Periodically forced self-organization in the long-term evolution of planktic foraminifera

Andreas Prokoph, Anthony D. Fowler, and R. Timothy Patterson

Abstract: Wavelet transform and other signal analysis techniques suggest that the planktic foraminiferal (PF) long-term evolutionary record of the last 127 Ma can be attributed to complex periodic and nonlinear patterns. Correlation of the PF extinction pattern with other geological series favors an origin of the ~30 Ma periodicity and self-organization by quasi-periodic mantle-plume cycles that in turn drive episodic volcanism, CO₂-degassing, oceanic anoxic conditions, and sea-level fluctuations. Stationary ~30 Ma periodicity and a weak secular trend of ~100 Ma period are evident in the PF record, even without consideration of the mass extinction at the K–T boundary. The 27–32 Ma periodicity in the impact crater record and lows in the global sea-level curve, respectively, are ~6.5 Ma and ~2.3 Ma out of phase with PF-extinction data, although major PF-extinction events correspond to the bolide impacts at the K–T boundary and in late Eocene. Another six extinction events correspond to abrupt global sea-level falls between the late Albian and early Oligocene. Self-organization in the PF record is characterized by increased radiation rates after major extinction events and a steady number of baseline species. Our computer model of long-term PF evolution replicates this SO pattern. The model consists of output from the logistic map, which is forced at 30 Ma and 100 Ma frequencies. The model has significant correlations with the relative PF-extinction data. In particular, it replicates singularities, such as the K–T event, nonstationary 2.5–10 Ma periodicities, and phase shifts in the ~30 Ma periodicity of the PF record.

Résumé: La transformation d’ondelettes et d’autres techniques d’analyse de signaux suggèrent que l’évolution à long terme du plankton foraminifère (PF) des dernières 127 Ma puisse être attribué à des patrons non linéaires, périodiques et complexes. La corrélation du patron d’extinction du PF à d’autres séries géologiques plaide en faveur d’une origine de la périodicité ~30 Ma et une auto-organisation par ces cycles quasi périodiques de panache du manteau qui, à leur tour, sont responsables de volcanisme épisodique, de dégazage du CO₂, de conditions océaniques anoxiques et de fluctuations du niveau de la mer. Une périodicité stationnaire ~30 Ma et une faible tendance séculaire ~100 Ma sont évidentes dans le PF même si l’on ne tient pas compte de l’extinction massive à la limite K–T. La périodicité 27–32 Ma dans les enregistrements du cratère d’impact et les creux dans la courbe du niveau global de la mer sont, respectivement, déphasés de ~6,5 Ma et ~2,3 Ma par rapport aux données d’extinction du PF, bien que les événements majeurs d’extinction du PF correspondent aux impacts de bolides à la limite K–T et durant l’Éocène tardif. Six autres événements d’extinction correspondent à des chutes abruptes du niveau global de la mer entre l’Albien tardif et l’Oligocène précoces. L’auto-organisation (SO) du PF est caractérisée par une augmentation des taux de radiation après les événements d’extinction majeurs ainsi qu’un nombre constant d’espèces de base. Notre modèle informatique de l’évolution à long terme du PF redonne ce patron de SO. Le modèle consiste en des intrants tirés de la carte logistique, qui a été forcé à des fréquences de 30 Ma et 100 Ma; le modèle présente des corrélations importantes avec les données d’extinction relatives au PF. En particulier, il donne les points singuliers tels que l’événement K–T, des périodicités non stationnaires de 2,5 à 10 Ma et des déphasages dans la périodicité de ~30 Ma du PF.

Introduction

The interpretation of the geological record of evolution has been debated for more than a century. Two major hypotheses for macroevolution have been supported in the last three decades: gradualism, which naturally arose from the ideas of Darwin (1859), and “punctuated equilibrium.” The latter hypothesis assumes very rapid evolution at distinct ecological regimes (Eldredge and Gould 1972). Background and mass extinction phenomena are an integral part of both evolutionary scenarios. Mass extinction, the focus of this research, has been analyzed in the context of these hypothesis, with two competing explanations being put forward.

