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THECAMOEBIANS AS A TOOL FOR RECONSTRUCTION OF
PALEOENVIRONMENTS IN SOME ITALIAN LAKES IN THE FOOTHILLS OF THE
SOUTHERN ALPS (ORTA, VARESE AND CANDIA)}

ALESSANDRA ASIOLI', FRaNcCO S. MEDIOLIZ AND R. TIMOTHY PATTERSON?

ABSTRACT

A study of thecamoebians was carried out on three
sediment cores collected in three Northern Italian lakes
(Orta, Varese, Candia). The recognition of distinct mor-
photypical populations (*‘morphs’’) within three species
of thecamoebians in varying paleolimnological settings
resulted in a refined understanding of the environmental
parameters controlling their distribution. For example,
D. proteiformis morph **proteiformis’’ is well adapted to
environments rich in organic matter and sulphides
whereas D. proteiformis morph “rapa” tolerates pollut-
ed and acidified waters (presence of copper sulfates, am-
monium sulfates, high content of ammonium and nitrite
nitrogen, and water with pH values between 3.9 and 4.5).

Although most questions about the ecology of theca-
moebians are still unresolved, this study strongly sug-
gests that with further research these protozoans can be
a valuable tool for palecenvironmental reconstructions
and detection of environmental deterioration.

INTRODUCTION

Studies on thecamoebians, from the last century to the
present day, have usually concentrated on the taxonomic and
biologic aspects of these arganisms. The few earlier paleo-
ecological studies that have appeared are referenced and re-
viewed in Medioli and others (1990). However, there has
been a renewed interest in the paleoecologic aspects of this
group, albeit largely limited to Canada. In these studies it
has been recognized that thecamoebians are sensitive to en-
vironmental fluctuations, and consequently they have been
used as bio-environmental indicators in late Quaternary pa-
leoenvironmental reconstructions {Medioli and Scott, 1983,
1988; Scott and Medioli, 1983; Medioli and others, 1985,
1987, 1990; Patterson and others, 1985; Honig and Scott,
1987, Collins and others, 1990; McCarthy and others,
1995). Most recently, Patterson and others (1996) demon-
strated a link between thecamoebian distribution and mer-
cury and arsenic contamination in several small lakes pol-
luted by mine tailings in northeastern Ontario.

A few lakes in the foothills of the southern Alps were
also the subject of some extremely general studies on the-
camoebian distribution performed at the turn of the century.
Recent palecenvironmental works in that area, however, are
limited to Medioli and others (1985), Asioli and Medioli
(1992), and Asioli {1993) on some short cores collected at
the bottom of Lake Garda (Italy), Parenti (1992) on surface
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samples from Lake Mantua (Ttaly), and Bénier (1993) on
surface samples from Lake Geneva {Switzerland).

Here we present results from the study of three cores
(Orta 1, Varese 1 and Candia 1) collected in the Orta, Varese
and Candia lakes located in the focthills of the southern
Alps (Northern Italy). This is the first study of thecamoe-
bians from these lakes, but we have avoided limiting our
results to the traditional descriptive listing of the species,
instead focusing in detail on the high variability of the mor-
photypes. We believe that the various morphotypes of the
same species, when abundant or dominant, represent the re-
sponse of the species to the current environmental condi-
tions. We selected populations of specific morphotypes
{*“morphs™} to verify whether or not each one of them was
related to specific detectable environmental characteristics.

NOMENCLATURE

In order to understand the palececological significance of
the material under investigation, it is essential to keep the
various morphotypical populations clearly separated from
each other but within the appropriate species. The criteria
used for this separation can vary and must be adapted to
the realities of the observed populations. Such criteria are
strictly opportunistic, thus differences in size, shape, pres-
encefabsence of spines, presence/absence and shape of the
collar etc., when they reoccur consistently, are all legitimate
features on which to base such separation.

The choice of the appropriate comprehensive terminology
to indicate morphotypical populations is complex and re-
quires some attention in order to avoid nomenclatural con-
fusion.

The terms “‘phenotype (phenom)”’ and “‘ecophenotype
(ecophenom)” indicate the product of influence of the en-
vironment on the genotype. This, in our opinion, implies the
clear knowledge of the environmental factor(s) controlling
the appearance of morphotypical populations, which can
only be decided “a peosteriori” Thus both terms appear
inappropriate, at least at this early stage of the research.

The term “forma,” according to the LC.ZN. [Art. 45g,
it], indicases infrasubspecific level, if published after 1960.
Consequently, its use would be perfectly proper and legal.
Art, 45g, i1, however, specifies that if “forma” was pub-
lished prior to 1960 it can have subspecific value. This term
could, conceivably, be misinterpreted by some as equivalent
to a “subspecies.”

