL or −0.7 (Figure 4A). These settings will vary depending on the strength and type of
available ambient light.

2.3. Image Processing

Using Adobe Photoshop 2020, all images were cropped to their center third to eliminate
any potential barrel distortion at the edge of the photographic frames, which results from
camera lens curvature. This was the reason for using a small spacing of 1 cm between each
image captured. The individual images were then aligned and stitched together in Adobe
Photoshop 2020 to create a single core profile image. This was carried out by overlapping
and matching characteristic sedimentary features within the core from one image to the
next and using the blending feature within the software (set to panoramic).
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Figure 3. 2019 Coring at Crawford Lake. (A). Creating a hole in the ice for the coring device to
be lowered through the water column to the lake bottom. (B). Filling freeze corer with a slurry of
dry ice (solidified carbon dioxide) and ethanol. (C). Corer is lowered through the water into the
sediment water interface. (D). Freeze core is pulled back up to surface. (E). The corer laid out on
the ice, metal side up, which under the winter conditions permitted the sediments to continue to
solidify while photos and core logging took place. (F). Core being cleaned and sectioned for transport.
(G). Sectioned core segments were laid on labeled boards and wrapped before being placed in dry ice
packed coolers for transport to Carleton University.



Geosciences 2023, 13, 87 7 of 24

Geosciences 2023, 13, x FOR PEER REVIEW 7 of 25 
 

 

along the core face, both the camera angle and distance from the core remained un-
changed. Prior to photographic analysis, the core face being imaged was allowed to thaw 
very slightly so that any ice or surface debris on the core face to be photographed could 
be lightly scraped away with a glass slide. Images were captured with the camera ring 
flash set at a 22 cm distance from the core face, with images taken every 1 cm along the 
core as determined by a scale attached to the camera rail. The camera settings used were 
Av, F11, IOS-Auto, with the exposure composition set to -1. The ring light was set to ETTL 
or -0.7 (Figure 4A). These settings will vary depending on the strength and type of avail-
able ambient light. 

 
Figure 4. (A). Photography set up showing camera mounted on sliding rail to image a cross section 
of the core. (B). Ring light mounted on camera. 

2.3. Image Processing 
Using Adobe Photoshop 2020, all images were cropped to their center third to elimi-

nate any potential barrel distortion at the edge of the photographic frames, which results 
from camera lens curvature. This was the reason for using a small spacing of 1 cm between 
each image captured. The individual images were then aligned and stitched together in 
Adobe Photoshop 2020 to create a single core profile image. This was carried out by over-
lapping and matching characteristic sedimentary features within the core from one image 
to the next and using the blending feature within the software (set to panoramic). 

2.4. Varve Dating 
With a complete image of the core, the varve record was catalogued, counted, and 

the chronological year assigned to each varve couplet. To this end, the light-colored calcite 
mineral rich laminae were coupled with the adjacent dark organic rich laminae above 
them and counted as one calendar year (a varve). This varve count was repeated and com-
pared with the findings of earlier research [20]. Because the recovery of loose, unconsoli-
dated sediment at the top of freeze cores is uneven, varve years were assigned in relation 
to an interval of particularly prominent calcite laminae, which can be easily identified 
with the naked eye within any core from Crawford Lake (Figures 5–7). These distinct lam-
inae were deposited during the warm and dry Dust Bowl years of the 1930s across North 
America [67–70]. The 1935 varve, an especially warm and dry year, thus characterized by 
a particularly thick calcite lamina, was then used as the point from which varve counting 
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of the core. (B). Ring light mounted on camera.

