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ABSTRACr-The advent of readily available computer-based clustering packages has created some controversy in the micropale- 
ontological community concerning the use and interpretation of computer-based biofacies discrimination. This is because dramatically 
different results can be obtained depending on methodology. The analysis of various clustering techniques reveals that, in most 
instances, no statistical hypothesis is contained in the clustering model and no basis exists for accepting one biofacies partitioning 
over another. Furthermore, most techniques do not consider standard error in species abundances and generate results that are not 
statistically relevant. When many rare species are present, statistically insignificant differences in rare species can accumulate and 
overshadow the significant differences in the major species, leading to biofacies containing members having little in common. 

A statistically based "error-weighted maximum likelihood" (EWML) clustering method is described that determines biofacies by 
assuming that samples from a common biofacies are normally distributed. Species variability is weighted to be inversely proportional 
to measurement uncertainty. The method has been applied to samples collected from the Fraser River Delta marsh and shows that 
five distinct biofacies can be resolved in the data. Similar results were obtained from readily available packages when the data set 
was preprocessed to reduce the number of degrees of freedom. Based on the sample results from the new algorithm, and on tests 
using a representative micropaleontological data set, a more conventional iterative processing method is recommended. This method, 
although not statistical in nature, produces similar results to EWML (not commercially available yet) with readily available analysis 
packages. Finally, some of the more common clustering techniques are discussed and strategies for their proper utilization are 
recommended. 

INTRODUCTION 

MICROPALEONTOLOGISTS OFTEN use quantitative analysis of 
fossil faunas to determine the number and characteristics 

of different environments (biofacies) represented by the samples 
under consideration. When the number of samples is small, it 
is possible to intuitively define the biofacies boundaries and 
subdivide samples. However, if the number of samples is large, 
or if the differences between biofacies are subtle, more rigorous 
analytical methods are required to distinguish discrete environ- 
ments. In these cases, computer-based multivariate analysis tools 
must be used to determine the relationships among samples. 

Until recently, this sort of analysis was impossible for the 
scientist unversed in computer programming and statistical 
methods (Hooper, 1969a, 1969b; Yzerdraat et al., 1969; Buzas, 
1970, 1979). A survey ofpaleontological studies from the 1950's, 
1960's, and even the early 1970's shows that very few research- 
ers utilized computers or multivariate analysis to classify their 
data. However, with the recent proliferation of microcomputers 
and the accompanying rapid development of off-the-shelf sta- 
tistical programs, most micropaleontologists now utilize some 
form of computer-based multivariate analysis, ranging from 
cluster analysis to principal component analysis, in their re- 
search. Unfortunately, many paleontologists have only a limited 
background in statistics and often use techniques that are in- 
appropriate to the underlying statistical hypotheses. This prob- 
lem arises because many popular software packages have not 
been specifically designed to perform the biofacies analysis re- 
quired by the paleontologist and many of the subroutines con- 
tained in these programs utilize algorithms with little signifi- 
cance to paleontological applications. 

The purpose of this paper is to present a new statistically 
significant "error-weighted maximum likelihood" (EWML) 
method of clustering. Since the EWML clustering method is not 
presently commercially available, a procedure for obtaining 
similar results with off-the-shelf software is presented. Presently 
available methods of cluster analysis are evaluated in the Ap- 

pendix. For those not familiar with this form of multivariate 
analysis, the underlying concepts are explained and defined. This 
information will facilitate the choice of clustering software and 
development of analysis strategies most likely to produce reli- 
able results. 

A STATISTICALLY DERIVED CLUSTERING METHOD 

The basic objective of a cluster analysis is to determine the 
number of clusters represented by a data set and to determine 
the probable affinity of the various component samples. Clus- 
tering packages contain many clustering strategy options (sim- 
ilarity, linkage, and clustering algorithm). Dramatically different 
results can be obtained from the same data set depending on 
the clustering strategy chosen (see Appendix). In most cases, 
deciding on the best clustering strategy requires some statistical 
hypothesis to define a biofacies. Unfortunately, the commonly 
available strategies lack any statistical basis and all results are 
therefore equally valid or invalid (Buzas, 1979). 

The difficulty in formulating a clustering algorithm based on 
statistical hypotheses arises from the absence of a mathematical 
definition of a biofacies. Intuitively we know that samples from 
a biofacies have similar characteristics, although some vari- 
ability is expected. This similarity is mathematically described 
by the average fractional abundance or centroid. The centroid 
is "on average" the expected abundances in the samples (see 
Appendix). Variability is best explained by example. Consider 
a hypothetical biofacies containing just two species (species 1, 
species 2). One hundred samples are collected and their frac- 
tional abundances are plotted in Figures 1 and 2. Assuming 
normal and uniform distribution in Figure 1 the sum of the two 
abundances adds to 1, so the samples lie along a line. The 
centroid, plotted as a +, lies towards the center of the line. 

The standard deviation a, shown by the box, characterizes 
variability around the centroid and marks the biofacies bound- 
ary. However, a does not uniquely characterize variability. For 
example, Figure 2 is derived from a second biofacies having the 
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FIGURE I-Sample scatter diagram of hypothetical species 1 versus 
species 2 plane. Points are the positions of 100 samples. The plot is 
a straight line because each sample contains only these two species 
(summing to one). The centroid (+) is plotted toward the center of 
the line. The data points enclosed by the two lines perpendicular to 
the axis of plotted points represent the biofacies boundary, which 
characterizes the variability (standard deviation) around the centroid. 

same centroid and standard deviation, but having samples con- 
centrated near the edges of the boundary of the box. Additional 
parameters are required to mathematically distinguish the two 
biofacies and quantify variability. 

Biofacies containing more than two species require multidi- 
mensional statistical methods, but the concepts illustrated by 
the previous example are the same. For example, consider a 
biofacies having a third species collected in two hundred sam- 
ples (Figure 3). The centroid still characterizes the average sam- 
ple, but the variability and biofacies boundaries are indicated 
by an ellipse. The variability is now calculated from the co- 
variance matrix. This has important consequences when ascer- 
taining if a sample belongs to a particular biofacies. Variability 
is most pronounced in one direction, as shown by the elongation 
of the ellipsoid. For example, the average species distribution 
within the ellipse is 30 percent species 1, 50 percent species 2, 
and 20 percent species 3. Sample 1, with 48 percent, 39 percent, 
13 percent of species 1, 2, and 3, respectively (Figure 3), is inside 
the biofacies boundary. The Euclidean distance (see Appendix 
for definition) from the centroid is 0.22. Meanwhile sample 2, 
with abundances 30 percent, 50 percent, 20 percent, and sep- 
arated from the centroid by a distance of only 0.09, is outside 
the boundary and statistically less likely to be from this biofacies, 
even though it is geometrically closer to the average. Most cur- 
rently available clustering methods would measure the Euclid- 
ean distance from the centroid and would consider sample 2 to 
be more representative of the biofacies than sample 1 in the 
biofacies. This is despite the graphical evidence that shows that 
the first sample differs from the centroid in a fashion more 
typical of the biofacies. For many distributions, specifying the 
centroid, standard deviation, and form of the covariance matrix 
completely describes the biofacies statistically. 