As it is not our intention to create subspecies. deliberately
or accidentally, we have adopted an informal trinomial no-
menclature to keep the infrasubspecific morphotypical pop-
ulations separated. For this purpose, we identify them as
“morphotypes (morphs)” by means of a non-italicized de-
scriptive Latin name in quotation marks. This nomenclature
is non-committal and has no legal value under the Interna-
tional Code of Zoological Nomenclature.
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FIGURE 1. Index map of lakes Orta, Varese and Candia, with isobaths and location of the sites where the cores Orta I, Varese 1 and Candia 1

were collected.

PURPOSE

The purposes of this paper are to: 1) utilize knowledge
from other sources to establish some thecamoebian mor-
phological responses to environmental variables; 2) deter-
mine basic information on the relationships between morphs
and environmental variables in hopes that this will lead, in
due course, to the firm definitions of some ecophenotypes;
and 3) reconstruct paleoenvironmental successions in the
three lakes based on the distribution of different morphs.

STUDY AREA
L.AKE ORTA

Lake Orta (Fig. 1a) is included in the hydrographic basin
of Lake Maggiore; it is elongated in a roughly N-S direction
and is located at an clevation of 290 m above mean sea
level (a.m.s.l.). To the south, the lake is blocked by a mo-
raine so that its outlet, the Niguglia torrent, is at the northern

end. The lake is composed of three basins: 1) the southern,
slightly over 30 m deep, roughly delimited to the north by
the line connecting the Orta peninsula with Punta Casario;
2) the central, delimited to the north by a sill slightly over
100 m deep; and 3) the northern, where the maximum depth
of 143 m is reached.

Industrial pollution of Lake Orta started around 1927
when copper sulfates and ammonium sulfates were dumped
into the Lake by the Bemberg Co. (Monti, 1930). Recently,
the problem has been re-studied and documented in detail
by Calderoni and Mosello (1990). The dumping of copper
was substantially reduced in 1958, but effluent from several
electrogalvanic factories that were subsequently built around
the Lake resulted in further deterioration of water quality
due to nitrification (strong increase in average content of
ammoniom nitrogen and nitrite nitrogen, and persistent acid-
ification of the water with pH values declining to between
3.9 and 4.5).
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The Lake Orta zooplankton, which before 1926 were typ-
ical of an oligotrophic lake, disappeared completely when
indusirial pollution began. During subsequent years, small
and unbalanced zooplankton communities occasionally
reappeared, a situation that, although the quality of the water
has substantially improved, still persists (Bonacina, 1990).
In contrast to prepollution conditions in Lake Orta, the re-
corded values of primary production between 1958 and
1986 were more typical of a mesotrophic lake.

LAKE VARESE

Also included in the hydrographic basin of Lake Mag-
giore is Lake Varese (Fig. 1b). Its outlet, the Bardello tor-
rent, drains into Lake Maggiore. Lake Varese, which reaches
a maximum depth of 26 m, i1s in communication with Lake
Comabbio through the artificial Brabbia Canal. The waters
of Lake Varese are usuvally stratified from May to Novem-
ber; during this period the hypolimnion becomes strongly
de-oxygenated. In the 1950’s, the hydrographic basin of
Lake Varese was the site of a dramatic demographic and
industrial expansion. The consequent continuous dumping
of untreated industrial and domestic sewage directly into the
Lake increased the phosphorous and nitrogen salt content,
which produced an abnormally large development of algae.
Zopoplanktic and zoobenthic populations were drastically af-
fected and all but disappeared. Zoohenthic species became
restricted to shallow waters as deoxygenation of the hypo-
limnion made conditions there lethal. The Lake, already eu-
trophic before the beginning of the pollution process, had
become ipertrophic (Ruggiu and others, 1981).

LAKE CANDIA

This lake, located at an altitude of 226 m a.m.s.l., is in-
cluded in the hydrographic basin of the Dora Baltea River
and has a maximum depth of about 7 m (Fig. lc¢). Lake
Candia is a small eutrophic lake, rich in littoral vegetation
and densely populated by phyto- and zoo-planktic organ-
isms (Guilizzoni and others, 1989; Giussani and Galanti,
1992). Tt is frozen in January and February and has a very
low concentration of oxygen in the hypolimnion (0.5-3.0

pg/L).

MATERIALS AND METHODS

The cores were collected in July 1990 with a Mackereth
corer. They were subsequently frozen at —23°C to allow
proper slicing and the observation of the sedimentary struc-
tures. In Orta 1 and Candia 1 sub-samples 1.5 cm thick were
collected where the sediment appeared homogeneous. In Va-
rese 1 sub-samples were collected where laminaticns could
be observed and, in some cases, the size of the sample had
to be adapted to the thickness of the laminae. The sediment
of the sub-samples was temporarily stored in ethylic alcohol
(95%) and subsequently was wet-sieved through a 45-pm
mesh (instead of the standard 63 pm) in order to retrieve
most of the small specimens. As some thecamoebians are
smaller than foraminifera, the use of a 63-pm mesh could
have caused the loss of significant information (Medioli and
others 1994, p. 334). The residues were examined in stere-
oscopy and at least 300 individuals were counted in each.