(1) Evolution, and in particular mass extinction, is mostly triggered by variations of 26–33 Ma period within the intra-terrestrial regime or from extraterrestrial impacts. Examples...
of intraterrestrial evolutionary drivers include flood basalt volcanism, plate tectonics, and Earth’s magnetic field reversals (Stothers 1986, 1993). Patterns in marine extinctions can be linked to the fluctuation and spreading of an oxygen minimum zone, i.e., during oceanic anoxic events (Braisier 1988). Hart (1990) postulated a periodicity of about 27 Ma for the planktic foraminiferal (PF) record by inspecting the reoccurrence of four distinct drops in PF origination. Possible extraterrestrial causes include asteroid or cometary showers due to movement of the Earth in the solar system and the galaxy (Rampino and Stothers 1984; Rampino and Caldeira 1992; Raup 1992).

(2) Evolution, especially the pattern of extinction and origination, is self-organized (Bak and Sneppen 1993; Kauffman 1993; Patterson and Fowler 1996; Sole et al. 1997). Self-organization (SO) describes, in dynamic systems theory, that complicated systems are reduced to a few collective degrees of freedom (Bak et al. 1988). For instance, small internal instabilities in highly cross-linked ecosystems may cause an “avalanche” of collapses of other taxa living in the interconnected community and possibly extinction of highly specialized taxa worldwide, leaving a few more-resistant forms (Plotnick and McKinney 1993). Broad swells of habitat are opened up for these more-resistant “generalists” forms. New species rapidly originate from these “generalists” refilling emptied niche space.

Our purpose is to quantify trends, periodicities, events, and self-organization from the evolutionary record by using advanced methods of time-series analysis, such as wavelet analysis (i.e., Grossman and Morlet 1984). We also correlate the PF record statistically and graphically with other geological records. We use the most recent time scale available (Gradstein and Ogg 1996) and consider both gradualist and catastrophic models used to explain evolutionary pattern. The PF record was chosen for the study, because it provides more detailed biostatigraphic resolution than any other group (Berggren and Casey 1983; Patterson and Fowler 1996). A data-driven nonlinear model with parameters constructed that represent (a) dominance of gradual increase or decrease in PF diversity, and (b) discrete (abrupt) events in the increase and decrease of PF diversity from one to the next stratigraphic level, respectively. The first set contains extinctions or originations that are calculated using a moving average, with a window width of 1 Ma and stepwise movement of the sliding window in 1 Ma increments. In this way, we assume that the stratigraphic levels (e.g., subzone boundaries) used may mark cumulation of extinctions and radiations, which originally happened between subzone boundaries. For discrete sets (better described as “event” sets), it is assumed that radiation and extinction may have happened over short-time intervals at zone or subzone boundaries. We set the duration per event at 40 ka, corresponding to the well-dated duration of the extinction processes of the *Rotaliporidiae* in the late Cenomanian (Luderer and Kuhnt 1997).

Average data for equally spaced 1 Ma intervals of all data sets were used to permit linear correlation, autocorrelation, spectral analysis, and cross-spectral analysis. In this way, the time resolution of some geological events is reduced, but the influence of possible errors in the time scale of about ±0.5 Ma is also reduced. Additionally, a data set “change in the total number of species per 1 Ma” gives the balance of total extinct and originated PF species number, and therefore a measurement of persistence in the PF evolution.

Time-series analysis

Spectral analysis, linear correlation, autocorrelation, and cross-spectral analysis are common statistical tools for...
time-series analysis of geological data (e.g., Davis 1986; Schwarzacher 1993; Fischer and Koerner 1994), while wavelet analysis is relatively new for geological time-series analysis (Bolton et al. 1995; Prokoph and Barthelmes 1996). Spectral analyses transform the signal from time to frequency domain. Significance tests are also well established (e.g., Davis 1986). We used the "red noise" and "white noise" definition after Bartlett (1966) and the calculation method demonstrated by Mann and Lees (1996) to determine the significance of periodicities detectable by Fast Fourier transform (FFT). However, spectral analysis (e.g., FFT) has the serious drawback that time information is lost.

In contrast, wavelet analysis permits distinction between stationary and nonstationary signals, such as gradual and abrupt changes in signal frequency, phase, and amplitude. The wavelet transform of a time series is defined as

\[W_\psi(a,b) = \left(\frac{1}{\sqrt{a}}\right) \int f(t)\psi\left(\frac{t-b}{a}\right) dt \]

where \(\psi \) is the base wavelet, with a length that is usually much shorter than the time series \(f(t) \); the variable \(a \) is the scale factor that determines the characteristic frequency, so that varying \(a \) gives rise to a spectrum, and \(b \) is the translation in time so that varying \(b \) represents the "sliding window" of the wavelet over \(f(t) \) (Chao and Naito 1995). Thus, the wavelet transform uses narrow windows at high frequencies and wide windows at low frequencies. The graphic representation of the wavelet coefficients in the time–frequency space is a "scalogram" (Fig. 1).

