The production and perception of intrinsic vowel duration

Ida Toivonen (joint work with Adam Stone)

Carleton University, ida.toivonen@carleton.ca

Oxford University, November 2, 2015

(4 個)ト イヨト イヨト

This talk

- High vowels are shorter than low vowels.
- Is this due to some physiological effect or is it built into our grammar?

3

Overview

- Height-duration correlation in vowels
- A series of studies: correlation robust between categories, not within categories
- How do we account for the observation that the correlation holds cross-linguistically?
- Adam Stone's thesis: low vowels are perceived as being longer even when they are not

イロト 不得下 イヨト イヨト

High vowels are shorter than low vowels

- Generalization: High vowels are shorter than low vowels.
- There is a positive correlation between F1 and duration.
- English: Heffner 1937, House and Fairbanks 1953, Peterson and Lehiste 1960, Scharf 1962
- Other languages: German (Maack 1949), Inari Saami (Äimä 1918, Stone 2014), Swedish (Elert 1964), Thai (Abramson 1962), Spanish (Navarro Tomás 1916)
- Lehiste (1970:18): "It may be noted that these differences are probably above the threshold for auditory discrimination and thus should be audible."

イロン 不聞と 不同とう アン

Explanation

• Why should high vowels be shorter than low vowels? Why is it cross-linguistically true?

э

▲口> ▲圖> ▲国> ▲国>

Physiological explanation

- "It is quite probable that the differences in vowel length according to degree of opening [of the jaw – my note] are physiologically conditioned and thus constitute a phonetic universal" (Lehiste 1970: 18–19)
- Also: Fischer-Jørgensen (1964), Sharf (1962), Solé and Ohala (2010)
- Lindblom (1967): the nature of the tongue's placement with respect to the palate
- Catford (1977:197): distance between the vowel and surrounding consonants' places of articulation

イロト 不得下 イヨト イヨト

- "each vowel has a duration target specified in the grammar" (Tauberer and Evanini 2009)
- Tauberer & Evanini's dialect comparison: F1 and duration of "same" vowel does not always vary as predicted
- Lisker (1974): on- and off-glides not longer on low vowels; steady state is longer (from Lehiste & Peterson 1961)
- Solé & Ohala (2010): is duration difference between high and low vowels constant as duration changes according to speech rate? Yes: Japanese; No: Catalan and English

- "each vowel has a duration target specified in the grammar" (Tauberer and Evanini 2009)
- Tauberer & Evanini's dialect comparison: F1 and duration of "same" vowel does not always vary as predicted
- Lisker (1974): on- and off-glides not longer on low vowels; steady state is longer (from Lehiste & Peterson 1961)
- Solé & Ohala (2010): is duration difference between high and low vowels constant as duration changes according to speech rate? Yes: Japanese; No: Catalan and English

イロト イヨト イヨト

- "each vowel has a duration target specified in the grammar" (Tauberer and Evanini 2009)
- Tauberer & Evanini's dialect comparison: F1 and duration of "same" vowel does not always vary as predicted
- Lisker (1974): on- and off-glides not longer on low vowels; steady state is longer (from Lehiste & Peterson 1961)
- Solé & Ohala (2010): is duration difference between high and low vowels constant as duration changes according to speech rate? Yes: Japanese; No: Catalan and English

- "each vowel has a duration target specified in the grammar" (Tauberer and Evanini 2009)
- Tauberer & Evanini's dialect comparison: F1 and duration of "same" vowel does not always vary as predicted
- Lisker (1974): on- and off-glides not longer on low vowels; steady state is longer (from Lehiste & Peterson 1961)
- Solé & Ohala (2010): is duration difference between high and low vowels constant as duration changes according to speech rate? Yes: Japanese; No: Catalan and English

・ロト ・四ト ・ヨト ・ヨトー

Puzzles

- (1) If a pure physiological explanation is correct, how do we explain the findings of Tauberer & Evanini, Lisker, and Solé & Ohala?
- (2) If a pure phonological explanation is correct, how do we explain the cross-linguistic tendency?

Testing the physiology hyothesis

- If the height-duration correlation is mechanical (due to jaw movement), we should see the effect *within* as well as *between* categories.
- Every time a word is uttered, it is slightly different among other things, the F1 is slightly different.
- If we see the duration effect when we compare different tokens of the [1] vowel (for example), that would be consistent with the jaw opening view.

イロト イヨト イヨト

Testing the physiology hyothesis

- If the height-duration correlation is mechanical (due to jaw movement), we should see the effect *within* as well as *between* categories.
- Every time a word is uttered, it is slightly different among other things, the F1 is slightly different.
- If we see the duration effect when we compare different tokens of the [1] vowel (for example), that would be consistent with the jaw opening view.