The "error weighted maximum likelihood" (EWML) proce- 
dure contains the statistical hypothesis that samples from sim- 

ilar environments (biofacies) are distributed normally around a 
centroid, and that a covariance matrix describes the amount of 
variability of samples within the biofacies. 

For any sample, the fractional abundance of the ith species 
has an uncertainty (Dxi) because it is estimated from a sample 
containing a finite number of specimens (Patterson and Fish- 
bein, 1989). Consequently, although a sample was introduced 
as a point in abundance space, it is actually a volume (AV) 
where AV = Ax,, Ax2 ... AxK surrounding the abundance (xi). 
Samples with abundances that are contained within the uncer- 
tainty volume of other samples are statistically indistinguish- 
able. A successful clustering algorithm should not distinguish 
between samples having no statistical differences. 

A statistical model containing these criteria is expressed in 
equation 1. For a sample s(m) derived from a biofacies which 
varies normally around average values j, the density f(m) of 
samples in the volume AV centered at x(m) is the likelihood of 
finding a sample in this region. When the density is one, any 
possible sample one might collect would have abundances some- 
where in the volume. Likewise when the density is near zero, 
so is the fraction of samples contained in AV. 

I rxl(m)+Ax 
(m) 

f(x(m)) = 
(211)k2 S 1/2 Jxl(m) x(m) 

xK(m)+"XK(m) 
K K 1 

exp - I S -I (X'r- r )(X' - 
#)\ 

JxK(m)-xK(m) 2 r= JX 

?dx', . . . dx'K. (1) 

It is therefore most reasonable to conclude that a sample having 
these abundances is from another biofacies. 

The right side of equation 1 is a statement of the statistical 
hypothesis that samples are normally distributed around the 
centroid and that the covariance matrix S or its inverse char- 
acterizes the width of the variability. The argument of the ex- 
ponential function 

K K 

2 S 'rs(X', 
- 

r Lr)(x's 
- 

is) 
r=l s=l 

(2) 

is the squared Mahalanobis distance (defined in the Appendix) 
between the centroid and any arbitrary point x' with coordinates 
x'r or x's. Species "t" which vary greatly have small coefficients 

S-Lt,2. The term in the sum where r, s = t, S-t,,(x', - ,)2 has a 

relatively small contribution to the distance unless x', - ,t is 
large. Likewise species "v" which have small variability will 
have a large S- vv and the term S 'vv(x'v - ,v)2 will have a large 
contribution to the sum, unless x'v is almost equal to 4v. Sim- 
ilarly, if two species "t, v" have correlated variabilities, the 
coefficient S-1,V = S-'tv will be large or small depending on 
whether the correlation is small or large. 

The factor - /2 multiplying the squared Mahalanobis distance 
gives the distribution its maximum at the centroid while nor- 
malizing the width of the distribution to the covariance matrix 
described below. The exponential function is one when its ar- 
gument is zero and decreases rapidly to zero when its argument 
is greater than 1 (Mahalanobis distance greater than 2). The 
biofacies boundary occurs at a Mahalanobis distance of 1. 

The density function is averaged over the uncertainty of the 
measurements produced by statistical counting errors (Patterson 
and Fishbein, 1989). The integrals over each of the coordinates 
centered on the sample abundances accomplish this averaging. 
Lastly, the factor 1/(2I)k/21 S 1/2, where IS is the determinant 
of S, normalizes the exponential so that the total density over 
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FIGURE 2--Sample scatter diagram of hypothetical species 1 versus species 2 plane. Points are the positions of 100 samples. The plot is a straight 
line because each sample contains only these two species (summing to one). The centroid (+) is plotted toward the center of the line. The data 
points enclosed by the two lines perpendicular to the axis of plotted points represent the biofacies boundary, which characterizes the variability 
(standard deviation) around the centroid. The centroid and standard deviation illustrated by this biofacies is the same as shown in Figure 1 
but the samples are concentrated near the edges of the biofacies boundary. 
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all possible species abundances is 1. This normalization is valid 
only when the variables (abundances) can be arbitrarily negative 
or positive. An assumption is made that at the extremes of valid 
abundances (0, + 1) the Mahalanobis distance is much larger 
than one. 

The covariance matrix and its inverse are symmetrical ma- 
trices that stretch and rotate lines radiating from the centroid. 
A set of "K" directions exists (see Cushing, 1975) that the co- 
variance matrix only stretches. The directions are always mu- 
tually perpendicular. The K directions are given the symbols e 
. .. ek and the amount of stretching is given symbols (a, ... . ). 
The original lines ... ek radiating from the centroid define a 
sphere. Transformation of those directions by the covariance 
matrix produces lines oa,e, ... akek that define an ellipsoid. 

1 
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FIGURE 3-Sample scatter diagram of hypothetical species 1 versus 
species 2 plane. Points are the positions of 200 samples. The centroid 
(+) is plotted toward the center of the ellipse. The ellipse surrounding 
many of the data points represents the biofacies boundary and char- 
acterizes the variability (standard deviation) around the centroid. The 
projections of the standard ellipsoids for the biofacies characterized 
by these species is shown from upper left to lower right. Variability 
is primarily in one direction, as shown by the elongation of the ellip- 
soid. Sample 1 is inside the biofacies boundary (Euclidean distance 

= 0.22) but sample 2, although closer to the centroid (Euclidean 
distance = 0.09), is statistically less likely to be from this biofacies. 
Most available clustering methods using Euclidean distance from the 
centroid as the primary determinant of similarity would place the 
second sample in the biofacies before the first. However, the graphical 
evidence shows that the first sample differs from the centroid in a 
fashion more typical of the biofacies. For example, the average species 
distribution is 30 percent species 1, 50 percent species 2, and 20 
percent species 3. For many distributions, specifying the centroid, 
standard deviation, and form of the distribution function completely 
describes the biofacies statistically. 
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The product of the axes lengths (s,, s2 . . . Sk), is proportional 
to the volume of the standard ellipsoid and is also the square 
root of the determinant (S). Equation 1 is therefore the ratio of 
the volume of the uncertainty divided by the volume of the 
standard ellipsoid, times a weighting function that depends only 
on the Mahalanobis Euclidean distance to the centroid. 

As stated above, the principal ellipsoid is the surface where 
the Mahalanobis distance is equal to 1. Solving for this surface 
is an essential part of the EWML clustering method. The co- 
variance matrix, set of directions e ... ek and stretching (a, . .. 
ak) all have K(k + 1)/2 independent coefficients (symmetry 
reduces the number from K2) because they are orthogonal. The 
covariance matrix can be written in terms of ai and ei. 

K 

Srs = Z ok2erkesk, 
k=l 

where r, s = 1 . . . K. 

K 

S-'rs = 2 ak-2ekek, where r, s = ... K. 
k-I 

(3) 

(4) 

Equation 3 is a set of K(k + 1)/2 independent linear equations 
for finding the directions ei and the amount of stretching. The 
probability is constant whenever the argument of the exponen- 
tial is constant. 

Substituting equation 3 into equation 2, the Mahalanobis dis- 
tance is 1 and probability is constant when the Euclidian dis- 
tance an from the centroid along n is 

n=- 2 (2 nie.) (5) 
r=l 'r2 L= 

I 

where an is the radius from the centroid to the surface. This was 
the basic equation used to graph the principal ellipsoid in any 
arbitrary plane and was used for Figures 1 and 2. The innermost 
sum in equation 5 is the dot product or direction cosines between 
n and er. 