We have utilized a continuous wavelet transform (CWT), with the Morlet wavelet as mother function (Grossman and Morlet 1984). The shape of the Morlet wavelet is similar to a periodic sinusoidal function, which is suitable for detection of cycles with unknown geometrical shape. To enable an arbitrary shift of the wavelet transform resolution in favor of time or in favor of frequency, a parameter \(l \) is introduced representative of the length of the mother wavelet (Prokoph and Barthelmes 1996). Low values \(l \) support better solution of time-domain (i.e., detection of discontinuities and other singularities), and high value \(l \) support a better resolution in scale (wavelength). Thus, the shifted version of the Morlet mother wavelet used is defined as

\[\psi_{a,b}(t) = \pi^{-\frac{1}{4}}(al)^{-\frac{1}{4}} e^{-\frac{1}{2}i\pi l^2(r-b)} e^{-\frac{1}{2}(\frac{r}{a})^2} \]

In this work, a value \(l = 10 \) was chosen, because it gives results that are satisfactory in both time and frequency (Prokoph and Barthelmes 1996). To transform a measured, and hence limited and discrete time series, the integral in eq. [1] has to be modified by using the trapezoidal rule for unevenly sampled points to evaluate the wavelet coefficients giving \(W_\psi(a,b) \). Therefore, the method does not require series consisting of equally spaced data intervals, as the other time-series analysis methods used. The data were standardized around a mean = 0, and overlying trend ("fitting line") was removed before performing the wavelet transform. The visualizing of \(W_\psi(a,b) \) has been carried out by interpolation and coding with appropriate shades of gray. In our approach, we used four gray levels of the magnitude of the wavelet coefficients in the graphic presentations, with black representing 75–100%, dark gray 50–75%, light gray 25–50%, and white 0–25% of maximum \(W_\psi(a,b) \).

A wavelet transform of a computer-generated time-series model using the above analysis conditions is shown in Fig. 1. Nonstationary, high-frequency wavelet coefficients appear in time intervals dominated by random white noise. Unique events (singularities) form high wavelet coefficients for short time at high frequency. Stationary and nonstationary periodic signals form continuous and discontinuous narrow bands of high wavelet coefficients, respectively. In contrast, Fourier transform cannot distinguish nonstationary from stationary signals and gives a nonstationary periodic signal a reduced power comparable to white noise (Fig. 1c). Consequently, confidence tests as used for stationary signals (e.g., Davis 1986) are not feasible for evaluation of nonstationary signals and are not used in this study.

Wavelet-analyses methods, computer program CWT A.F, and parameters used are described in Prokoph and Barthelmes (1996). For time-series analysis of the paleontological and geological data, only periods longer than 2 Ma were analyzed, because of resolution limits due to the Nyquist frequency \(f_N = 2\pi\Delta f \) (Davis 1986).

Periodicity and self-organization in the PF record

Wavelet analysis of the total number of PF species shows a conspicuous black band in the wavelet scalogram representing a quasi-stationary 31–32 Ma periodicity (Fig. 2a). Additionally, a weak secular trend forming a 95 Ma periodicity (dark gray areas in Fig. 2a) is apparent. A 14 Ma periodicity occurs since the Eocene. Periods of 3.8 and 10 Ma correspond to the sharp reduction in PF species numbers at the K–T boundary and during the Oligocene.

Wavelet scalograms of the "event" set (Fig. 3a) and "gradual change" data set (Fig. 3b) reveal a ~28 Ma and ~30 Ma quasi-stationary periodicity of relative PF-origination data, respectively. In both data sets, nonstationary 13 and 4.5 Ma periodicities occur from Campanian through Oligocene, and 8 Ma periodicities from Barremian through Albian. The relative PF-extinction data show well-pronounced stationary ~29–30 Ma periodicity in both "event" (Fig. 3c) and "gradual change" data sets (Fig. 3f) and nonstationary ~10 Ma periodicity from Turonian through Eocene. A punctuated 2.5–3.2 Ma periodicity appears from late Maastrichtian through Paleocene, forming approximately five cycles in the relative PF-extinction record. Additionally, a ~80 Ma periodicity appears in wavelet scalogram of the event set of both relative PF-origination and -extinction data. A secular trend of ~100 Ma periodicity is interpreted from the contrast of high origination and extinction rates around 60–65 Ma and relatively low origination rates before 95 Ma and after 35 Ma (Figs. 3c, 3d). This 100 Ma wavelength may coincide with a periodicity detected in the much longer Phanerozoic seawater isotope record of carbonate rocks (Prokoph and Veizer 1999).