イロト イヨト イヨト

Testing the physiology hyothesis

- If the height-duration correlation is mechanical (due to jaw movement), we should see the effect *within* as well as *between* categories.
- Every time a word is uttered, it is slightly different among other things, the F1 is slightly different.
- If we see the duration effect when we compare different tokens of the [1] vowel (for example), that would be consistent with the jaw opening view.

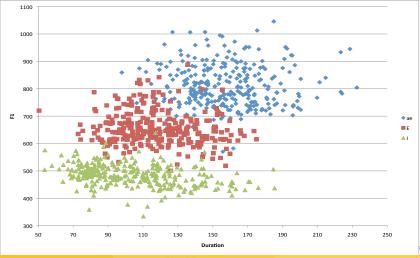
イロト 不得下 イヨト イヨト

English, Swedish, and Inari Saami

• This paper investigates whether there is a correlation between vowel height and duration between and within categories in English, Swedish and Inari Saami.

イロト イ団ト イヨト -

English: Three studies


- Study 1: nonce words collected for Andrea Gormleys thesis (Gormley 2010), 4 speakers
- Study 2: a mixed set of real English words, data collected by Nalini Ramlakhan, 2013, three participants
- Study 3: a more limited set of real English words, more repetitions, data collected by Nalini Ramlakhan, 2013, three participants

English Study 1

- data from Andrea Gormley
- we looked at four speakers
- 4730 data points
- nonce words: tiff tivv keff kevv taff tavv

3

English study 1, Speaker A

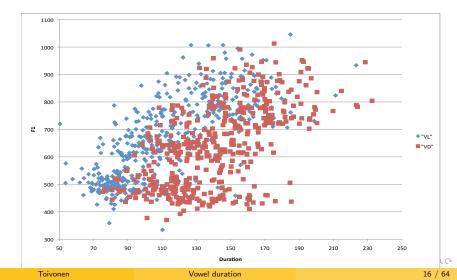
Toivonen

13 / 64

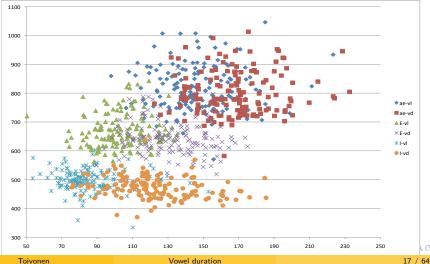
Speaker A: between categories

	Duration	F1
	87/123 msec	496/473 Hz
[ɛ]	103/132 msec	669/643 Hz
[æ]	147/169 msec	821/800 Hz

- before voiceless C/ before voiced C
- all distinctions highly significant
- strong positive correlation between f1 and duration

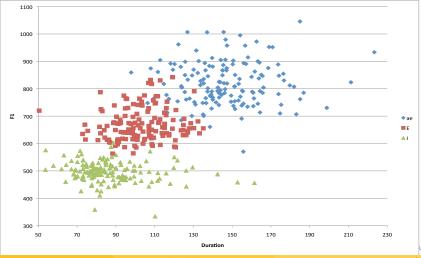

イロト 不得下 イヨト イヨト

Speaker A: within categories


- There is no positive correlation between f1 and duration
- Within the [I] category, there is a weak negative correlation
- F1 of V and voicing of C: vowels are lower before voiceless consonants (Moreton 2004)

イロト イヨト イヨト

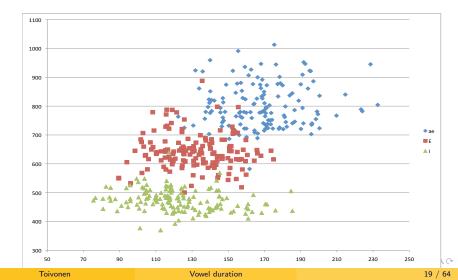
English study 1, Speaker A



English study 1, Speaker A

Toivonen

Speaker A, before voiceless C



Toivonen

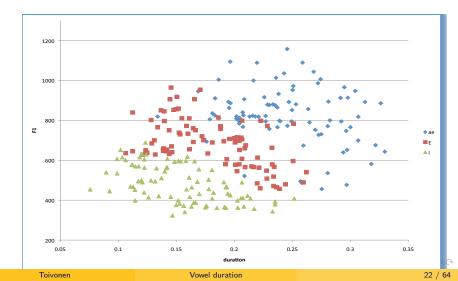
18 / 64

Vowel duration

Speaker A, before voiced C

English Study I, general results

- Higher vowels are shorter
- This effect is not seen within categories
- Potential problems:
 - (1) designed to be a tongue twister (plus controls!)
 - (2) nonce words


English study 2: Methodology

- Stimuli: five set of minimal or near-minimal triplets with the vowels [I ϵ æ]
- {sit set sat}; {bit bet bat}; {big beg bag}; {give bev jazz }; {miss mess mass}
- repeated six times, randomized
- three subjects
- subjects were shown one word at a time (written, on a computer screen)
- even timing (power point)
- the subjects read each word in a carrier phrase ('say X to me')
- the target words were segmented in PRAAT
- a PRAAT script extracted the duration and f1 of each segment (thanks Mietta Lennes!)