Any biofacies determination should include examination of 
the correlation matrix's standard ellipsoid. The standard ellip- 
soid, which is a surface of constant probability, provides a pic- 
ture of the distribution of samples in the biofacies. In directions 
where the ellipsoid is thin, the biofacies have little variability. 
Similarly, in directions in which the ellipsoid is elongated, frac- 
tional abundances have great variability. Often the axes are 
rotated between species abundance directions. This means that 
the abundance of one species varies in proportion to variations 
in the abundances of other species. This variability could be 
characteristic of a species' sensitivity to environmental vari- 
ability. For example, within a salt marsh, abundances of halo- 
philic and halophobic foraminifera would be inversely corre- 
lated, owing to salinity variability. This would be represented 
by some of the axes having components simultaneously along 
halophilic and halophobic species directions. However, some 
correlation arises because the sum of fractional abundances is 
equal to 1. For example, the biofacies from a salt marsh con- 
taining only two species, both halophilic, will show an inverse 
correlation and have the standard ellipse inclined 45? from the 
species directions. Examining the shape and orientation of the 
principal ellipsoid assists the paleontologist in determining spe- 
cies relationships, in assessing when biofacies can be associated 
with a particular environment, and if biofacies variability is 
normally distributed (described by equation 1). 

Solving equation 2 is often referred to as the "principal com- 
ponent" or "eigenvalue problem." The vectors (ek), referred to 
as the principal components, represent a linear combination of 
the observed variables, provide maximal discrimination of the 

samples under study, and do not correlate with any other prin- 
cipal components. The choice of coordinate system is arbitrary. 
The most obvious set is species direction. For statistical analysis, 
it is convenient to define the "principal coordinate system" 
(PCS), which has its origin at the center of the distribution. 
Coordinates are measured along the axes of the principal ellipse. 
The principal coordinate system is specific to a biofacies. The 
introduction of PCS allows considerable simplification of the 
basic equation (equation 1). The transformation from species 
axes to PCS axes involves a translation (x - u) and a rotation 
eri between old and new coordinate directions. In the principal 
coordinate system, each sample has coordinates 

K 

Yi(m) = (e,ir - r), 
r=l 

and uncertainties 

i= ...K (6) 

K 

Ay2(m) = 
Sri2, i= 1 . . . K. 

r=l 
(7) 

In the principal coordinate system, the probability function 
(equation 1) reduces to the particularly simple form 

K 1 , yi(m)+Ayi(m)/2 -y2 2 

f(m) = 
(2/2i i(m)-(m)/2 exp dy'i 

-i=- (l2r) a iy(m)-Ayi(m)/2 2a,2 

in which the volume integral In(l) converts into a product of 
independent one-dimensional integrals (the symbol X means to 
multiply all terms with i [i = 1, 2, ... K]). 

The uncertainties of a sample's fractional abundances are 
often greater than the Euclidean distance from the centroid. This 
is usually true if some of the species are rare. In such cases, 
some of a sample's principal coordinates will be smaller than 
the principal coordinate uncertainties. For those principal co- 
ordinates, the one-dimensional probability integral in equation 
8 (the quantity between brackets) is approximately equal to 1. 
Axes of the principal ellipse for which this is true are called 
"unresolved axes." The value of these principal coordinates can 
have any magnitude smaller than the principal uncertainty with- 
out changing the probability. 

Determining the probability that a sample is derived from a 
particular environment requires estimates of both the centroid 
and covariance matrix. An unbiased estimate of the centroid 
based on (M) samples is given by 

(8) 

1 
M 

i = 
M xi(m). 
m M=l 

(9) 

The centroid given by equation (9) is not equivalent to the mean 
used by Buzas (1990), in which specimens of all samples within 
a biofacies are accumulated into a single "super sample." This 
is equivalent to an error-weighted average. Intrinsic to this for- 
mulation is the notion that variation within a biofacies is smaller 
than counting errors. Using his suggestion when the biofacies 
variability is large will distort the estimate of the centroid to- 
wards samples with better statistics (larger specimen counts). 
For example, with reference to Figure 2, if the samples in the 
upper left corer contain more specimens than samples in the 
lower right comer, application of an error-weighted average will 
push the estimate toward the upper left corer. Clearly the dif- 
ferences are artifacts of the counting method. Buzas's mean will 
only be equivalent to the centroid if an equal number of spec- 
imens is counted in each sample, a generally unpractical re- 
quirement (Figure 2). 
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The probability that a sample is derived from a biofacies 
exists, even when its determinant is zero and the inverse of the 
covariance matrix does not exist. Wilks (1962) provided an 
unbiased estimate of the determinant of the covariance matrix 
(equation 9), 

(m- K- 1)! 
= 

(M- 1)! l (10) 

where u is the scatter matrix defined in equation 20. An estimate 
of the covariance matrix consistent with equation 10 is given 
in equation 11. 

Sj =(M(MKB)!) 2 (xi(m) - 
A)(xj(m) 

- A). (11) 

Equations 10 and 11 show that when the number of samples 
from the biofacies is less than the number of species (K > M), 
the determinant of the estimated covariance matrix is zero. 
Since the covariance matrix has an inverse if and only if its 
determinant is nonzero, it is not obvious that equations 1 or 8 
can be evaluated. Analysis of the principal component problem 
of the scatter matrix (uij) shows that some of the axes (K + 1 
- M axes) have a zero length. These zero length axes, called 
"undetermined axes," arise because the (M) data points are 
described by M - 1 perpendicular vectors. Even though some 
of the principal coordinates are undetermined, the expansion 
of the sample's fractional abundances as presented in principal 
components is not arbitrary because these principal components 
are always zero. Examining equation 8 in the limit where a 
principal component has a zero length shows that the term in 
brackets is equal to one. 

The process of gathering more information about the biofacies 
reduces the probability when there are undetermined axes. The 
K + 1 - M undetermined axes exist because insufficient in- 
formation is provided to estimate them. The zero length is an 
assumed default length in the absence of more data. It is also 
assumed that any length, including zero, has significant impli- 
cations for paleontological analysis. A length equal to zero im- 
plies that variability along that direction is much smaller than 
the uncertainty of the fractional abundances. In this case prob- 
ability is improved by uncertainty and clustering favors clusters 
having fewer samples than species. The optimum clustering 
consists of clusters containing a single sample. 

There are also large uncertainties in estimates of the proba- 
bility when some of the principal ellipsoid axes are undeter- 
mined. If undetermined axes are assumed to be large, then frac- 
tional abundances are evenly distributed. In this case it can be 
shown that for a large number of samples the centroid is located 
at a value of 1/2, and the axes have a length of 12- /2 (29 percent). 
Assuming the value of undetermined axes to be 29 percent, the 
bracketed term in equation 6 has a smaller value equal to Ay/ 
(0.29 V2r). 