The extraordinary high relative PF extinction at 65 Ma (K–T boundary) of 97.7% and successive recovery in early Paleocene form events in the data sets comparable to the singularity illustrated in Fig. 1. Spectral analysis (FFT) indicates a dominant period of ~31 Ma for relative PF-extinction
Fig. 1. (a) Wavelet analysis of computer time-series model. Top: intensity scale of wavelet coefficients in four gray levels; middle: wavelet scalogram shows the vertical axis with logarithmic-scaled time period, horizontal axis is time; bottom: model data with random ("white") noise from 0 to 50 t.u. and amplitude of 1; singular event at 65 t.u. with amplitude of 0.9; stationary 30 t.u. sinusoidal period with amplitude of 0.2; and nonstationary 10 t.u. sinusoidal period with amplitude of 0.2 from 20–45 t.u. and 80–110 t.u. (b) Computer time-series model with 1320 equidistant data forming 132 time units (t.u.). (c) Fourier transform of the computer time-series model. Note that all major signals are captured in the wavelet analysis, but that the nonstationary 10 t.u. period is hardly distinguishing from background (white) noise.

Data with and without use of the extreme values at the K–T boundary (Fig. 4). The 3.2 Ma period is strong in FFT (Fig. 4), but shown to be nonstationary in wavelet analysis (Fig. 3). The 10 Ma extinction periodicity is only evident with the K–T boundary extrema (Fig. 4a) and is also nonstationary (Fig. 3). Long periodicity >60 Ma cannot be resolved in small bandwidths with FFT. The red noise level is low for relative PF extinction, origination, and changes of number of PF species /1 Ma as shown by the low lag-one autocorrelation coefficients (i.e., AR(1)) in Table 1.
The PF pattern appears to have two types of evolutionary response to disturbances, which can be interpreted as persistence and resilience, according to the terminology of Miller (1996). Resilience, that is, the recovery to an initial state following a disturbance, appears in PF data, for instance, after the K–T boundary, where a high origination event occurs after about 0.1 Ma. The correlation between PF extinction and origination is significant with \(r = 0.38 \), which increases to \(r = 0.43 \) without consideration of the K–T extrema (Table 1). The approximate stability of baseline number of PF species after extinction and origination events marks persistence. Extinct species are replaced quickly and often by species with similar morphotypes (Hart 1990). This behavior can be attributed to self-organization of nonlinear chaotic systems, in that (1) the changes of the PF extinction through time are bounded within a range of values (Patterson and Fowler 1996), a so-called attractor, and that (2) power spectrum, based on a 2 Ma resolution of the PF-extinction record, follows a superimposed 1/\(f \)-trend of the power-law relationship (Sole et al. 1997; Newman and Sibani 1999).

Models

Our model for long-term evolution of planktic foraminifera is based on the kinetic response to a system with an oscillatory input as described by Lasaga (1998), where \(a \) is the average input rate (e.g., sea-level change), \(k \) is a first-order constant, and \(M \) can be interpreted as the amount of PF species at a distinct time. Such an oscillatory system model gives the conceptual model for possible external-forced self-organization of biological systems, such as planktic foraminiferal evolution (Fig. 5).

From studies of biological evolutionary processes, a nonlinear component providing self-organized patterns is shown to be very likely involved in their dynamics (Bak and Sneppen 1993). Our data-driven model makes use of the logistic map representing the simplest of all nonlinear equations. Recall that in the differential equation of growth (May 1976),

\[
\frac{dx}{dt} = lx(1 - x)
\]

growth of units \(x \) with time \(t \) varies as a function of the amount of \(x \) scaled by a growth constant \(l \). Substitution of values into these solutions, when \(l > 0 \), results in unbounded exponential growth. Clearly this is not a physically real situation, as all systems must eventually peak, plateau, or die out. However, growth can be bounded simply by scaling eq. [4], as follows

\[
\frac{dx}{dt} = \lambda x(1 - x)
\]
We chose λ ranging from $[3, 4]$ compatible with evolution being at the "edge of chaos," as postulated by Kauffman (1993). The value of λ is determined by substitution of θ into eq. [3], $\Delta t \rightarrow \Delta t = (3 + \phi/2) x_t (1 - x_t)$.