The tests appeared mostly clean and well preserved. Those
filied with clay were presumed to be reworked and conse-
quently ignored.

Forty-four of the 33 samples examined contained theca-
moebians. Of these, 40 thecamoebian-bearing samples con-
tained populations large enough for statistical analysis (Pat-
terson and Fishbein, 1989; Appendix I). Twenty-seven spe-
cies and morphotypes of thecamoebians were identified. The
percent error associated with each species tally was calcu-
lated using the standard error equation (8, ):

T = x]
S, = 196 | [M]
y N

where N is the total number of counts, and X is the frac-
tional abundance of a species (Patterson and Fishbein,
1689). The percents error calculated for all twenty-seven
species and morphotypes are included in Appendix I.

(Q-mode cluster analysis was carried out on the data using
a technique that has been demonstrated to closely emulate
the results of a statistically significant “error-weighted max-
imum likelihood™ clustering method (Fishbein and Patter-
son, 1993). Q-mode cluster analysis determines similarity
between samples. This method requires that only species
present in statistically significant populations be analyzed.
Eight species and morphs were not present in statistically
significant numbers in any sample and were thus excluded
from subsequent cluster analysis. These included Arcella
spp., Difflugia cf. D. oblonga, Difflugia proteiformis morph
“curvicaulis,” Difflugia sp., Difflugia urceolata, Difflugia
urceolata morph “elongata,” Lagenodiffiugia vas, and Ne-
bela militaris. Q-mode cluster analyses were carried out on
the 16 statistically significant species using SYSTAT (v. 5.2;
Wilkinson, 1989). Euclidean distance correlation coeffi-
cients were used to measure similarity between pairs of spe-
cies, and the Ward’s linkage method was utilized to arrange
sample pairs and sample groups into a hierarchic dendro-
gram (Fig. 2).

RESULTS

Before discussing our results in detail, we will clarify our
concept of the infrasubspecific morphs utilized in this study.
In Difflugia oblonga, two clearly distinct size-classes have
prompted the recognition of two morphs: D. oblonga morph
“magna”’ and D. oblonga morph “parva™ (see PL 1). The
same procedure was applied to Cucurbitella tricuspis, also
subdivided into C. tricuspis morph “magna’” and C. tricus-
pis morph “parva.” Difflugia proteiformis proved to be
morphologically extremely variable. Consequently, the fol-
lowing subdivision was necessary: D. proteiformis morph
“proteiformis™ (with cylindrical test, narrow and elongat-
ed), D. proteiformis morph “crassa”™ (test shorter and some-
what globose), D. proteiformis morph *‘rapa” (test very
small and globose; see PL. 2), and D. proteiformis morph
“bicornis™ (similar to morph “rapa” but with two spines at
the fundus).

Cluster analysis, performed throughout the three cores,
strongly suggests the existence of six clusters (= assem-
blages; Fig. 2). We name each assemblage after the most
characteristic species or morph.
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FiGgure 2. Q-mode cluster analysis dendrogram showing the 40
most populous samples (listed vertically by sample number) from Lake
Orta (O-prefix), Varese (V-prefix) and Candia (C-prefix), divided into
distinct assemblages. Distinct clusters of samples with correlation co-
efficients greater than a selected level (dashed line) were considered
assemblages.

LAKE OrRTA

The cores contain two lithologies (Fig. 3); 1) a lower (89—
11 em) light brown silty clay, changing sharply into 2) an
upper (11-0 ¢m) black silty clay. The graphs of Fig, 2 show
the variation of the thecamoebian populations as a function
of time, Three assemblages present in core Orta 1 are de-
scribed below.

Difflugia globulus-Assemblage (84.5-64.5 cm)

The most abundant species are Difflugia globulus, D. ob-
{onga (the D. oblonga morph “magna” is relatively more
abundant), and Pontigulasia compressa (Figs. 2, 3; Appen-
dix 1). Cucurbitella tricuspis and D. proteiformis are less
abundant (the former is dominated by the morph *‘magna,”
while the latter comprises only the morph “crassa’). Les-
guereusia spiralis has abundances similar to those of C.
tricuspis, whereas the occurrence of Nebela militaris, D.
viscidula and genus Centropyxis is sporadic (see also Ap-
pendix I). Cluster analysis indicates that the sample at 32.5
cm also belongs in this assemblage.