For a hypothetical cluster, a within-cluster similarity measure 
can be developed that maximizes the probability that a collec- 
tion of samples is derived from a single biofacies. By substituting 
equations 9, 10, and 11 into equations 6 and 8, the within- 
cluster similarity (for a single cluster) becomes 

K (M- K1)! 2 ) 

M M Ka 
+ -ln(I S) - 2 ln(Ayj(m)). (12) 

~2 ~ m=l i=l 
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FIGURE 4-Averaged natural logarithm of sample probability for the 
most probable n-cluster clustering versus the number of clusters. 

The determinant of the covariance matrix in equation 12 is 
obtained by assuming values for the undetermined axes and by 
removing (integrating over y,) those axes that are unresolved. 
A principal axis smaller than the mean principal uncertainty 
(Ayi) for all samples is treated as if it were unresolved. Samples 
are averaged over the resolved axes and indexed from 1 to Ka, 
where Ka is the number of resolved axes. The integrals in equa- 
tion 8 were evaluated by assuming that the projected abundance 
uncertainties were either much smaller or much larger than the 
length of the axes. For biofacies determination, the similarity 
measure described by equation 12 has four desirable features: 
1) biofacies similarities, smaller than abundance uncertainties, 
are removed from the similarity measure; 2) samples are as- 
sumed to have ellipsoidal symmetry, which allows for biofacies 
containing correlated variability of species abundances; 3) bio- 
facies centroids and covariance matrices are calculated, provid- 
ing a more complete characterization of the biofacies than sam- 
ple membership alone; and 4) the probability of assembling a 
cluster is calculated, providing a mechanism for comparing clus- 
terings not having the same number of biofacies. 

BIOFACIES DETERMINATION OF A PALEONTOLOGICAL 

DATA SET FROM THE FRASER DELTA, BRITISH COLUMBIA 

Clustering using the EWML method provides information 
not available from clustering programs in off-the-shelf statistical 
packages and eliminates spurious correlations. To demonstrate 
the procedure, biofacies were determined for foraminifera-bear- 
ing samples collected from moder marshes fringing the Fraser 
River Delta. The data set consists of 60 samples, in which a 
total of 17 species of foraminifera were found (see Patterson, 
1990, for detailed tabulation of the species present). As dem- 
onstrated elsewhere (Scott and Medioli, 1980; Scott, 1976; 
Goldstein and Frey, 1986), the foraminifera found in marshes 
can be subdivided into distinct biofacies, correlating with such 
parameters as differences in elevation, salinity, and organic con- 
tent of the surficial sediments. Because of the small number of 
taxa generally encountered and the distinctiveness of the various 
subenvironments of the marsh, marsh biofacies can often be 
recognized without recourse to computers. For these reasons, 
samples from the Fraser River Delta marsh provide an ideal 
data set to demonstrate the utility of this new clustering tech- 
nique. 

The Fraser Delta samples were clustered using a hierarchical 
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algorithm and a linkage based on the within-cluster similarity 
linkage described by equation 12 (EWML method). In this con- 
figuration the unresolved standard ellipsoid axes are assumed 
equal to zero. The average natural logarithm of the probability 
per sample for the most probable hierarchical n-cluster cluster- 
ing is graphically presented (Figure 4). The monotonic decrease 
in probability results from the assumption that undetermined 
axes of the standard ellipsoid are equal to zero. The logarithm 
of the probability decreases at a uniform rate between 60 and 
eight clusters (potential biofacies), decreases at a slightly greater 
rate between eight and four clusters, and plummets when the 
number of clusters is fewer than four. The rapid decrease for 
fewer than four clusters indicates that within-cluster variability 
is decreasing at a rate too large to be attributed simply to un- 
resolved axes. Therefore, using the result presented in this graph, 
it can be concluded that between four and eight biofacies are 
represented by these samples. 

Table 1 summarizes the results of a cluster analysis that pro- 
duces seven biofacies. The centroids indicate that only four or 
five of the 17 species (dimensions) present in abundance space 
are significant in each biofacies and only nine species (account- 
ing for greater than 98.8 percent of the specimens) warranted 
inclusion in the table. This is not surprising since every species 
is absent in at least one sample, and most species are absent in 
most samples. Three of the clusters contain 73 percent of the 
samples while the remaining four clusters each contain four 
samples. 

Of the four clusters having four samples, two have axes lengths 
greater than 6 5 percent abundance. The orientation of these two 
axes indicated that these clusters were distinct from the re- 
maining clusters. However, the length of the axes was much 
larger than the width of a uniformly distributed variable (29 
percent), indicating that these two clusters are not statistically 
significant. They therefore have not been included in Table 1 
or in the discussion of the analysis. 

Three of the clusters (A, B, C) contained at least 12 samples 
each. In the absence of species abundance correlation, this is 
enough samples to determine 11I axes of the standard ellipsoid. 
However, two clusters are three dimensional and the other is 
four dimensional. The dimensionality of the ellipsoid is always 
smaller than the number of species present in the biofacies. The 
uncertainty associated with the locations of the centroids in- 
dicates that Clusters A and B contain four primary species while 
Cluster C has five. Therefore, Clusters A and B should have 
ellipsoids that have three axes easily resolved and Cluster C 
should have four. The low dimensionality indicates complete 
partitioning of some species to some biofacies and poorly re- 
solved fractional abundances for most species. 

Correlation between species is represented by large eccentric- 
ity, when the axes do not lie along species abundance directions. 
For example, in Cluster C (Biofacies C) the orientation of the 
largest axis indicates that most of the variability occurs as an 
exchange between A mmonia beccarii (Linn6, 17 58) and Miliam- 
mina fusca Brady (in Brady and Robertson, 1870). This cor- 
relation is most easily seen in a scatter plot (Figure 5) on the 
Ammonia beccarii versus Miliamminafusca plane. The ellipse 
obtained by cutting a slice through the standard ellipsoid on the 
Ammonia beccarii versus Miliammina fusca plane is obtained 
with equation 6. The eccentricity of the ellipse is 0.999 and the 
major axis is inclined -450 from the vertical (negative corre- 
lation). The eccentricity is close to one because 95.4 percent of 
the specimens are Ammonia beccarii plus Miliammina fusca 
(the direction of the longest axis) and variability of this line is 
only 4.6 percent (1.00-95.4 percent). Because Biofacies C is 
composed primarily of two species, the variability within the 
biofacies contains induced correlation produced by the nor- 
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M. fusca 
FIGURE 5-Sample scatter diagram on the Ammonia beccarii versus 

Miliamminafusca plane. Letter indices are the positions of associated 
biofacies. The projections of the standard ellipsoids for Biofacies C, 
E, and A are shown from upper left to lower right. Biofacies B is not 
represented in here because there are almost no Ammonia beccarii or 
Miliamminafusca. The axes of the standard ellipsoid are reported as 
direction cosines (from the species directions) and the axis length as 
percentage abundance. For all clusters, the eccentricity is greater than 
0.94. However, since the eccentricity of a sphere and straight line are 
0.0 and 1.0, respectively, an eccentricity close to 1.0 suggests that any 
clustering algorithm assuming spherical clusters (e.g., based on an 
unnormalized Euclidean distance) would give spurious results. 

malization of fractional abundances and cannot be biologically 
interpreted. 