Realizations of eq. [8] depict relative extinction (x_t below average) and relative origination (above average). For comparison, we applied an alternative model based on a periodic driven white noise function. Other noise types with "time-memory" (e.g., autoregressive noise, random walk) are not considered, because of the low AR(1) autocorrelation of the data studied (Table 1, Fig. 4). The white noise amplitudes F_t of our alternative NOISE model are adjusted to the same amplitudes as the SO model.

$$x_i = -0.5 F_i \sin(\omega t_i) + 1$$

For this model, we substitute $\sin(\omega t_i)$ for eq. [7] to obtain our 'NOISE PF-model':

$$x_i = -0.5 F_i \phi_i + 1$$

Models versus data

Fig 6 shows a realization of the SO Model with initial value of $x_0 = 0.3$ at 128 Ma. This simulation corresponds exactly with the high relative PF extinction at the K–T boundary (65.5 ± 0.5 Ma), as a result of the 30 Ma periodic forcing. Moreover, some modeled extinction events (negative extrema) correlate well with the actual relative PF-extinction data ($r = -0.305$), as a result of underlying logistic map (dashed lines in Fig. 6). Corresponding intervals (±0.5 Ma precision) are at 6.5, 10.5, 33.5, 37.5, 57.5, 60.5, 64.5, 93.5, and 101.5 Ma. Furthermore, eight of the 11 major negative peaks in the SO model correlate with eight of the 18 highest relative PF extinction rates, which is a significant correlation ($r = 0.44$). In contrast, variation in relative PF origination is less well explained by the SO model. Major extinction events of our SO model are phase shifted to the periodic forcing function (e.g., 93.5 Ma instead of 95.5 Ma) as shown in Fig. 7. The 100 Ma periodic forcing is truncated to an ~85 Ma period. These alterations in periodicity and phase are results of the nonlinearity in the SO model. However, similarities of 80–85 Ma period found in the PF-extinction and origination data (Fig. 3), as well as correspondence of phase-shifted minima in the SO model with PF-extinction events are striking.

In contrast, distinct abrupt extreme values in the NOISE models correspond only with extinction events at the K–T boundary and high relative PF origination in early Aptian, middle Paleocene, and early Miocene (Figs. 6c, 6d). The NOISE model does not correlate with extrema in PF extinction ($r = -0.03$) and origination ($r = -0.12$).

The periodicities of the SO model of 2.45 and 4.5 Ma for the Paleocene (Fig. 6a) and the ~30 Ma period appear 3.14 radians (about 180 degree) phase shifted to the relative PF-extinction data (Fig. 7), which means that they correspond well with the realizations from eq. [8] of the SO model (extinction events related to minima in the model).

Nonstationary 15 Ma to 2.5 Ma periodicities appear in the SO Model, but also in the NOISE model. Similarities to our PF record makes it likely that multiple periodicity of less than 10 Ma is forced by a low-dimensional internal self-organization or randomly by multiple independent causes. However, the stratigraphic resolution and the uncertainty in the identification of PF species limit a quantitative interpretation of magnitude and high-frequency periodicity involved in the PF evolution.

Discussion

Periodicity

The major ~30 Ma periodicity in the PF record is similar to the 27 Ma periodicity found in the PF origination (Hart 1990)
Fig. 3. Wavelet analysis of relative PF origination and extinction in the last 127 Ma; for explanation of scalogram see Fig. 1. (a–c) Analysis of relative PF origination: (a) scalogram from data considered as punctuated events, (b) scalogram from data considered as gradual changes, (c) data at event levels with 20 Ma moving-average curve (dashed line). (d–e) Analysis of relative PF-extinction data: (d) data at event levels with 20 Ma moving-average curve (dashed line), (e) scalogram from data considered as punctuated events. (f) Scalogram from data considered as gradual changes; dashed line shows K–T boundary.
and to the 26–30 Ma periodicity in the mass-extinction record of the last 250 Ma (e.g., Raup and Sepkoski 1984; Rampino and Stothers 1984). The PF-extinction record shows better pronounced long-term periodicity (i.e., ~30 and ~85 Ma) and clearer patterns of self-organization than the PF-origination record. The PF-origination record appears statistically more random, as already shown by nonlinear analysis techniques by Patterson and Fowler (1996).

The existence of a 26–30 Ma periodicity in the fossil record has been critically debated for more than a decade, especially because of the

(1) limited quality of the time scales, the dating of stratigraphic boundaries used, and the possible insignificance of periodicity (e.g., Hoffman 1985, 1989; Stigler and Wagner 1988).