Difflugia oblonga-Assemblage (62.5-5 cm)

In this zone, the relative abundance of D. oblonga morph
“parva,”” D. proteiformis morph “crassa,” and D. viscidula
increases (Figs. 2 and 3; Appendix 1), the abundance of D.
globulus drops dramatically, and L. spiralis shows extreme-
ly low abundances. D. oblonga morph “magna” decreases
in the lower part but increases again between 20.5 cm and
32.5 cm, along with a very small increase of D. globulus.
Pontigulasia compressa abundance shows no significant
variation through this interval, but D. preteiformis (morph
“proteiformis”) abundance increases suddenly at 12.5 cm.
Planktic, and extremely rare benthic foraminifera, have been
found at 12.5 cm and 16.5 cm.

The boundary between the D. oblonga-Assemblage and
the overlying D. proteiformis morph “rapa”-Assemblage is
not sharp. In fact, by 5 cm there has already been a pro-
gressive and drastic reduction in the number of species (Fig.
2, Appendix. I). At 8.5 cm, 70% of the assemblage consists
of D. oblonga morph ‘“‘parva.” Difflugia proteiformis
morph *‘crassa” and D. viscidula are also important, as well
as lower percentages of D. oblonga morph “‘capreolata,” D.
globulus and P. compressa. At 5 cm, 90% of the assem-
blage is composed of D. proteiformis morph “crassa” and
D. viscidula.

Difflugia proteiformis morph “rapa’-Assemblage (1.5 cm)

This assemblage is present only in the sample at 1.5 cm.
It contains only D. proteiformis-morph “rapa™ (80%) and
D. viscidula (20%; Figures 2, 3; Appendix 1).

LAKE VARESE

This core (Fig. 4) can be subdivided visually into three
lithologies: a lower (97-33 cm) brown silty clay, a middle
black silty clay (33-23 cm), and an upper (23-0 cm) unit
characterized by alternating laminae of black silty clay and
lighter colored calcite. The lower part of the core shows
some chromatic variations. For example, three light brown
silty clay zones (97-84 cm, 7860 cm and 44-33 cm) grade
into dark brown silty clay (84-78 cm, 60-44 cm and 33—
23 cm). The transitions between the chromatic units are
gradual. Two assemblages are present (Figs. 2, 4; Appendix
1)

Centropyxis spp.-Assemblage (96-62 cm)

This assemblage is dominated by a combination of the
genera Centropyxis and Cyclopyxis (about 50% of the entire
association), C. tricuspis, and D. proteiformis followed by
D. oblonga. The combination of Centropyxis and Cyclo-
Ppyxis was necessary because we have reservations about the
validity of the genus Cyclopyxis (for detail see Medioli and
Scott, 1983). Within the genus Centropyxis, the species (see
also Appendix 1) C. aculeata, C. ecornis (see Pl. 3 and C.
constricta are present, in decreasing order of frequency. Al-
though Medioli and Scott (1983) put C. ecornis in synon-
ymy with C. aculeata (Ehrenberg), we considered it useful
to distinguish them in view of the special purpose of this
paper. Cucurbitella tricuspis is represented almost exclu-
sively by the morph “‘parva,” while D. oblonga is repre-
sented mainly by the morph *‘magna.” Difflugia proteifor-
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PLATE 1

gia oblonga (Elrenberg) morph “magna”. a lateral view, b apertural view, X200 (core Orta 1, cm 84.5-86.5). 2 Difflugia oblonga
(Ehrenberg) morph “parva’. a lateral view, %300. b apertural view, X1000 (core Orta 1, cm 84.5-86.5). 3 Pontigulasia compressa (Carter). a
lateral view. b apertural view, %200 (core Orta 1, cm 84.5-86.5). 4 Diffiugia globulus (Ehrenberg). a “fundus”. b apertural view, X200 (core Orta
1, em 84.5-86.5). § Cucurbitella tricuspis Carter morph “magna” with xenogenous test. a lateral view. b apertural view, *200 (core Orta 1, cm
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mis is split between the morph “proteiformis™ and the
morph “‘rapa.”

Cucurbitella tricuspis-Assemblage (55-25 cm)

This interval is characterized by a relative increase in
abundance of the C. tricuspis morph “parva,” the disap-
pearance of C. ecornis, and a slight increase in the propor-
tion of C. aculeata. The abundances of the other species
present do not seem to change significantly through the in-
terval of the core. The sample located at 25 cm is charac-
terized by a strong increase of D. proteiformis morph ““pro-
teiformis,” the disappearance of C. constricta and Cyclo-
pyxis spp, and a decrease of D. oblonga morph “magna.”
Virtually 90% of the population is represented by three spe-
cies: D. proteiformis, C. aculeata, and C. tricuspis. The-
camoebians are absent from the 22-cm level up to the top
of the core.

LAKE CANDIA

This core {Fig. 5) is made up of dark brown silty clay
(100-65 cm, 44-30 cm), light brown silty clay (65-44 cm),
and black silty clay (30—0 cm). As in Lake Varese, the tran-
sitions between the chromatic variations are gradual.