Biofacies A is also composed primarily of two species, Mil- 
iamminafusca and Ammobaculites exiguus Cushman and Bron- 
niman, 1948. The largest axis is inclined 45? from the abundance 
directions, reflecting the fact that the sum of the abundances of 
Miliamminafusca and Ammobaculites exiguus equals 1. Figure 
5 shows that Biofacies A has a weak negative correlation be- 
tween a rare species (Ammonia beccarii) and a common one 
(Miliammina fusca). The variation in Ammonia beccarii is in- 
dicated by the second largest axis of the standard ellipsoid. While 
this axis is much smaller than the first, its error is small com- 
pared to its length (Table 1), indicating that biological signifi- 
cance can be attached to the negative correlation between Am- 
monia beccarii and Miliammina fusca. Ammonia beccarii is 
characteristic of the higher low marsh (Biofacies C), while Mil- 
iammina fusca predominates in Biofacies A in the lower low 
marsh. Moving from the higher low marsh to the lower low 
marsh, the proportions of these dominant species covary with 
an increasing proportion of Miliammina fusca at lower eleva- 
tions. 

Biofacies E contains four samples, has a considerable amount 
of scatter, and would not normally be considered adequately 
sampled. However, all of the samples containing Cribroelphi- 
dium gunteri (Cole, 1931), an abundant species, cluster in this 
biofacies. In addition, all of these samples are contained within 
the higher low marsh zone, indicating some elevational control 
for this biofacies. The primary variability within this environ- 
ment occurs primarily in the Cribroelphidium gunteri and 
Miliammina fusca direction, with significant variability in the 
Ammonia beccarii, Ammobaculites exiguus, and Ammotium 
salsum (Cushman and Bronniman, 1948) directions. While most 
of the sample populations do not consist entirely of two species, 
variability occurs predominantly as an exchange between Cri- 
broelphidium gunteri and Miliammina fusca. Biofacies E is un- 
usual; although Ammonia beccarii and Miliammina fusca are 
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J. macrescens 
FIGURE 6-Sample scatter diagram on the Trochammina inflata versus 

Jadammina macrescens plane. Letter indices are the positions of as- 
sociated biofacies. The projection of Biofacies B appears at the left 
of the figure. The standard ellipsoids of Biofacies A, C, D, and E 
project as horizontal lines or points at the origin. The axes of the 
standard ellipsoid are reported as direction cosines (from the species 
directions) and the axis length as percentage abundance. For all clus- 
ters, the eccentricity is greater than 0.94. However, since the eccen- 
tricity of a sphere and straight line are 0.0 and 1.0, respectively, an 
eccentricity close to 1.0 suggests that any clustering algorithm assum- 
ing spherical clusters (e.g., based on an unnormalized Euclidean dis- 
tance) would give spurious results. 

both common, their correlation is weakly positive, inclined at 
+80? from the vertical. If more samples were available, this 
correlation could prove biologically significant. 

Biofacies B contains 14 samples that cluster along a line in- 
clined 44? from the horizontal in Figure 6, indicating compo- 
sition primarily of two species, Trochammina inflata (Montagu, 
1808) and Jadammina macrescens (Brady in Brady and Rob- 
ertson, 1870). It is notable that these two species are common 
only in Biofacies B. Both of these species are characteristic of 
high marsh environments. Biofacies B, of this study, contains 
the Jadammina macrescens-Trochammina inflata Biofacies as 
recognized by Patterson (1990). Patterson's biofacies were dis- 
tinguished based on nonstatistical criteria established by Scott 
(1976). The present study suggests that this distinction is not 
statistically valid. 

Biofacies D, containing four samples, is composed primarily 
of Trochammina pacifica (Cushman, 1925), and has only 5.1 
percent species variability. The standard ellipsoid appears in 
Figure 5 as a short horizontal line near the origin. The variability 
is along a direction approximately in the Miliammina fusca 
versus Trochammina pacifica plane, but has a significant com- 
ponent in the Haplophragmoides manilaensis (Andersen, 1953) 
direction. The samples bearing Trochammina pacifica were all 
from a sheltered area between two causeways. The restriction 
of this species to this area is probably related to the high organic 
content of the substrate (Patterson, 1990). 

Obtaining similar results using off-the-shelf software. -As the 
EWML method of clustering described above is not presently 
available commercially, the previous discussion will be of lim- 
ited utility to micropaleontologists who are neither mathemat- 
ically inclined nor skilled in programming. It seemed useful to 
determine a combination of more common methodologies that 
would best emulate the statistically valid results of EWML. 
Several commercially available procedures were applied to the 
same data set in an attempt to produce comparable results. 
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FIGURE 7-Q-Mode dendrogram of Fraser Delta data set generated by clustering first four principal components using average linkage. Four 
major clusters (biofacies) are recognized with this method, indicated by the dotted line, as opposed to the five biofacies discerned using EWML 
(listed at the left). Samples listed in bold type could not be resolved by EWML. Sample 44 could not be resolved adequately by either EWML 
or the SYSTAT statistical package. 

All of the biofacies, as defined by EWML, have very elongated 
and standard ellipsoids. A consideration of the discussion pre- 
sented earlier in the paper makes it clear that clustering algo- 
rithms based on Mahalanobis Euclidean distance, using a pooled- 
within covariance matrix or the covariance matrix for the entire 
data set, will not produce paleontologically reasonable clusters. 

The best result obtained by any procedure first required con- 
siderable condensation of the data to remove unnecessary 
"noise." Instead of the 17 species analyzed using EWML, a 
reduced data set containing most of the information in the orig- 
inal data with a fewer number of degrees of freedom (numbers 
of species) was derived. Furthermore, species were eliminated 
that strongly covaried with other species. For example, the rel- 
ative frequencies of Ammobaculites exiguus, Ammotium sal- 
sum, and Miliamminafusca covaried significantly in most sam- 

ples. Thus, the statistics associated with Ammobaculites exiguus, 
Ammotium salsum, and Miliamminafusca were merged into a 

single variable that contained this relationship. The data set was 
condensed by performing a principal component analysis on the 
raw data and rotating the raw data onto the principal compo- 
nents. Principal component analysis provides a powerful tool 
for analyzing the differences between biofacies. This procedure 
is equivalent to treating the data set as a single biofacies, cal- 

culating the principal ellipsoid for the entire data set, and finding 
each sample's principal coordinates (solving equations 5 and 6). 
The rotated data set was condensed by eliminating those prin- 
cipal coordinates having relatively small lengths. These first four 
principal components explained 97.77 percent of the data. Fol- 

lowing this examination, a Q-Mode hierarchical cluster analysis 
was carried out using the first four principal components, a 
Euclidean similarity measure, and average linkage (Figure 7). It 
is of interest that for this particular data set, almost identical 
results were obtained using a centroid linkage. Distinct clusters 
of samples with average similarities greater than an arbitrarily 
selected level were considered biofacies. Scatter plots of the 
entire set of samples should be made on the planes spanned by 
the two largest axes of the standard ellipsoid of each cluster. 
The scatter plots should be examined to see if the distribution 
of points belonging to the cluster associated with the plane of 
the scatter plot are distributed around a centroid, and if points 
from other clusters are separated from the cluster associated 
with the plane of the scatter plot. Finally, the scatter plots pro- 
duce a visual tool for determining if the number of clusters 
should be changed. 