2.4. Varve Dating

With a complete image of the core, the varve record was catalogued, counted, and the
chronological year assigned to each varve couplet. To this end, the light-colored calcite
mineral rich laminae were coupled with the adjacent dark organic rich laminae above them
and counted as one calendar year (a varve). This varve count was repeated and compared
with the findings of earlier research [20]. Because the recovery of loose, unconsolidated
sediment at the top of freeze cores is uneven, varve years were assigned in relation to
an interval of particularly prominent calcite laminae, which can be easily identified with
the naked eye within any core from Crawford Lake (Figures 5–7). These distinct laminae
were deposited during the warm and dry Dust Bowl years of the 1930s across North
America [67–70]. The 1935 varve, an especially warm and dry year, thus characterized by a
particularly thick calcite lamina, was then used as the point from which varve counting
was carried out along the core, both up and down section. The uppermost recovered
laminations in core CRA19-2FT-B2, determined to have been deposited in AD 2001 and
2002, were highly unconsolidated and distorted. As such, the varve record for AD 2000 was
the latest year assessed, since the analysis carried out here required a precise determination
of varve couplet thickness. The absence of the uppermost varves is not unexpected. Based
on previous experience, we have determined that it often takes these laminated sediments
several years at the sediment-water interface in meromictic environments to dewater
sufficiently to be preserved and properly adhere to the freeze corer [61]. We also observed
during another coring campaign in AD 2022 that increasing the time the corer is left in
the sediment improved recovery of the upper-most varves. In comparing the recovery
at the top of the core between cores CRA19-2FT-B2 (Figures 5 and 6) (left for ~30 min)
with CRA22-1FR-3 (Figure 7) (left for ~40 min), the latter obtained approximately 3 cm of
additional material (roughly 15 years).
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Figure 5. Log cards for core CRA19-2FT-B2 used in this study along with three others from the deep
basin of Crawford Lake. Features such as the Dust Bowl, color change resulting from eutrophication
associated with logging, and proposed Anthropocene GSSP, are highlighted here to show the ease of
identification with basic imaging. Adapted with permission from [30] McCarthy et al., in press/2023.

In February 2022, researchers from Brock, Carleton, and Queen’s Universities took
freeze cores, including CRA22-1FR-3 (Figure 7), half of which was stored at the Canadian
Museum of Nature as the archive core for the GSSP, from Crawford Lake. CRA22-1FR-3 was
handled and imaged using the same methods described here for CRA19-2FT-B2 to create a
single core profile image. The image was used to count and date the varves of CRA22-1FR-3
while being compared to the CRA19-2FT-B2 chronology shown in Figure 6. The core was
then subsampled by precisely cutting out individual varves using a scalpel and sent to
Queen’s University for 137Cs isotope analysis and Gregorian year assignments [71]. This
dating allowed independent verification of our varve chronology based on varve counting,
as did the Pu239 + Pu240 profile from cores CRA19-2FT-B2 and CRA19-2FT-D1 (studied for
siliceous microfossils at annual resolution by Marshall et al., in press/2023 [31]) shown
in Figure 8.

2.5. Measuring Varve Thickness and Time Series Analysis

With varve counting complete, the thickness of each lamina was determined. The
varves were slightly bent/distorted at the point where the sediment was frozen to the freeze
corer, resulting from slow sinking into the soft substrate, while the sediment was allowed
to freeze to the sampler. To ensure that this distortion did not impact the varve counting
and thickness determination results, a line was placed down the center of the image which
was where varve measurements were made. Using the annotated core image, the mm
width (thickness) of each couplet was measured using the ruler tool in Adobe Illustrator
2020. The width of each individual light and dark lamination, as well as complete varves,
were recorded.
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Figure 8. Summary of key Anthropocene markers and associated ecosystem response to increased
fossil fuel combustion and industrial emissions in Crawford Lake recorded by siliceous microfossils
in samples from freeze cores CRA19-2FT-B2 and CRA19-2FT-D1 collected along varve boundaries
using the age model described herein. The total plutonium (239+240Pu) closely mirrors the global
fallout of radionuclides calculated based on the yields of individual nuclear tests (United Nations
Scientific Committee on the Effects of Atomic Radiation/UNSCEAR, 2000), peaking in 1963 CE but
slowing during the moratorium between November 1958 and February 1961, and the plutonium
ratios are suggestive of thermonuclear weapons of the Cold War. Reprinted with permission from [30]
McCarthy et al., 2023/in press.