イロト 不得下 イヨト イヨト

English

English study 2

English Study 2, between categories

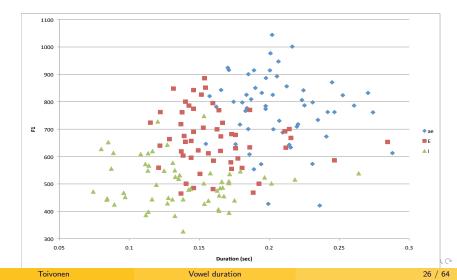
	Duration	F1
[i]	156 msec	477 Hz
[ε]	183 msec	683 Hz
[æ]	241 msec	825 Hz

- the distinctions are highly significant
- duration of [ι] and [ε] not significantly different for one speaker (cf. Solé & Ohala 2010, who also reach inconclusive results for [ι] and [ε] in English)
- strong positive correlation between f1 and duration

English Study 2, within categories

- No f1/duration correlation within categories
- except a weak negative correlation in [æ] for one speaker

English study 3


- miss mess mass; bit bet bat
- method: same as study 2, except each word read ten times
- Three participants

3

ヘロト 人間 ト くほ ト くほ トー

English

English study3

English Study 3, between categories

	Duration	F1
[I]	138 msec	505 Hz
[ɛ]	162 msec	662 Hz
[æ]	207 msec	772 Hz

- the distinctions are significant
- strong positive correlation between F1 and duration
- no F1-duration correlation in the within-category analysis

イロト 不得下 イヨト イヨト

English studies, summary

- High vowels are shorter than low vowels.
- This generalization holds between categories, not within categories.

3

Swedish

Swedish

Quantity in Swedish

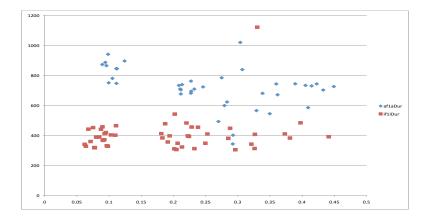
- complementary quantity system:
 - long vowels are followed by short consonants
 - short vowels are followed by long consonants

3

Swedish examples

Long V words:		Short V words	
[haːt]	'hatred'	[hatː]	'hat'
[kaːl]	'bare'	[kal:]	'cold'
[heːta]	'be called'	[hetːa]	'heat'

E


Swedish Study 1

- 6 speakers
- every speaker: 60 words five times each
- mono- and disyllabic, before voiced & voiceless, before stops and fricatives, inherently long and short vowels
- similar results to English study

イロト イヨト イヨト

Swedish

Speaker KS

୬ < (~ 33 / 64

æ

Speaker KS, Duration & F1

	Duration	F1
[ı]	190 ms	404 Hz
[a]	256 ms	720 Hz

- between categories: high vowels are shorter than low vowels
- Within [I]: no correlation between f1 and duration
- Within [a] category: a negative correlation between f1 and duration
- Other speakers and sounds: similar results

イロト 不得下 イヨト イヨト

Swedish Study I, results

- Same results as English study
- Between categories: high vowels are shorter than low vowels; some exceptions where they are the same
- Within categories: no correlation between f1 and duration, or a weak negative correlation

Swedish Study 2

- two speakers
- better controlled than Study 1
- missa messa massa
- two speakers
- stimuli eight times, ten times

3

Swedish study II, both speakers, duration

- $\bullet \ [I] < [\epsilon]$
- $\bullet \ [\epsilon] < [\alpha]$
- within categories: no correlation

3

ヘロト 人間ト 人注ト 人注ト

Swedish Studies, results

- Same results as English study
- Between categories: high vowels are shorter than low vowels; some exceptions where they are the same
- Within categories: no correlation between f1 and duration, or a weak negative correlation