Clusters 1, 3, and 4, as generated by the statistics package, 
were almost identical to Biofacies B, C, and D produced by 
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EWML. The commercially available statistics package could not 
resolve the difference between Biofacies A and E, lumping these 
groups in Cluster 2. It has already been pointed out that this 
grouping, characterized by the presence of Cribroelphidium gun- 
teri, would not normally be considered to have been sampled 
adequately. Biofacies A and E both have high proportions of 
Miliammina fusca, which explains why the statistics package 
clustered them together. 

Many biofacies, such as those defined by benthic foraminifera 
from sets of samples derived from deep-sea-drilling cores, con- 
tain hundreds of species. Typically all but a few species are rare 
(Boltovskoy, 1978). Based on this example, hundreds of samples 
and tens of thousands of counts per sample would be required 
to resolve a large fraction of the standard ellipsoid's axes for all 
species in such samples. Therefore, considerable forethought as 
to which species are essential to define a biofacies and the num- 
ber of counts necessary (Patterson and Fishbein, 1989) is re- 
quired before carrying out a cluster analysis using the recom- 
mended off-the-shelf methodology described above. 

SUMMARY OF RECOMMENDED CLUSTERING PROCEDURES 

A new statistically valid "error-weighted maximum likeli- 
hood" (EWML) method of clustering paleontological data sets 
has been presented. However, as this method is not yet com- 
mercially available, a procedure for obtaining similar, though 
not statistically significant, results using available statistical 
packages has been devised. 

The recommended strategy for data analysis is: to cluster 
between cases (samples), not variables (species); to use species 
fractional abundances in the data array; and to reduce the di- 
mensionality and eliminate similarity in rare species with un- 
resolved fractional abundances by 1) eliminating statistically 
insignificant species from the matrix; 2) applying a standard 
principal component analysis to the scatter matrix; 3) calculating 
the mean fractional abundance uncertainty, 

I Ci2(m) ; 

and 4) keeping principal coordinate directions having lengths 
greater than the fractional abundance uncertainty. In addition, 
data should be clustered with a hierarchical algorithm, 1) using 
an unnormalized Euclidean or squared Euclidean distance with 
either a complete, average linkage or Ward's linkage (see Ap- 
pendix); and 2) determining the cluster boundaries by subjec- 
tively cutting the graphically displayed branches in hierarchical 
dendrograms at an intuitive level of similarity (see Figure 7). 

Ways to enhance the reliability of the clustering process in- 
clude: 1) reducing the number of clusters by combining clusters 
when the centroid of one lies within the standard ellipsoid of 
another; 2) performing K-means clustering to refine hierarchical 
clustering using the previous results to specify the number of 
clusters; and 3) completing analysis by calculating centroids and 
performing principal component analyses on each cluster. 
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APPENDIX 

COMMON CLUSTERING TECHNIQUES 

Clustering by sample, also known as Q-Mode Analysis, refers to the 
division of samples into disjoint sets. Each cluster represents samples 
from a single environment. Several basic components, including the 
similarity measure, the type of linkage used, and the partitioning al- 
gorithm, are needed to define the clustering scheme. However, depend- 
ing on how these components are implemented, radically different clus- 
ters may result. The following section provides definitions of the various 
components of a cluster analysis and outlines some of the more common 
methodologies, with particular emphasis on those applicable to pale- 
ontological biofacies discrimination. 

Fractional abundance.- Each sample is characterized by the various 
fractional abundances of the component species. The fractional abun- 
dance is the number of specimens of each species divided by the total 
number of specimens. The fractional abundance [x, (m)] of species (i) 
in sample (m) is 

xi ( (13) 
N(m) 

where [Ci (m)] is the number of counts of species (i) in sample (m) and 
[N(m)] is the total number of specimens of all species (K species are 
present). The fractional abundance of all species in a sample is therefore 

K 

N(m) = Ci(m). (14) 

A sample's fractional abundances are not independent since they 
always sum to one. Samples are considered to be similar if the differences 
in their fractional abundances are small. The set of a sample's fractional 
abundances can be visualized as the coordinates of a point in a K-di- 
mensional "abundance space" where each axis measures the fractional 
abundance of a single species (i). The term cluster analysis arises because 
samples from a similar environment tend to plot close together, forming 
a clump or cluster of points. 

Similarity. -The arrangement of samples into biofacies requires a 
measure to determine whether samples cluster together or not. This 
process requires introducing a quantity called the "similarity" or "as- 
sociation," which measures the differences between samples (Anderberg, 

1973). In cluster analysis, similarity is usually defined in terms of a 
distance between points; e.g., samples with similar fractional abun- 
dances have small distances (high degree of similarity) between them. 
There are several ways of calculating distance between samples, not all 
of which are appropriate for paleontological applications. 

Many statistical packages define similarity in terms of angles between 
coordinates of the sample and some other fixed point, [x,(0)], usually 
the origin [x,(0) = O], or ratios of coordinates. Examples of these ap- 
proaches (Cronbach and Gleser, 1953; Hartigan, 1975) are the corre- 
lation measure [R(x(n), x(m))] between points x(n) and x(m) 

K 

R[x(n), x(m)] = I xi(n) - x(O) I x,(m) - x(O) I 
i=l 

and the covariance measure C[x(n), x(m)] 

C[x(n), x(m)][x(n), x(m) 
dE[x(n), x(0)]dE[x(m), x(0)] 

(15) 

(16) 

where dE is the Euclidean distance defined in equation (17). These meth- 
ods of measuring similarity (distance) are useful in determining char- 
acteristics of taxa in numerical taxonomy (Sneath and Sokal, 1973). 
However, they do not really take into account the similar fractional 
abundances of samples from a common environment and therefore are 
not particularly useful for biofacies discrimination. 

Categorical variables (chi square, phi square, Goodman-Crustal in- 
dex; see Anderberg, 1973, for definitions) are another class of distance 
measure. These measures determine the joint occurrences of other vari- 
ables and are therefore formulated in terms of counts. Unfortunately, 
these counts are not related to species abundances but to the number 
of times a hypothesis is satisfied. These methodologies should be avoid- 
ed unless the statistical hypothesis or environmental affinity are known. 

The most commonly used measure is Euclidean distance 

d [x(K x] 
1/2 

dE[x(n), x(m)] = A: (xi(n) - xi(m))2 . 
li=l 

(17) 

The Euclidean distance between similar samples is always small and 
positive. Furthermore, Euclidean distance is the best way to differentiate 
biofacies because it is related to the normal distribution, which can 
describe how samples are distributed within a biofacies. However, prob- 
lems arise using this method because all species abundances contribute 
equally to the sample discrimination. This is because small variations 
of rare species abundances often characterize biofacies affinity better 
than do larger differences in more common species; the contribution of 
environmentally important rare species may become lost in the noise 
of more common taxa. Several variations on Euclidean distance mea- 
sure have been developed that address this problem, although not all 
are suited to the problem at hand. 

One variation based on Euclidean distance is known as Minkowski 
distance 
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/ 
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- 
xi(m))PJ (18) 

Minkowski distance is a generalization of the Euclidean distance con- 
taining a free parameter (p) that exaggerates similarity when p is large, 
but becomes reduced to Euclidean distance when p is equal to 2. The 
Minkowski distance can improve clustering results when samples from 
an environment are preferentially distributed near or away from the 
environmental mean in a nonlinear relation. However, no method is 
available for estimating the exponent p. Therefore the Minkowski dis- 
tance should be used with caution. 