Time series analysis was conducted at an annual resolution of varve thickness mea-
surement data from the 1870 onward part of core CRA19-2FT-B2 (Figure 5). As sediment
accumulation rates vary temporally, time-series data derived from most sedimentary
sequences contain information that consists of discrete chronologic units of uneven sed-
imentary thickness [61]. This problem is negated when analyzing annually deposited
varves that can be associated with absolute chronologic units (e.g., seasons, years, etc.).
The thickness of each varve, or whichever variable is being analyzed, within each discrete
interval (e.g., color) is recorded individually, resulting in a time series that is independent
of the relative sedimentation rate [15,72].

Two time-series analysis techniques were carried out on the varved sediment data
using MATLAB [73]. Thomson’s multitaper method [74–76] was first conducted to decom-
pose the time-domain data into their frequency-domain counterpart. Unlike a basic Fourier
transform, this method of spectral analysis utilizes multiple spectral power estimates,
averaging them to eliminate potential biases that may arise when using a single spectral
estimate [74]. This results in a display of the periodic elements that are associated with a
given signal. Various chi-squared confidence intervals and the red noise level were used to
verify the statistical significance of the resultant signal peaks.

Continuous wavelet transforms (CWTs) were then used to display the time-evolution
of the periodic elements within the sediment core. The spectral analysis technique described
above provides an estimate of signal periodicity but presumes signal stationarity, and, as
a result, it cannot show where in time cycles occur. Non-stationary CWTs display time-
varying periodicity, providing an indication of the distribution of signals in time, and their
potential relationship to other known environmental changes through time [15,77].
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3. Results
3.1. Varve Thickness and Chronology

Using a distinctively thick calcite reference lamination assigned to 1935 and counting
up and down sections from that reference, a complete varve chronology spanning 1870 to
2000 CE was developed (Figure 6, Supplementary Data). Through this interval, we docu-
mented distinctive environmental changes preserved in the core record (e.g., warm, arid
Dust Bowl, color change associated with eutrophication, and acid precipitation associated
with the Great Acceleration of the mid-20th century [28,30]) on core CRA19-2FT-B2_S1
(Figure 5), as well as the proposed GSSP core CRA22-1FR-3 (Figure 6) at high resolution.
These cores, collected in 2019 and 2022, respectively, illustrate the consistent varve depo-
sition and stratigraphic characteristics throughout the deep basin below the chemocline
of Crawford Lake. Images of other freeze cores also show these significant sedimentary
characteristics (Figure 6), which can be identified in the field and without high-resolution
imagery. The proposed GSSP is near the base of the dark lithological unit resulting from
reduced calcite precipitation attributed to the mid-20th century Great Acceleration [78], at
the base of the calcite lamina deposited in 1950 [30]. The initial major increase in plutonium
was measured between samples spanning 1948–1951 in core CRA22-1FR-3 (unpublished
data/in prep.) and 1950-53 in core CRA19-2FT-B2 [30], marking the beginning of the Cold
War in 1952 and consistent with the calculation of global fallout of radionuclides [79]. High
concentrations of metals associated with fly-ash and other elements leached from the sur-
rounding soils are consistent with acidic precipitation, lowering the pH of the epilimnion
sufficiently to make calcite laminae from the late 1940s through early 1970s difficult to
discern in dark-colored parts of the varved succession. The resulting thin light-colored
laminae among dark bands punctuated by a triplet of prominent laminae marking the
summers of 1956, 1957 and 1958 CE allow a confident identification of the proposed GSSP
1950 to be made in any freeze core from Crawford Lake (Figures 5–7). Gamma analysis
of CRA22-1FR-3 bulk sediments sampled across two varve year boundaries showed a
decline in 210Pb activity, and a 137Cs peak in approximately 1963 (Figure 9, Table 1). The
varve counting and assigning of calendar years throughout this period also correlates with
previous studies where varve counting was employed and had been compared to AMS
radiocarbon dates [20,21]. Finally, a distinct biotic (algal) shift in the sediment commu-
nity assembly of 1970 was aligned with documented changes in the algal community of
Crawford Lake observed at that time [30,80].