(4 個)ト イヨト イヨト

Inari Saami

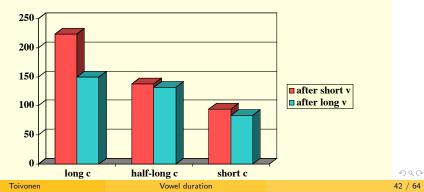
- Spoken in Northern Finland
- About 350 speakers
- Part of the Saami language group, about 20,000 speakers total

3

The phonetic study of Inari Saami

- 5 native speakers
- 99 words (types)
- 1003 tokens
- words uttered in carrier phrase
- \bullet words with [I] and [n] as middle consonant, low or back vowel as V_1
- words with two syllables
- PRAAT and R
- See Bye, Sagulin & Toivonen (2009) Phonetica

Inari Saami


Word type	NAIVE PHONEMIC
VCV	/tšælæm/
VC-V	/mɑnʰan/
VCCV	/kannun/
VVCV	/moonəm/
VVC-V	/laan•an/
VVCCV	/pæænnin/

All combinations of short/long V and short/half-long/long C allowed

E

Consonants: long, half-long, short

Consonants after short vs. long vowels (Speaker K)

Inari Saami quantity

- There is a binary vowel duration distinction and a ternary consonant duration distinction
- The expected inverse correlations are found between categories: the shorter the V1, the longer the C
- However, Inari Saami is not a complementary quantity language

イロト イ団ト イヨト -

Inari Saami, results

- Between categories: high vowels are shorter than low vowels
- Within categories: inconclusive results, however, the within-category correlation does not seem to mirror the between-category one

Summary

- Three English studies, two Swedish studies, one Inari Saami study
- Stone (2014): six Chilean Spanish speakers, same results
- Generalization: High vowels are shorter than low vowels.
- The generalization does not hold for all sounds and all speakers, but we never found a higher vowel to be longer
- The generalization holds between categories only, not within categories.
- Toivonen, Lev Blumenfeld, Andrea Gormley, Leah Hoiting, John Logan, Nalini Ramlakhan, Adam Stone 2014 (WCCFL paper)

- High vowels are shorter than low vowels, even in quantity languages.
- This is consistent with Meister & Werner's (2009) findings for Estonian and Finnish.
- The results of these studies are consistent with the hypothesis that vowels have a duration target in the grammar
- Vowel duration is a secondary cue that helps distinguish between vowels
- The duration-height correlation is a phonological (controlled) feature.
- Our studies do not support the claim that lower vowels simply take longer to produce (physiological, mechanical explanation).
- Remaining puzzle: how do we explain the cross-linguistic tendency? Why don't we find languages where low vowels are shorter than high vowels?

- High vowels are shorter than low vowels, even in quantity languages.
- This is consistent with Meister & Werner's (2009) findings for Estonian and Finnish.
- The results of these studies are consistent with the hypothesis that vowels have a duration target in the grammar
- Vowel duration is a secondary cue that helps distinguish between vowels
- The duration-height correlation is a phonological (controlled) feature.
- Our studies do not support the claim that lower vowels simply take longer to produce (physiological, mechanical explanation).
- Remaining puzzle: how do we explain the cross-linguistic tendency? Why don't we find languages where low vowels are shorter than high vowels?

- High vowels are shorter than low vowels, even in quantity languages.
- This is consistent with Meister & Werner's (2009) findings for Estonian and Finnish.
- The results of these studies are consistent with the hypothesis that vowels have a duration target in the grammar
- Vowel duration is a secondary cue that helps distinguish between vowels
- The duration-height correlation is a phonological (controlled) feature.
- Our studies do not support the claim that lower vowels simply take longer to produce (physiological, mechanical explanation).
- Remaining puzzle: how do we explain the cross-linguistic tendency? Why don't we find languages where low vowels are shorter than high vowels?

- High vowels are shorter than low vowels, even in quantity languages.
- This is consistent with Meister & Werner's (2009) findings for Estonian and Finnish.
- The results of these studies are consistent with the hypothesis that vowels have a duration target in the grammar
- Vowel duration is a secondary cue that helps distinguish between vowels
- The duration-height correlation is a phonological (controlled) feature.
- Our studies do not support the claim that lower vowels simply take longer to produce (physiological, mechanical explanation).
- Remaining puzzle: how do we explain the cross-linguistic tendency? Why don't we find languages where low vowels are shorter than high vowels?

・ロン ・四 と ・ ヨン

- High vowels are shorter than low vowels, even in quantity languages.
- This is consistent with Meister & Werner's (2009) findings for Estonian and Finnish.
- The results of these studies are consistent with the hypothesis that vowels have a duration target in the grammar
- Vowel duration is a secondary cue that helps distinguish between vowels
- The duration-height correlation is a phonological (controlled) feature.
- Our studies do not support the claim that lower vowels simply take longer to produce (physiological, mechanical explanation).
- Remaining puzzle: how do we explain the cross-linguistic tendency? Why don't we find languages where low vowels are shorter than high vowels?