(2) the insufficient quality of the database (marine taxa, culled data, preservational constraints) and the taxonomic level (family, genera, species) used (Patterson and Smith 1987; Benton 1995),

(3) the statistical methods used (e.g., FFT) may have favored the detection of periodicities that are multiples of the mean durations of stages (Stigler and Wagner 1988 vs. Raup and Sepkoski 1988).

However, statistical tests have demonstrated that the 26 Ma periodicity cannot be an artifact of variances in spacing of the peaks in the mass-extinction database (Kitchell and Estabrook 1986). Also, the data base has improved over the last decade (Sepkoski 1998). Our PF database has 200 extinction–origination levels over the last 127 Ma and provides a much more detailed record than mass-extinction studies with 24 stage boundaries used from Recent to the Barremian (Raup and Sepkoski 1986; Rampino and Caldeira 1992). The time scales are also greatly improved (i.e., Gradstein and Ogg 1996) by more accurate and precise radiometric dates (e.g., Obradovitch 1993) and correlation techniques (Agterberg 1994). There is still the problem that some stages are very long (e.g., Aptian, Albian, Campanian), and the time resolution within the stages is relatively poor. This inaccuracy in the time scale can lead in particular to imprecise periodicities at high frequencies (low wavelengths) in the fossil record, something we do not evaluate in this study.

The ~30 Ma periodicity in the PF-evolutionary record presented here is slightly longer than the mass-extinction periodicity of 26–30 Ma proposed previously, because

(1) different time scales were used. Mass-extinction levels move from 91 to 94 Ma for the late Cenomanian and from 36.6 to 33.7 Ma for the late Priabonian, using the time scales of Palmer (1983) and Gradstein and Ogg (1996), respectively;

(2) the high PF-extinction rate in late Miocene at ~6.5 Ma is not a mass-extinction level, possibly because of particularly limiting environmental conditions for PF (e.g., competition or restricted food resources, oceanic circulation disturbances).

(3) the wavelet transform permits a better time–frequency resolution than the Fourier transform (Fig. 1). This is also demonstrated by the fact that the wavelet scalograms are identical in terms of their long-term cyclicity, when considering either the gradual or event data (Fig. 3).
Model

The SO model provides an explanation for high-frequency periodicities, singularities, extreme events, which are phase shifted to the overlying long periodicities, and resilience episodes in the PF record, through the use of a low-dimensional dynamic system (i.e., two periodic and a nonlinear parameter) and without invoking multiple external causes. Our results support the idea that external perturbations, such as 30 Ma and 100 Ma cycles, enhance self-organized evolution (e.g., Plotnick and McKinney 1993), or alternatively that nonlinear evolutionary changes may occur that are dependent on the intensity of physical disturbances (Chiba 1998). Other models that include significant random noise due to errors in the PF record and the time scale or that exclude or include more periodic forcing functions are possible. It is also possible to model extinction and origination dynamics separately (Newman and Sibani 1999), respect faunal provences, and more importantly respect biological processes instead of the fossil record itself (e.g., Plotnick and McKinney 1993; Huismann and Weissing 1999), which make the output more accurate, but also much more complicated.

Our model cannot express the variability in the time intervals between extinction and origination events and the absolute number of PF species possible in the environment. Both time intervals and total PF-diversity estimation are subjects to various measurement errors that reduce the feasibility of more distinct data-driven modelling at this stage. The comparison of the SO model and NOISE model leaves the question open whether the high-frequency periodicity is predominantly a nonlinear effect (Fig. 6a) or more random (Fig. 6e). However, the NOISE model provides neither phase shifts of the periodic forcing function nor extreme values as the K–T boundary extinction event. Sole et al. (1997) showed that the temporal distribution of relative PF extinction resembles a power law distribution, which is characteristic of self-organization.