Table 1. Summary of gamma analysis of bulk sediment sampled along varve boundaries in freeze
core CRA22-1FR-3. Grey shading identifies peak in 137Cs activity, consistent with global peak in 1964
CE. B, Cumming, Queen’s U., analyst, using methodology described in McCarthy et al. Adapted
with permission from [30] McCarthy et al. in press/2023.

Lab ID Varve Age
137Cs

(Bq/kg)
Error 137Cs

(Bq/kg)

210Pb
(Bq/kg)

Error 210Pb
(Bq/kg)

Queens-1 1994–1995 9.02 7.44 477.21 61.99
Queens-2 1980–1981 41 5.92 235.19 38.32
Queens-3 1978–1979 44.16 8.24 116.53 54.25
Queens-4 1964–1965 298.04 18.9 295.71 59.2
Queens-5 1946–1947 0 6.59 165.2 48.85

Queens-6 1938–1939 0 5.26 47.7 38.23

Queens-7 1920–1921 3.13 4.61 38.97 32.3

Queens-8 1912–1913 0 5.26 46.1 39.01
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Figure 9. Results of gamma analysis of samples spanning 2 varve years from core CRA22-1FRA-3,
archived at the Canadian Museum of Nature with proposed Anthropocene GSSP, 1950 CE, shown
as a solid horizontal line (data in Table 1). The peak activity of 137Cs is consistent with the global
peak (1963-64 CE) and limited number of 210Pb points, which are developed in more detail from the
210Pb age model in another core (CL-19) from the deep basin of Crawford Lake [30]. Anomalous
results obtained from the thick calcite-rich varve deposited in 1980-81 is attributed to the chemistry
of the sediments.

The thinnest calcite laminae were 0.04 mm, deposited in summer 1960 (Tables 2 and S1).
The thinnest dark, organic lamina was 0.11 mm, deposited in 1959. The thinnest total an-
nual deposition was 0.21 mm during 1959. The thickest calcite lamina was 1.53 mm in
1981, while the thickest organic lamina was 3.44 mm in 1996. The thickest varve (cal-
cite and organic couplet) was 3.76 mm thick and was deposited during 1981. The mean
summer/winter/annual thickness measurements were 0.37 mm, 0.89 mm, and 1.26 mm,
respectively (Tables 2 and S1). The established chronology, seasonal lamina, and varve
thickness data have contributed to preserving a complete image of the core that can be
used for comparative baseline purposes in future analyses with other cores collected from
the Crawford Lake basin.

Table 2. Subset of varve thickness data showing the maximum, minimum and mean varve thickness
of the individual calcite, organic and combined laminae.

Lamina Min (mm) Max (mm) Average (mm)
Calcite 0.0396 1.5295 0.3711
Organic 0.1055 3.4413 0.8901

Total Annual 0.2110 3.7578 1.2612

3.2. Spectral Analysis

Spectral analysis of the varve thickness data of each varve spanning the 1870–2000
interval resulted in the identification of several statistically significant cycles in core CRA19-
2FT-B2 (Figure 10). In the analysis of total annual deposition, 2.5-, 3.7-, 8- and 8.5-year
cycles were detected above the >95% false alarm level. Looking specifically at the cal-
cite components of each couplet, a strong 32-year signal was also present over the 95%
false alarm level, with 2.2 and 51-year cycles observed at >90% statistical significance.
Analysis of the dark organic rich lamination components revealed the presence of 2.5, 2.6,
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3.1 and 3.7-year cycles above the 95% false alarm level and an 8-year cycle at over 90%
statistical significance.
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Figure 10. Spectral analysis of complete varves, light and dark laminae, showing likely climate cycles
that we attribute to each frequency.