Thecamoebians are extremely scarce in this core (the
nomber of individuals/sample varies from 15 to 115; see
Appendix I). Thecamoebian distribution is quite homoge-
neous, the assemblage being dominated by D. proteiformis
morph “proteiformis,” characterized by extreme fragility of
the test. The D. proteiformis morph “proteiformis”-Assem-
blage occupies almost the entire core except for the lower
sample (883-90 cm), which clustered with the C. tricuspis-
Assemblage. This result suggests a possible link between
the lower part of the Candia 1 core and the 25-cm interval
of the Varese 1 core, although we have been unable to ex-
plain convincingly the reasons for such a link.

Worth noticing is the presence, albeit very rare, of Cu-
curbitella corona (see Pl. 3, which was absent in Lakes
Varese and Orta. Other species (D. oblonga, C. tricuspis,
P. compressa, and the genus Centropyxis) are also present
at very low frequencies,

DISCUSSION
LAKE ORTA

Presumably, the three distinct assemblages of core Orta
1 correspond to distinct chronological events. As we have
no ecological information on the thecamoebians of these
lakes, our own paleoecological interpretation had to be
based on the most common forms and on those for which
we have some ecological information derived from the study
of North American lakes.

Collins and others (1990) suggested that D. globulus is
probably a species indicative of cold climate. Due to the
scarcity of ecological information, the trends shown by D.

oblonga morph “parva” and D. eblonga morph “magna”
are difficult to interpret. The only data supported by field
observation come from a paper by Collins and others (1990)
in which study of a transect from Baffin Island to Florida
suggests that for some species there is a close correspon-
dence between size and latitude. These authors suggest that
under conditions of high latitude and relatively short sum-
mers, reproduction would slow down and result in the for-
mation of individuals of large dimensions (for detail see
Collins and others, 1990). However, the latitude/size rela-
tionship is not simple and direct. Numerous other factors,
such as insulation and consequent relative abundance or
shortage of food, may influence the size of the individuals.
A vaguely similar phenomenon, although through a some-
what different mechanism, has been suggested repeatedly
for benthic foraminifera (e.g. Bradshaw, 1961; Delaca and
others, 1980; Brasier, 1984, Hallock and others, 1991). As
a working hypothesis, we have extended the interpretation
of Collins and others (1990) to other thecamoebians, Thus,
we interpret the decrease in size of D. oblonga and the
lower abundances of D. globulus above the boundary be-
tween the D. globulus-Assemblage and the D. oblonga-As-
semblage (Fig. 3) as the consequence of a relative improve-
ment in climatic conditions.

2P dates {Alvisi and others, in press} indicate that the
top 13 cm of the core cover about the last 70 years and,
based on the *'Am peak, that sediment deposited during
1963 is located 5 cm below the core surface. Sediment de-
posited during 1926 is located at approximately 13 ¢m be-
low the core surface and is marked by the disappearance of
phytoplankton and benthos, and the accumulation of organic
matter at the bottom (Guilizzoni and Lami, 1988). A change
in the color of sediment from brown to black at this horizon
also confirms the change in conditions. The sudden increase
of D. proteiformis morph ‘“‘proteiformis” suggests that this
morph is particularly well suited for environments accu-
mulating high levels of organic matter.

The top 5 cm of the core, corresponding to the period
from 1963 to today, is characterized by high numbers of D.
proteiformis morph “rapa” and D. viscidula (Figs. 2 and
3). We know that at the beginning of the 1960’s the Lake
experienced a substantial increase in ammonia and nitric
nitroget, a lowering of pH, oxygen depletion, and increased
concentrations of copper at the bottom (Calderoni and Mo-
sello, 1990). Hence, it appears reasonable to hypothesize
that D. proteiformis morph “rapa™ and D. viscidula are
particularly resistant to a level of pollution (at least of the
type that took place in Lake Orta) that was fatal to all other
morphs of D. proteiformis, as well as all other thecamoe-
bians.

Scott and Medioli (1983), Medioli and others (1987), and
Collins and others (1990) considered high percentages of
Cucurbitella tricuspis to be good indicators of eutrophic
conditions. In this core, C. tricuspis is never particularly

—

84.5-86.5). 6 Cucurbitella tricuspis Carter morph “parva™ with autogenous test. lateral view, X300 (core Orta 1, cm 84.5-86.5). 7 Centropvxis
aculeata (Ehrenberg) with spines, ventral view, X300 (core Orta 1, cm 44.5-46.5). 8 Centropyxis aculeata (Ehrenberg). a lateral view. b side view,
»200 {core Oria 1, cm 60.5-62.5). 9 Centropyxis constricta (Ehrenberg) with spines, apertural view, X300 (core Orta 1, cm 36,5-58.5),
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PILATE 2