Correlation with geological events and changes

Impact crater record

The terrestrial impact crater record (Fig. 8) is linearly correlated to relative PF extinction and to the changes of number of PF species/Ma (Table 1). Also, the pattern of nonstationary ~2.5–14 Ma periods and the quasistationary ~30 Ma periodicity in the wavelet analysis of the impact record (Fig. 9a) correspond to the periodicity in the relative PF extinction (Figs. 3d–3f). However, the 30 Ma periodicity of the PF extinction data is phase shifted by 2.57 radians, which corresponds to ~6.5 Ma = 31 million years*1.31/2π to the terrestrial impacts (Fig. 10). Moreover, linear correlation between the terrestrial impact crater record and relative PF extinction is not significant once the K–T extinction event is removed and replaced by a value of zero (Table 1). Therefore, a significant correlation between Phanerozoic mass extinctions and impact cratering (e.g., Rampino and Stothers 1986; Sepkoski 1989; Matsumoto and Kubotani 1996) is not evident for the PF evolution. However, these studies did not take the sizes of all impact craters and the errors of the time scale into consideration, which are both changed due to newer data. Nevertheless, correlations exist between the K–T-boundary impact, the Popigai and Chesapeake crater ages, and the PF evolutionary record (Fig. 8) and in the 10 Ma periodicity around the K–T boundary (Fig. 10).

Glikson (1999) has calculated that approximately 10 craters (3 on the continents and 7 in the ocean basins) greater than 100 km in diameter should have collided with Earth over the past 127 Ma, although there is only evidence, thus far, of three on the continent: Chicxulub (170 km at 64.98 ± 0.05 Ma, Chesapeake(90 km at 35.2 ± 0.3 Ma), and Popigai (100 km at 35.7 ± 0.8 Ma) (Grieve 1997; R.A.F. Grieve, personal communication, 1999). Iridium anomalies (e.g., Alvarez et al. 1982; Asaro et al. 1982) may indicate a bolide impact linked to the increased PF-extinction rate around the Eocene–Oligocene boundary. Thus, the Popigai and Chesapeake craters and other undiscovered bolide impacts cannot be rejected as potential causes of PF-extinction events. A significant correlation between mass-extinction and impact crater ages found by Matsumoto and Kubotani (1996) was suggested as insignificant after removing of the impacts >40 km from the data set (Yabushita 1998). Consequently, we assume that smaller PF-extinction events and small impacts with craters <40 km diameter are unrelated.

Sea level

Sea-level fluctuations are assumed to be major causes for mass extinction (i.e., Hallam 1989) and fluctuations in the
Fig 6. (a) Scalogram of wavelet analysis of (b) a coupled, periodic, nonlinear model (SO Model) with $\Delta t = 1$ Ma of 127 Ma; for comparison: (c) relative PF origination (above zero) – extinction (below zero), (d) periodic, forced, random noise (NOISE) model with $\Delta t = 1$ Ma; (e) wavelet scalogram of NOISE model. Vertical dotted lines in (b) and (c) mark correlations between SO model and relative PF extinction; bold dashed line marks K–T-boundary event in PF data and SO Model; horizontal dashed lines in (b) and (d) mark mean, indicating assumed transition between modeled extinction level (below line) and origination level (above line); asterisks in (d) mark negative extrema in NOISE model, in phase with periodic forcing function; for further explanation see text.
origination of PF species (Hart 1980, 1990). Wavelet analysis reveals an approximate 27.5 Ma periodicity in the sea-level changes, but it is superimposed by other nonstationary 3.8, 8, 16.5, and 42 Ma periods (Figs. 9c, 9d). Cross-spectral analysis shows that there is a phase shift between the 27.5 Ma periodicity in sea level and the ~30 Ma periodicity in the PF record of 2.57 radians, which corresponds to 10.6 Ma = 26*2.57/2π or inversely corresponds to low sea level at high extinction rates, 2.3 Ma = 26*(π – 2.57)/2π (Fig. 10). Despite the phase shift, a weak though significant linear correlation \(r = -0.23 \) (Tab. 1) exists between PF extinction and sea-level change. For instance, severe global sea-level falls in the late Turonian (90.5 Ma), late Paleocene (58.2, 55.2 Ma), and late Eocene (37, 33.7 Ma) correspond with increased PF-extinction rates >0.2 (Fig. 8). This obvious correspondence may be statistically random, because only three of the major eight sea-level drops have a correlation to the PF-extinction rate. The high correlation \(r = -0.57 \) between total number of PF species and sea level is also insignificant, because of the strong time-dependence (AR(1) > 0.9) of both data sets (Table 1).

Consequently, periodicities in sea-level change and impact record are not significantly linked to relative PF extinction, but correspondences of some large impacts and sea-level falls exist with the PF record. New recalibrations of the time scale and extended and improved impact age determinations may change the significance of any possible relationships.