Another variation on Euclidean distance, the Mahalanobis Euclidean 
distance (MED), 

K K 1 1/2 

d'E[x(n), x(m)] = S-' j(x(n) - xi(m))(xj(n) - xj(m))} , (19) 

allows all species to contribute to assessment ofbiofacies affinity because 
allows all species to contribute to assessment of biofacies affinity because 
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distances are weighted proportionately to the expected variability, the 
covariance matrix S. The weighting appears through the inverse of the 
covariance matrix S-'. 

Often a data set does not allow estimation of the covariance. In such 
cases the matrix can be completed only if assumptions relating coeffi- 
cients are introduced. For example, if it is assumed that all the species 
are unrelated then the off-diagonal coefficients are zero. The number of 
coefficients is much smaller and more readily estimated from the data. 
In this case, the covariance matrix becomes the variance matrix. Because 
species fractional abundances are always dependent within a sample 
and are often correlated within an environment, use of a MED measure 
in conjunction with a variance matrix is not recommended. 

Mahalanobis Euclidean distance can also be expressed in terms of a 
covariance matrix. A covariance matrix can be estimated from the entire 
data set (many biofacies), individual biofacies, or from some average 
of many biofacies. If a covariance matrix is estimated from the entire 
data set, then the separation between clusters is simultaneously reduced, 
along with the normalization of rare and common species abundances. 
Furthermore, this method assumes that species are simultaneously rare 
or abundant in all environments. For these reasons a MED measure 
based on a covariance matrix for the entire data set prevents a clustering 
algorithm from distinguishing dissimilar samples (Hartigan, 1975). 

Normalization can also be based on the covariance matrix for each 
biofacies (within-cluster covariance). This method is problematic be- 
cause the composition of the clusters must be known prior to calculating 
distances. Since the partitioning is determined from the distances, the 
problem becomes cyclical and requires repeated iterations for solution. 
When an environment is represented by fewer than K (the number of 
species) samples, a serious problem arises because the estimate of co- 
variance matrix has no inverse. Distances can be calculated, but only 
if enough assumptions are introduced to make the covariance matrix 
nonsingular. It is usually difficult to use a within-cluster covariance 
matrix in paleontological studies because the numbers of species and 
samples are not usually comparable. However, because unrelated en- 
vironments tend to have a markedly different variability, clustering 
using a Mahalanobis distance containing a within-cluster covariance 
matrix has the best chance of discriminating biofacies. 

The singularity contained in the inverse of the within-cluster covari- 
ance can be eliminated by averaging all of the within-cluster covariance 
matrices to produce a "pooled-within" covariance matrix (Friedman 
and Rubin, 1967). This eliminates multiple distances between samples 
and tends to keep clusters separated. Unfortunately, when clusters have 
similar covariance matrices, the average is not particularly effective at 
normalizing any single cluster. This situation commonly arises in pa- 
leontological studies where a species may be rare in one biofacies but 
common in another. Weighted distances based on pooled-within co- 
variance matrices therefore only should be used when biofacies are 
expected to have a similar variability. 

Linkage. -"Linkage" or "Clustering Criterion" is a quantity that de- 
termines whether a hypothetical partitioning of samples is reasonable 
(Anderberg, 1973). Linkage can be classified further as "between-cluster 
linkages" (quantifies comparisons between clusters) or "within-cluster 
linkages" (quantifies all samples contained within a single cluster). 

Extremely fast and computer efficient algorithms, most of which are 
not particularly useful to micropaleontologists, have been developed 
using between-cluster linkages. The very popular "single linkage" (Zahn, 
1971; Johnson, 1967) is the similarity measure between the two closest 
points not in the same cluster. Because the structure of the linkage does 
not guarantee that all members of a cluster are close (Jardine et al., 
1967), single linkage often produces long clusters in which non-nearest 
neighbors are far apart. Therefore, single linkage is not recommended 
for use in biofacies discrimination. In contrast, "complete linkage," 
another very common linkage, defines the linkage between clusters as 
the similarity between the two furthermost points. Theorems from graph 
theory (Johnson, 1967) have shown that members of clusters formed 
using complete linkages are maximally connected. 

Many between-cluster linkages compare all pairs of points in two 
clusters. One example is "average linkage," in which the linkage is the 
mean of all dissimilarity measures between pairs of points lying in 
different clusters. Centroid linkage (Lance and Williams, 1967) measures 
the similarity between the centroids of clusters. These methods produce 
similar results because both disfavor joining clusters with centroids that 
are far removed from one another. Centroid linkage sometimes produces 

disjoint clusters (Anderberg, 1973) and is therefore less preferable than 
average linkage measure. 

Within-cluster linkages mimic the biologically reasonable hypothesis 
that samples from common environments are similar. Ward (1963) and 
Ward and Hook (1963) introduced a linkage (now known as Ward's 
linkage) equal to the mean similarity between all samples in a cluster 
and the cluster's centroid. Ward's linkage is characterized by the prop- 
erty that when an environment has very little variability its linkage is 
short. When used in conjunction with a Euclidean distance, Ward's 
linkage is the mean radius of the cluster. However, Ward's linkage 
should never be used in conjunction with a within-cluster Mahalanobis 
Euclidean distance based on a within-cluster covariance matrix because 
the normalized mean radius is always one. Within-cluster linkages can 
also be formulated without a distance measure. Wilks (1960) and Fried- 
man and Rubin (1967) developed clustering techniques using the mag- 
nitude of the determinant of the scatter matrix 

M 

Uij = 2 (xi(m) - 
ui)(xj(m) - U). 

m=i 

This linkage is related to the volume of the cluster, and can be short 
even when distances between members of the cluster are large, provided 
that some of the variability is correlated. However, this type of similarity 
is difficult to implement in biofacies discrimination because of two 
sources of artificial correlation: one induced by normalization to frac- 
tional abundances, and a second more important source arising when 
the scatter matrix is estimated by too few samples. The sources of this 
artificial correlation is fractional abundance, which always contains some 
correlation because of its normalization. However, a more important 
source of artificial correlation arises when the scatter matrix is estimated 
by too few samples. In such cases, not all of the components of the 
scatter matrix can be resolved. Because this method of similarity mea- 
sure is numerically cumbersome, difficult to implement, and often sin- 
gular, it has been used infrequently. However, this linkage has one major 
advantage over the previously described linkages, in that it can be de- 
rived from a statistical hypothesis. Clustering methods based on the 
scatter matrix will be explored more fully later. 

Clustering.--The methodology or algorithm that uses a linkage to 
divide a set of samples into subgroups or "clusters" is called clustering. 
Clustering is accomplished either by minimizing the within-cluster link- 
age or by maximizing the between-cluster linkage. The simplest opti- 
mizing algorithms compare all possible arrangements to find the true 
optimum. Unfortunately, the number of comparisons is too large (Abra- 
mowitz and Stegun, 1972) to be handled, even by the largest supercom- 
puter, for assemblages of more than 15 samples. More pragmatic, com- 
putationally possible clustering algorithms are only capable of 
approximating an optimal solution within a limited set of possibilities. 