3.3. Continuous Wavelet Transform (CWT) Analysis

Continuous wavelet transforms carried out on the 130-year varve thickness record
indicates that periodicities identified with spectral analysis were present intermittently
through the 1870–2000 interval (Figure 11). Muted color regions bounded by thin lines in the
presented CWTs delineate the statistically significant cone of influence. In the area outside
this region of the wavelet spectrum, edge effects became important, with the area within
the cone corresponding to actual data analysis, while the area exposed to the edge effect
was a trend-based estimation [17,77]. In the 130-year record (Figure 11), repeating 2–4-year
cycles were most prominent from 1950–2000, though this pattern appeared periodically
earlier in the record. The 8.0–8.5-year cycles were intermittently present in the 1910–2000
interval of the record, being weakly detected from 1910 to 1950 and strongly observed from
1960 to 2000.
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There was also some suggestion of a 32–50+ year cycle that persisted throughout
the mid-1900s. However, much of this multidecadal cycle resided outside of the cone of
influence, making it a possible result of edge effects.

4. Discussion
4.1. Sedimentary Record

Varve data show that the thickest light-colored lamination 1.53 mm was deposited in
1981 (Table S1), but this varve lacks the distinct, bright color of calcite-rich laminations we
consider “characteristic varves”, suggesting abundant organic matter deposition together
with calcite during the biologically productive summer. The 1.41 mm-thick varve deposited
in 1935, by contrast, is easily identified due to the bright, consistent color of that summer
lamina that only includes organic content in the early and late summer. Microscopic
examination of strew slides with the light and dark laminae from the thick 1935 couplet
has confirmed that crystals of calcite are the dominant component [36,37]. The drought
conditions that dominated during the 1930’s combined with the frequency of hot days was
anomalously high in North America, including Southern Ontario [67–70]. Dust storms
were widespread during this period, with 1935 being the standout year where one estimate
puts the loss of topsoil from wind erosion at ~771 million metric tons [67]. Cook et al. [67]
further investigated the combined impact of increased SST, reduced spring precipitation
and the dust feedback resulting from these dust storms and found that the atmospheric
dust would have contributed to the severity of the drought conditions during this time.
While varve counting has been used in many sedimentary profile studies, e.g., [4], including
those within Crawford Lake [20,21], the 210Pb and 137Cs isotope analysis performed on
two separate cores, taken three years apart and sampled using the chronology based
on varve counting from this study, shows that varve counting within Crawford Lake is
reliable and easily reproduced given its distinct features (i.e., color change, Dust Bowl,
Great Acceleration).

4.2. Varve Deposition Mechanism and the Anthropocene GSSP

A key component of the sedimentary record in Crawford Lake as the proposed GSSP
for the Anthropocene is the presence of undisturbed, seasonally deposited, and laterally
continuous varves. Deposition of these laminations is dependent on distinctive limno-
logical conditions that vary seasonally, as well as year to year climatic variability which
significantly influences the relative impact of these variables, resulting in deposition of
calcite layers of variable thickness and color. Endogenic calcite is commonly precipitated
in hard-water lakes during the summer [81], as was suggested by Dickman [34,35] for the
light-colored sediments (laminae) from Crawford Lake. Sediment trap analysis confirms
the precipitation of calcite during the summer when the mentioned temperature and pH
conditions are met [37], capping the organic rich laminae (Figure 2). Climate affects lake
productivity, a major component for deposition of the dark organic rich layers, which
are deposited during the fall turnover [37,42]. Thick organic-rich varves from 1942 to
1948 and 1961, 1963 to 1968, indicative of higher organic matter and lake productivity,
contrast with the lower productivity periods of 1950–1955 when SCPs peaked and a major
change in siliceous microfossils occurred, suggesting increased light penetration through
the mixolimnion (Figure 7) [30]. It should be noted that the introduction of limiting nutri-
ents to the lake through anthropogenic activities in the catchment likewise had an impact
on productivity, influencing the thickness of the dark-colored laminations in the varve
couplets [20,82,83]. The above-described Dust Bowl conditions are consistent with those
shown to be ideal for calcite precipitation and deposition [36,37], thus we are confident
in using 1935 as the main tie-point for assigning this chronology and 1970 as a secondary
tie-point based on ground truthing observations [31,80]. The chronology based on varve
counting using high-resolution images derived from freeze cores is reliable and easily
correlated amongst already collected cores and any future cores taken from the central
basin (Figure 5).
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4.3. Climate Cycles Influence in Crawford Lake