Causes and consequences

From the above correlations, we can postulate two general causes that increased PF-extinction and radiation rates: (1) Mantle degassing as the result of flood-basalt volcanism increased the atmospheric CO2 level, released a large mass of sulphur-rich gases in the stratosphere–troposphere, and disturbed the oceanic circulation pattern and ocean chemistry. This degassing increased the carbon input in the oceans and provided thicker oxygen minimum zones, triggering oceanic anoxic events (e.g., Schlanger and Jenkins 1976; Kerr 1998). Loper et al. (1988) modeled a cyclic instability of ~30 Ma periodicity in the thermal boundary layer \((D^+) \) at the base of the Earth’s mantle as cause of the mantle plumes. Consequently, the development of mantle plumes may lead to episodes of strong continental and oceanic volcanic activity, changes in the ocean chemistry, circulation and oxygenation, and finally major extinction events. Recent studies (Prokoph and Veizer 1999) demonstrate that a ~30 Ma periodicity is apparent in the Mesozoic \(\delta^{13}C \) and \(\delta^{18}O \) records of marine carbonate rocks. The deep-water PF species (Hart 1980; Brasier 1988) and benthic foraminifera (Kaiho 1998) are more greatly impacted by fluctuating oxygen minimum zones, whereas the shallow-water species are more resistant. The extinctions at the Cenomanian–Turonian and in late Santonian, which are known to coincide with black shale sedimentation events, were more severe for deep-water species.

(2) Extreme global sea-level falls, caused by orogenic events, often associated with climate cooling, provided regressions of shelf seas and thus removed niche spaces for PF species. This led to major extinction events (Hallam 1989), reduction PF-origination rate (Hart 1990), or both. Examples
are the late Albian and late Eocene PF extinctions that corresponded with marine regressions (Hardenbol et al. 1998). These causes, as well as other geological events (e.g., bolide impacts), may sometimes occur synchronously (e.g., Eocene–Oligocene – sea-level fall and flood basalt and K–T boundary – bolide impact and flood basalt). Consequently, our SO model and statistical results correspond with the suggestion of Rampino and Caldeira (1993) that
possible multiple, but interconnected, intraterrestrial events may cause extinction with a roughly 30 Ma periodicity. The nonstationary, high-frequency periods (~2.4–15 Ma) in the PF record and in our SO model may indicate that an increased rate of evolution existed during increased environmental stress, a result found in other nonlinear models (e.g., Chiba 1998; Plotnick and McKinney 1993). The driving periodicity of our SO model is phase shifted in the output, because of the coupling with a nonlinear function. Global sea-level fluctuations are similarly phase shifted, leading to the possibility that sea level may itself be part of a nonlinear system that in part controls abundance of PF species by varying the amount of available niche space.

Conclusion

Wavelet analysis quantitatively demonstrates that the PF record, particularly relative PF-extinction rates, is characterized by a ~30 Ma periodicity, slightly longer than the 26–30 Ma mass-extinction record of Phanerozoic genera and families. This periodicity is superimposed by a weak 80–100 Ma secular trend with a peak around the K-T boundary. Nonstationary periodicity of 2.4–14 Ma appears in the PF record, especially in times of increased origination and extinction rates (e.g., Paleocene, Turonian).

Self-organization in the PF record is characterized by the fast rebound of the baseline number of species after extreme extinctions (e.g., Turonian, Paleocene) and corresponds to nonstationary, high-frequency periodicity. A simple data-driven nonlinear model based on 30 Ma and a weak 100 Ma periodic forcing of the logistic map was constructed. Its output is self-organized, and its three degrees of freedom resembles essential parts the actual PF record. These singularities (i.e., K–T boundary), nonstationarities, and extrema in relative PF extinction at the Cenomanian–Turonian, and Eocene–Oligocene boundaries, which are phase shifted due to the forcing function of the SO model. This simple model can neither explain all patterns in the PF record, including short-term changes; the total PF diversity; and stochastic processes involved in the PF evolution.

Statistical analysis (correlation analysis, cross-spectral analysis) suggests that there is no single external cause for the 30 Ma and other periodicities. The correspondence of some extraordinary high relative PF extinction events with some continental and oceanic flood-basalt volcanism, global sea-level falls, global anoxic events, but only three large
bolides (K–T boundary and in late Eocene) indicates multiple interacting, mostly terrestrial, causes for long-term periodicity in the evolution of planktic foraminifera.

Acknowledgments

We acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the donors of the American Chemical Society Petroleum Research Fund. We thank Michael Rampino and Felix Gradstein for their constructive reviews.

References

Brasier, M.D. 1988. Foraminiferal extinction and ecological collapse during global biological events. In Extinction and survival

© 2001 NRC Canada

© 2001 NRC Canada