The most common class of clustering algorithms is referred to as 
"joining" or "hierarchical" clustering. These terms are derived from 
the (hierarchical) process (Johnson, 1967) by which clusters are built 
by merging (joining) pairs of clusters from previous iterations. These 
methods are characterized by tree diagrams relating pairs of clusters to 
a parent cluster. 

If the variability within the biofacies is much smaller than the dif- 
ferences between biofacies, an optimal number of clusters can be esti- 
mated from the relative change in similarity along a path from trunk 
to tip. When this condition is satisfied, any branch joining clusters from 
different biofacies will have a discontinuously larger length than any of 
its branches. This is a useful methodology for determining the boundary 
between biofacies. 

A second class of clustering algorithms, termed "exchange" or "sort- 
ing" methods, is useful for improving existing cluster divisions. This 
methodology begins with a preset number of clusters and proceeds to 
move individual samples between clusters, preserving the number of 
clusters while reducing the within-clusters linkage. Unlike hierarchical 
methods, solutions very close to the true optimum may be found with 
enough iterations. However, this methodology is limited because given 
a poor initial guess (the number of clusters), the number of iterations 
needed to produce an acceptable optimum is too large. In addition, the 
method is incapable of determining the number of clusters. 

The most commonly used sorting method is the K-means algorithm 
(Hartigan and Wong, 1979). K-means is based on a Ward's within- 
cluster linkage using a squared Euclidean distance to improve perfor- 
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mance. The algorithm cycles through the samples, at each step placing 
one sample into clusters that produce the greatest decreases in the link- 
age. Computation time is reduced by fixing the centroids at the beginning 
of each cycle. At the end of each cycle, centroids are recalculated and 
a new cycle begins. The calculation is completed when no samples can 
be moved during a complete cycle or when the decrease in similarity 
falls below an error threshold. This method is limited by the computing 
resources, which determine the number of cycles that can be performed 
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in a reasonable amount of time. Additional problems are also presented 
by the inherent instability of the algorithm caused by cumulative sim- 
ilarity oscillations between cycles. This condition may result because of 
a poorly chosen initial state, or because the centroids are not updated 
until the end of a cycle. However, with a good initial guess (such as the 
result from a hierarchical analysis) very good results can be obtained 
with K-means. 
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INTRODUCTION 

DISTORTION OF the paleontologic literature in most of the 
450 papers bearing V. J. Gupta as author or co-author 

during the past 30 years has been documented by Agarwal and 
Singh (1981), Talent (1989a, 1989b, 1989c, 1990a, 1990b, 1990c, 
in press), Talent et al. (1988, 1989, 1990, 1991), Ahluwalia 
(1989), Bassi (1989, 1990), Brock et al. (1991), and Radhak- 
rishna (1991). Replies to the charges of fabrication and distor- 
tion by Gupta (1989, 1990a, 1990b) were futile attempts to 
distract the reader, rather than to provide information to refute 
the charges. 

Gupta's fraudulent practices have involved most invertebrate 
phyla as well as the vertebrates and include fossils of Cambrian 
to Cenozoic age. Review articles, regional summaries, world 
paleogeographic reconstructions, etc. are now citing these papers 
as supporting documents. Only a few of Gupta's papers are based 
on specimens collected by some of his co-authors and verified 
by them or independent workers. 

Webster (1990) alerted the Pander Society members to the 
Gupta problem, noting that this involved 60 conodont papers. 
A request was made to the members for information verifying 
localities, knowledge of specimens sent to Gupta, etc. There was 
only one reply, from Budurov and Sudar, verifying some of the 
papers that they co-authored with Gupta. 

We then initiated the following compilation and sent letters 
to all of Gupta's co-authors of conodont papers requesting ver- 
ification information. We received replies from 19 of the 42 co- 
authors. In Pander Society Newsletter #23 Webster et al. (1991) 
reported that the list of Gupta conodont publications now known 
is 119. Actually, it is only 118 as we had included one abstract. 
Most of the increase reflected the inclusion of papers repeating 
conodont lists or occurrence of specific conodonts and regional 
compilation and review papers lacking conodont systematics 
and illustrations. 

Study of the Gupta conodont papers shows an interesting 
insight into the pattern of his continuing fabrications. This pat- 
tern is basically followed with both Devonian and Carboniferous 
conodonts. We will use the Devonian as the example. Italicized 
numbers refer to the annotated bibliographic listings. 

Gupta obtained specimens of the Late Devonian North Evans 
Limestone fauna of Amsdell Creek, New York, U.S.A., in some 
manner, perhaps from the collections at Aberystwyth as sug- 
gested by Wyatt (1990). He then sent some of the specimens to 
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a conodont worker "claiming" that they were collected in Kash- 
mir. A preliminary note, listing the identified specimens, was 
published with co-authors, i.e., 1967, item 98. Gupta also sub- 
mitted a preliminary notice of "discovery" of Devonian con- 
odonts from Kashmir to a different journal without co-authors, 
i.e., 1968, item 22. After Gupta received the identification list, 
he submitted it without co-authors and without reference to the 
previously co-authored paper for publication, i.e., 1969a, item 
23. A few years later he used some of the specimens to describe 
a "newly discovered" Devonian fauna from a second locality, 
this time in Nepal, i.e., 1975a, item 35. He used additional 
specimens to report the "discovery" of Devonian conodonts 
from Spiti and correlated the three, reusing some of the same 
photographs of individual specimens used in item 35 and claim- 
ing them to be from a different locality, i.e., 1975b, item 36. 
Without referencing any of these earlier works he referred to 
the Lutherwan fauna in a review paper, i.e., 1977, item 44. Then 
with co-authors he used some of these papers as supporting 
documentation when discussing the geology of a particular area, 
i.e., 1977, item 82 and 1981, item 109, or discussing other types 
of Devonian fossils that he claimed were "from" part of the 
Himalaya, i.e., 1979a, item 84. Following this, he used some of 
the material to salt a sample, and this time with different co- 
authors, to make a preliminary report of the "discovery of a 
new Devonian fauna" from another locality in Spiti, i.e., 1982c, 
item 3. This is followed by a paper illustrating the "new find," 
i.e., 1983, item 4. Again with a co-author he cites some of these 
earlier papers when discussing a Devonian ammonoid fauna 
from the Himalaya, i.e., 1983, item 83. Then as supporting 
documents and with or without co-authors he cites some of 
these earlier papers when doing review papers, i.e., 1987a, item 
66, 1988, item 75, 1989, item 7, 1991, item 76. 

The end result of the above shingling and recycling of the 
Devonian conodonts is 15 papers, totaling 181 pages of fabri- 
cation polluting the scientific literature. We suspect that a sim- 
ilar pattern is present in some of his other publications referring 
to fossils other than conodonts. 

Our objective in this report is to evaluate the Gupta conodont 
papers and inform conodont investigators and the geologic com- 
munity of the papers that are of a spurious and dubious nature 
as well as those that have been verified. Hopefully, sufficient 
citations of this report will continue to be made so that future 
workers will become aware of the problem and citations of his 
fabricated work will cease. 
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