The high-resolution image analysis of the annually deposited 1870–2000 record pre-
served in Crawford Lake core CRA19-2FT-B2, and the follow-on time series analysis based
on varves and their component light-colored calcite and dark-colored organic-rich lami-
nation thickness data provided unique insights into regional annual and decadal climate
trends and cycles. Cycles observed in both the spectral and wavelet analysis results sug-
gest that varve deposition in Crawford Lake is influenced by cyclic climate phenomena.
Several large-scale climate oscillations have been identified as influencing the cycles ob-
served in the Crawford Lake varve deposition record. These include: the Quasi-biennial
Oscillation (QBO, ~2.1–2.4 years; [48–50]); El Niño-Southern Oscillation (ENSO, 2–7-year
cycle; [15,17,84,85]); the Schwabe Sunspot cycle (SSC; ~11 years; 9–14 range; [86–88]); and
possibly the Pacific Decadal Oscillation (PDO, 50–70-years; [62,89]) (Figures 10 and 11).
Global teleconnections of these phenomena all have a significant impact on the climate
of southern Ontario, which in turn influences the primary productivity and catchment
runoff dynamics in lakes of the region, including Crawford Lake [50,90]. In addition, other
overprinting phenomena (e.g., the Little Ice Age, which ended in the late 19th century [70])
and anthropogenic influences (e.g., land clearance, lake acidification from industrial fall-
out; [28,30]) also influence varve deposition [20,21,91].

It is important to note that the expression of these cyclic phenomena do not act
independently, with the impact of one or more influences superimposed on one another,
either negatively or positively [61,92]. These interactions in turn have a direct impact on
sedimentation patterns and primary productivity that is evident in the fossil record, as
illustrated for Crawford Lake by Gushulak et al. [28]. A good example of these interactions
was provided by Patterson et al. [61] in an investigation of productivity changes in an
annually laminated sedimentary sequence from Effingham Inlet on the southwest coast of
Vancouver Island. In that study, it was determined that the SSC and ENSO had a significant
influence on primary productivity. However, the development of positive and negative
phases of the PDO had major influences on the expression of both the SSC and ENSO in the
sedimentary record. The nature of these interactions is complex and the subject of ongoing
research. Similar interactions likely explain why the cyclic components observed in the
Crawford Lake record appear and disappear through time.

4.3.1. Quasi-Biennial Oscillation (QBO)

We attribute high frequency oscillations of 2.1 and 2.3 years observed in the Crawford
Lake sedimentary record to the influence of the QBO as reflected in both the light and
dark laminae (Figure 10). Sedimentation in Crawford Lake is primarily controlled by
precipitation and spring freshet runoff [28,40], as they can lower the alkalinity of the water
and concentration of ions needed for calcite precipitation [36,37]. In Canada, the QBO
has primarily been observed using winter and spring temperatures and plays a role in
the timing of the annual spring loss of lake-ice cover [61,93]. The duration of ice cover on
Canadian lakes plays an important role in lake productivity, as the earlier that ice disappears
from a lake in the spring means that it warms up and “turns on” earlier, significantly
impacting the nature of biotic productivity and sedimentation in lake systems [90]. In
southern Ontario, a relationship between the QBO and extreme precipitation has also been
recognized [90].