1 Difflugia proteiformis Lamarck morph “proteiformis™. a lateral view. b side view, X200 (core Orta 1, cm 12.5-14.5). 2 Difflugia proteiformis
Lamarck morph “crassa”, lateral view, X300 (core Orta 1, em 20.5-22.5). 3 Difflugia proteiformis Lamarck morph “rapa”, lateral view, X300
(core Orta 1, om 1.5-3.5). 4 Difflugia protejformis Lamarck morph “rapa’”, lateral view, X750 (core Oxta 1, cm 1.5-3.5). 5 Difflugia proteiformis
Lamarck morph “rapa”, lateral view, X750 (core Orta 1, cm 1.5-3.5). 6 Difflugia viscidula Penard, lateral view, X750 (core Orta 1, cm 80.5—
82.5). 7 Difflugia viscidila Penard, lateral view, X750 {core Orta 1, cm 1.5-3.5), 8 Difflugia viscidula Penard, lateral view, X750 (core Orta 1,
cm 1.5-3.3). 9 Lagenodiffiugia vas (Leidy). a lateral view. b apertural view, x300 {core Orta 1, cm 72.5-74.5}). 10 Lesquerensia spiralis (Schium-
berger). a lateral view, X300, b particular of the antogenous test with siliceous rods, X600 (core Orta 1, cm 84.5-86.5).
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LAKE ORTA {Core OrtaI)
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FIGURE 3. Lithologic column, thecamoebian assemblage distribution, and distribution curves of the main species and morphs in core Orta 1.

*210Pb date from Alvisi and others, in press.

abundant, probably due to the oligotrophic nature of Lake
Ona before becoming polluted.

The presence of planktic foraminifera in the interval
20.5-12.5 c¢m coincides with an increase in the rate of sed-
imentation from 0.4 to 0.8gr/cm?/year (Alvisi and others, in
press). This horizon was deposited just prior to 1926 (the
date that construction of the Bemberg plant began). We con-
clude that both the increased sedimentation rate and the
presence of planktic foraminifera are the result of constroc-
tion site activity (possibly the dumping of marine sand).

The result of palynological studies (Alvisi, 1993) on the
lake indicate that the sediments between 77 and 43 cm are
characterized by an increase in taxa suggestive of increased
anthropogenic activily in the area. More specifically, these
results indicate increased agricultural output, primarily of
cereal grains, that peaked at about the 50 cm level. This
period was immediately preceded by increased detrital input
to the lake {mainly quartz) which has been interpreted to
indicate either deforestation to increase farm land and/or
increased precipitation. Analysis of sediments between 43
and 19 cm indicate a moderate expansion of forests (walnut)
as a consequence of the decrease in farm land. The interval
between 19-0 ¢m provides evidence of a prolonged anthro-
pogenic disturbance that caused a vegetational diversifica-
tion in the area, Deforestation and/or increased precipitation
must have favored erosion of the surrounding areas with
consequent increased input of nutrients in the lake,

From the above information, the assemblages character-
izing the core can be interpreted as follows. 1) The early D.
globulus-Assemblage may indicate relatively colder water
conditions during deposition of the basal core unit (as sug-
gested by the abundance of D. globulus and the scarcity of
D. oblonga morph *“parva’}. 2) The overlying D. oblonga-

Assemblage indicates an improvement of climatic condi-
tions, possibly accompanied by greater availability of food.
The sample at 32.5 cm, included with the D, globulus-As-
semblage by cluster analysis, may indicate a temporary re-
turn to colder conditions. 3) The makeup of the D). protei-
formis morph “rapa”-Assemblage is profoundly different
from the previous assemblage and is a proxy for drastic
limnological change due to severe pollution that affected the
lake starting in 1927. The early consequences of this pol-
Iution, an increase of D. proteiformis-morph “proteifor-
mis,” are detectable at the top of the core.

1LAKE VARESE

The thecamoebian assemblage found in core Varese 1 is
quite different from that of core Orta 1. In Lake Varese,
Cucurbitella tricuspis and the genus Centropyxis predom-
inate while both taxa, particularly the genus Centropyxis,
are rather scarce in Lake Orta. However, a very similar as-
semblage to the one found in Lake Varese has been reported
from the eutrophic Lake Superior of Mantua (Parenti, 1992).

The boundary between the Centropyxis spp.-Assemblage
and C. tricuspis-Assemblage is marked by a transition from
light brown silty clay to dark brown silty clay (Fig. 4). This
boundary also coincides with the disappearance of C. ecor-
nis and a relative increase in the proportion of C. fricuspis.
The increased abundance of C. tricuspis, prima facie, pro-
vides evidence of a shift of the lacustrine waters towards
eutrophic conditions. This eutrophication appears to be con-
firmed by the overall decrease of thecamoebians by 55 cm
{only 126 specimens in the entire sample; see Appendix II).
The number of specimens of C. tricuspis morph “parva,”
however, remains rather constant, thus suggesting that this
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Dark brown silty clay

morph is unaffected by the development of eutrophic con-
ditions.

From analysis of an earlier 90-cm core, core FC collected
in the deepest part of Lake Varese, Lami (1986) described
three lithologic intervals (Fig. 6) that can be correlated well
with the stratigraphy found in the Varese 1 core. This com-
parison is useful as no dates were obtained in the Varese 1
core. The lower 60-cm interval of core FC is comproed of
gray clay and corresponds to the interval dominated by the
Centropyxis spp.-Assemblage of core Varese 1. This inter-
val was deposited prior to 1945 when the lake was naturally
eutrophic, as indicated by the presence of strictly anaerobic
photosynthetic sulfur bacteria (Guilizzoni and others, 1986).
The 33 cm-level of core Varese 1 was deposited around
1945, and thus the deeper parts of this core must be attrib-
uted to the same period. The thecamoebian fauna of this
interval, therefore, is directly comparable with that studied
by Parenti (1992) in the Lake Superior of Mantua.

An intermediate interval (20-30 cm) in core FC of non-
laminated dark clay rich in organic matter and iron sulfates
was deposited during the period 1945-60 when the region
became more industrialized. The corresponding interval in

Light brown siity clay
Black silty clay

Lithologic column, thecamoebian assemblage distribution, and distribution curves of the main species and morphs in core Varese 1.

Core Varese 1 is non-laminated black silty clay in the 33—
25-cm interval that is dominated by the C. fricuspis Assem-
blage. The relative increase of D. proteiformis morph “pro-
teiformis” in core Varese 1 between 33 and 23 cm, com-
pared to the lower interval (Fig. 5}, suggests that this morph
is particularly well adapted to environments rich in organic
matter and/or to reducing conditions.

The uppermost 20 cm of core FC and 22 cm of core
Varese 1 are composed of laminated clay corresponding to
post-1960 deposition, when benthic organisms completely
disappeared from the deepest part of the lake (Bonomi,
1962) in conjunction with the development of meromithic
conditions (Bonomi, 1964}, The lack of bioturbators is the
primary factor that permitted preservation of the laminae.
The absence of thecamoebians in the upper laminated clay
interval is probably due to the development of adverse hy-
drochemical conditions in the hypolimnion. However, even
by the 25-cm horizon there was a significant decrease in the
number of thecamoebians (96 specimens at 33 cm and 116
at 25 cm), suggesting that the hypolimnion was already in
critical condition during the deposition of the black non-
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FLATE 3

1 Difflugia urceolata Carter. a lateral view. b apertural view, %200 (core Orta 1, cm 76.5-74.5). 2 Difflugia nrceolora Carter with spines. a
lateral view. b apertural view, %300 (core Orta 1, cm 64.5-66.5). 3 Difflugia urceolata Carter morph “elongata™ Patterson and others, 1985. a
lateral view. b apertural view, X150 {core Orta 1, cm 84.5-86.3). 4 Difflugia oblonga (Ehrenberg) morph “capreoclata”. a lateral view. b apertural
view, X200 (core Orta 1, cm 84.5-86.3). 5 Nebela miliraris Penard. a lateral view. b apertural view, X300. ¢ particular of the autogenous test,
X3000 (core Orta 1, cm 76,5-78.5), 6 Centropyxis ecornis (Ehrenberg). a side view. b ventral view, X500 (core Varese 1, cm 62-64). 7 Cucurbitella
corona {Wallich). a lateral view. b apertural view, X200 (core Candia 1, cm 0-3), ’
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FIGURE 5.

laminated silty-clay. These conditions were probably mar-
ginal although not yet fatal, for the thecamoebians.

Alvisi (1993) carried out a mineralogical analysis of core
Varese 1. He interpreted the darker zones to denote periods
when climate was relatively colder and more humid, based
on the higher organic content, larger detrital content, lower
Ca/Mg ratio relative to the lighter zones, and higher quan-
tities of Fe,, and P,,. According to Alvisi, these data indi-
cate enhanced preservation of organic matter due to pro-
longed periods of water stagnation, a situation likely to oc-
cur during winter when the lake freezes over. Thus, such
intervals represent periods with colder and longer winters.
It is also likely that the humidity was higher, as suggested
by a larger detrital component derived from a larger load of
tributary rivers during wet periods, This interpretation is
partially supported by the patterns of thecamoebian distri-
bution. Although in the 84—78 cm interval no significant
variations of the assemnblage are recorded, C. ecornis dis-
appears in the 60-44 cm interval. Simultancously, C. tri-
cuspis morph “parva’ increases and by 55 cm the overall
number of thecamoebians decreases as well. These faunal
changes suggest that significant changes in the lake’s phys-

Lithologic column, thecamoebian assemblage distribution, and distribution curves of the main species and morphs in core Candia 1.

iography must have occurred. Unfortunately, the lack of in-
formation on the ecology of most species of thecamoebians
makes it impossible to confirm, on the basis of thecamoe-
bians alone, that climatic variations occurred during this in-
terval.