Our analysis indicates that, while the potential role of QBO on sedimentation in
Crawford Lake is represented in much of the observed record, there are significant periods
when the quasi-biennial signal weakens significantly or disappears entirely. Analysis of
the light-colored calcite laminations (Figure 11) shows the strong presence of QBO during
the 1930s and 1970/1980s. The strong signals in the 1930s and 1970s coincide with the
Dust Bowl and PDO regime shift, respectively, where unusually hot dry conditions and
near-global Sea Surface Temperature (SST) anomalies [67–70] favored the production of
the light-colored calcite laminae, also shown in varve thickness measurements where the
thickest calcite laminae are recorded in the same periods. At these same time periods,
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we see the signal lacking in the annual and dark varve analysis, presumably due to the
drought-like conditions which would have been reflected more strongly in the calcite
layers. A similar intermittent oscillatory behavior has been observed in time-series datasets
elsewhere in North America, where similar patterns were interpreted as an indication of
phase interference from competing teleconnections (e.g., Greenland, [94]; New England
and the Maritimes, [95]; Effingham Inlet, [61]; [49]). We thus interpret intervals in the
Crawford Lake record when the probable QBO signal is not expressed in the wavelets due
to the influence of other teleconnections (e.g., Atlantic Multi-decadal Oscillation (AMO),
ENSO) and other climate drivers (e.g., solar influences) that overwhelm the QBO signal,
diminishing its significance until it is indistinguishable from background noise. This
interpretation does not, of course, preclude the additional influence of stochastic processes
on the observed time series.

4.3.2. El Niño Southern Oscillation (ENSO)

Not all ENSO events impact the Crawford Lake region, but when they do, the anomaly
is most noticeable during the winter months [59], as reflected in the spectral analysis of the
dark laminations (Figure 10). During El Niño years, warm, dry winter conditions often
prevail in southern Ontario, and during La Niña, the winter climate is typically cooler and
wetter [96,97].

As described above with QBO, warmer winter weather brought on by El Niño can
result in ice cover disappearing earlier in the spring, which significantly impacts lake
productivity through the following summer months [49]. As more abundant organisms
die out with the onset of colder fall/winter conditions and descend to the lake bottom,
thicker, dark-colored organic-rich laminae are produced. Although the influence of El Niño
is less pronounced during summer, even a minor increase in lake water temperature would
result in greater calcite precipitation in the water column, producing thicker light-colored
laminations. The relative influence of ENSO phases also has an impact on runoff from the
catchment, particularly during spring freshet with increased stream flow during La Niña
and reduced flow associated with El Niño events [67].

In North America, ENSO also has a significant impact on the expression of the Pacific
North American (PNA) pattern, a significant influencer of winter temperature and precip-
itation in its own right [98–100]. The PNA pattern is associated with strong fluctuations
in the position and strength of the East Asian jet stream. The positive phase of the PNA,
which is generally closely associated with El Niño, is in southern Ontario characterized by
a lower-than-average winter temperature. In contrast, the negative phase of the PNA tends
to be associated with La Niña and is characterized by warmer than average winter temper-
ature [96]. The Little Ice Age (~1300s–1850 in this region) was characterized by a more El
Niño-like state, with not only low average summer temperatures but also lower minimum
temperatures in general [58,101,102]. Records of glacial advances in mountainous and
northern regions of North America also provide evidence of cold summers during the Little
Ice Age [101,103,104]. The general El Niño-like state could explain the weaker ENSO-like
signal through the earlier part of the record coming out of the LIA. As mentioned with the
QBO, phase interference from competing teleconnections during the early part of the record
coming out of the LIA interfere with the potential influence of the ENSO signals, as shown
in the CWT through the early part of the record where the strong ENSO signal, does not
appear until the 1950/1960s, where varves are relatively thin (Figure 11, Supplementary
Data A).

4.3.3. Pacific Decadal Oscillation (PDO)

A possible periodicity within the PDO bandwidth is present in the examined Crawford
Lake core record beginning about 1930 and is observed in the CWT results (Figure 11) and
within the spectral analysis of the light-colored laminae (Figure 10). Of note is the 1976
Pacific climate regime shift (Figure 12) that occurred when the PDO index shifted from
dominantly negative (cool conditions) to dominantly positive values (warm conditions).
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This shift had a significant impact not only on NE Pacific climate but was also experienced
far inland [105–107]. This transition, because of its widespread influence, has come to
be known as the “Great Regime Shift”. It is possible that the anthropogenic stressors
through the late 1940s and 50s likely would have obscured the possible observations of a
PDO in this data set. The 1976 regime shift is visible in the Crawford Lake record where
it also had an impact on the expression of both ENSO and QBO in the post-1976 varve
record (Figures 10 and 11). The influence of PDO on the expression of other teleconnections,
particularly ENSO, has also been documented elsewhere [108].
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4.3.4. Schwabe Sunspot Cycle (SSC)