LAKE CANDIA

The thecamoebian assemblages of core Candia 1 are sub-
stantially different from those of the other two lakes. In a
core collected in the deepest part of the lake and presently
under study, Guilizzoni and Lami (personal communication,
1992) found that in the top 30 cm there is an increase in
organic matter (about 20% to 40% of the dry weight). Alse,
there is an increase in the products of degradation of chlo-
rophyll and of CaCO,, both indicating an increase in pri-
mary productivity. In addition, Guilizzoni and others (1989)
reported the presence, in recent sediments as well as in the
lake’s water, of okenone, a pigment characteristic of a pho-
tosynthetic sulfur bacteria, which indicates the presence of
H,S and anaerobic conditions. These observations suggest
that during the last 200 years (Appleby, personal commu-
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Ficure 4. Lithologic correlation between cores FC and Varese 1.

nication, 1994), corresponding to the 30-0 ¢m interval, this
eutrophic lake had an antocthonous production (C/N < 10)
with high organic content in the sediment and frequent an-
aerobic episodes (Guilizzoni and Lami, personal commu-
nication, 1992). The fact that the D. proteiformis morph
“proteiformis”’-Assemblage clearly dominates the low
abundance association confirms that this morph is particu-
larly adapted to these conditions.

We have no explanation for the extreme [ragility of tests
observed in the lake. This phenomenon, not observed in
Lake Orta or Lake Varese, was reported by Medioli and
others (1985) in thecamoebian samples collected from Lake
Garda. These authors, at the time, hypothesized a relation-
ship between the fragility of the tests and the alkalinity of
the lake, This hypothesis could not be confirmed here since
only D. proteiformis morph “proteiformis™ seems to have
particularly fragile tests and because the thecamoebians of
Lake Varese, where the environment is also alkaline, do not
show any tendency to fragility.

Lake Candia is eutrophic, and yet C. tricuspis is present
in unexpectedly low amounts (<10). While this does not
necessarily conflict with resuits of previous studies indicat-
ing that this species peaks under eutrophic conditions, it
suggests that eutrophism alone might not be sufficient to
guarantee that the species will be abundant. A similar prob-
lem is posed by D. oblonga and P. compressa. Collins and
others (1990) described these species as “ubiquitarian,”
with D. oblonga being less frequent in oligotrophic lakes.
Our data conflict with this interpretation as the greatest
abundances of D. oblonga were found in oligotrophic por-
tions of the core from Lake Orta, and P. compressa was
rare or absent in eutrophic lake sediments.

Hence, we suggest that because of the variation in re-
sponse, all distributions of species and morphs, regardless
of how contradictory, with previous findings bz recorded as
a matter of routine. Causes of the contradictions may be

identified eventually, and the problems will become easier
to solve,

CONCLUSIONS

The thecamoebian associations stundied in lakes Candia,
Varese and Orta differ from each other and further confirm
the profound differences (morphometric, physiographic, tro-
phic, chemical and productivity) between the three lakes.
Lake Orta, except for the topmost samplie which represents
an anomalous sifuation, contains an association composed
of D. oblonga, D. globulus, D. proteiformis, and P. com-
pressa. In Lake Varese, the genus Centropyxis and C. tri-
cuspis, both rare in Lake Orta, form a significant (50-80%)
fraction of the association. In Lake Candia the association
1s dominated by D. proteiformis. This diversification ap-
pears to confirm that thecamoebians are sensitive to envi-
ronmental differences,

Problems concerning the ecological significance of some
species (e.g., C. tricuspis, D. oblonga and P. compressa)
have emerged. Clearly, we are still in the stage of collecting
information on this subject and some contradictory data are
unavoidable. However, such contradictions underline the
importance for future studies to record all available infor-
mation in a systematic and thorough manner, because only
in this way will the study of thecamoebian associations be-
come an essential tool for interpreting the evolution of la-
custrine palepenvironments.

This study has shown separating the various morphs of
each species as if they were independent taxa increases the
palececological value of these organisms, The distinction,
within the species D. proteiformis, of the infrasubspecific
units D). proteiformis morph “‘proteiformis,” D. proteifor-
mis morph “‘crassa,” D. proteiformis morph “rapa” and D.
proteiformis morph “bicornis” has allowed the recognition
of morph D. proteiformis morph *‘proteiformis” as an ex-



260 ASIOLL, MEDIOLI, AND PATTERSON

cellent indicator of environments low in oxygen and rich in
organics and sulfites, and of morph D. proteiformis morph
“rapa” as an indicator of environments strongly polluted
for a long period of time, as is the case of Lake Orta.

This study has confirmed that although the number of
genuing thecamoebian species is small, the ecophenotypic
variability within each species is high, and that this vari-
ahility can be used as a paleoecological indicator.
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