The observed 7.9–12.8-year cycles observed in the spectral analysis (Figure 10) of
the Crawford Lake annual varve thickness data correlates well with the SSC. These are
reflected more prominently in the dark, organic-rich, laminations rather than the light,
calcite-rich layers (Figure 11). These results demonstrate that lake productivity and catch-
ment dynamics are not only affected by the large-scale ocean-atmosphere teleconnections
described above, but also by solar forcing at scales greater than the annual solar driven
seasonal cycles. The presence of a record of the SSC within the Crawford Lake core is
consistent with numerous previous findings that describe how through both “top down”
and “bottom up” amplification processes, solar activity directly impacts climate [89]. These
include direct influences on upper atmosphere ozone production and indirect influences on
cloud formation, including jet stream trajectory, which in turn collectively has a significant
impact on atmosphere-ocean circulation, thus amplifying the relatively weak solar activity
fluctuations that occur throughout the ~11-year solar cycle [89,109,110]. At the global
scale, Laurenz et al. [111] documented strong correlations between European precipitation
patterns and the 11-year SSC, and similar correlations have been observed within Indian
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rainfall patterns [112]. The SSC has been specifically attributed as the driver of many
~11-year patterns in regional temperature and precipitation observed throughout North
America [59,113–116]. Prokoph et al. [117] recognized a similar 11-year cyclicity in mean
annual stream flow data, a metric that can be directly linked to precipitation, from sites
across southern Canada. In an analysis of instrumental historical weather data Walsh
and Patterson [50,90] observed a direct correlation between the SSC and precipitation
throughout eastern North America, including locations close to Crawford Lake.

The CWT results indicate that there was little presence of a decadal signal through to
the latter part of the 19th century (Figure 11), suggesting minimal influence of the SSC on
sedimentation in Crawford Lake during this time. This interval correlates with the latter
phases of the Little Ice Age, an interval when the strength of the SSC was significantly
reduced [118].

5. Conclusions

Varve couplets comprising distinct seasonally deposited calcite and organic laminations
are very well preserved in cores collected from below the chemocline in Crawford Lake,
undisturbed by bioturbation due to elevated salinities within the monimolimnion [37,42].
We utilized a novel, high-resolution photographic image technique to chronologically char-
acterize the depositional record of distinctive varves preserved in a freeze core recovered
from Crawford Lake spanning the 1870–2000 interval. These results will be of value to
future researchers for the purpose of identifying the age of specific varves, including the
proposed Anthropocene GSSP at the base of the calcite lamina deposited in the summer of
1950, and for correlating core records from throughout the Crawford Lake basin.

The thickness of both the light-colored laminae of endogenic calcite and the dark-
colored laminae of mainly authigenic organic matter is climate dependent [36,37]. Calcite
crystals form in the slightly basic epilimnion during a narrow window during the summer
months and descend through the slightly acidic monimolimnion to form a light-colored
summer lamina. The cap organic matter accumulates the rest of the year, but more quickly
during fall turnover. We compiled seasonal varve thickness measurement data through
this time span and used the combined fall (dark-colored organic layers) and summer (light-
colored calcite laminations) data to carry out a spectral and continuous wavelet transform
time series analysis. The results indicate that several climate teleconnections (Quasi-
Biennial Oscillation, El Niño-Southern Oscillation, and possible Pacific Decadal Oscillation)
as well as the Schwabe Sunspot Cycle are likely to have impacts on the annual and contained
seasonal deposition of varves in Crawford Lake. The interaction of these teleconnections
and the Schwabe Sunspot Cycle, as influenced by larger scale climate phenomena (e.g.,
Little Ice Age), have impacted their expression both negatively and positively in the
sedimentary record. A follow-on study has begun to more closely investigate these specific
climatic influences.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/geosciences13030087/s1, Table S1: Complete recording of varve
thickness data 1870–2000.
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