・ロン ・四 と ・ ヨン

- High vowels are shorter than low vowels, even in quantity languages.
- This is consistent with Meister & Werner's (2009) findings for Estonian and Finnish.
- The results of these studies are consistent with the hypothesis that vowels have a duration target in the grammar
- Vowel duration is a secondary cue that helps distinguish between vowels
- The duration-height correlation is a phonological (controlled) feature.
- Our studies do not support the claim that lower vowels simply take longer to produce (physiological, mechanical explanation).
- Remaining puzzle: how do we explain the cross-linguistic tendency? Why don't we find languages where low vowels are shorter than high vowels?

- High vowels are shorter than low vowels, even in quantity languages.
- This is consistent with Meister & Werner's (2009) findings for Estonian and Finnish.
- The results of these studies are consistent with the hypothesis that vowels have a duration target in the grammar
- Vowel duration is a secondary cue that helps distinguish between vowels
- The duration-height correlation is a phonological (controlled) feature.
- Our studies do not support the claim that lower vowels simply take longer to produce (physiological, mechanical explanation).
- Remaining puzzle: how do we explain the cross-linguistic tendency? Why don't we find languages where low vowels are shorter than high vowels?

イロト 不得下 イヨト イヨト

- High vowels are shorter than low vowels, even in quantity languages.
- This is consistent with Meister & Werner's (2009) findings for Estonian and Finnish.
- The results of these studies are consistent with the hypothesis that vowels have a duration target in the grammar
- Vowel duration is a secondary cue that helps distinguish between vowels
- The duration-height correlation is a phonological (controlled) feature.
- Our studies do not support the claim that lower vowels simply take longer to produce (physiological, mechanical explanation).
- Remaining puzzle: how do we explain the cross-linguistic tendency? Why don't we find languages where low vowels are shorter than high vowels?

- If it is not jaw movement or something else production-related, then what is it?
- Perhaps it *is* production-related, just not directly?
- Solé & Ohala (2010:647):
 - Duration is one of several distinctive manifestations of vowel identity, but the specific durational targets of vowels may have originated in biomechanical differences.
 - The cross-linguistic tendency then has a physiological explanation, but this tendency has been phonologized in some languages and not others.
- Perception?
- Perhaps high vowels sound shorter than low vowels?
- Adam Stone's Master's thesis: It seems like high vowels are perceived as being shorter han low vowels, at least by English speakers.

- If it is not jaw movement or something else production-related, then what is it?
- Perhaps it *is* production-related, just not directly?
- Solé & Ohala (2010:647):
 - Duration is one of several distinctive manifestations of vowel identity, but the specific durational targets of vowels may have originated in biomechanical differences.
 - The cross-linguistic tendency then has a physiological explanation, but this tendency has been phonologized in some languages and not others.
- Perception?
- Perhaps high vowels sound shorter than low vowels?
- Adam Stone's Master's thesis: It seems like high vowels are perceived as being shorter han low vowels, at least by English speakers.

- If it is not jaw movement or something else production-related, then what is it?
- Perhaps it *is* production-related, just not directly?
- Solé & Ohala (2010:647):
 - Duration is one of several distinctive manifestations of vowel identity, but the specific durational targets of vowels may have originated in biomechanical differences.
 - The cross-linguistic tendency then has a physiological explanation, but this tendency has been phonologized in some languages and not others.
- Perception?
- Perhaps high vowels sound shorter than low vowels?
- Adam Stone's Master's thesis: It seems like high vowels are perceived as being shorter han low vowels, at least by English speakers.

- If it is not jaw movement or something else production-related, then what is it?
- Perhaps it *is* production-related, just not directly?
- Solé & Ohala (2010:647):
 - Duration is one of several distinctive manifestations of vowel identity, but the specific durational targets of vowels may have originated in biomechanical differences.
 - The cross-linguistic tendency then has a physiological explanation, but this tendency has been phonologized in some languages and not others.

• Perception?

- Perhaps high vowels sound shorter than low vowels?
- Adam Stone's Master's thesis: It seems like high vowels are perceived as being shorter han low vowels, at least by English speakers.

- If it is not jaw movement or something else production-related, then what is it?
- Perhaps it *is* production-related, just not directly?
- Solé & Ohala (2010:647):
 - Duration is one of several distinctive manifestations of vowel identity, but the specific durational targets of vowels may have originated in biomechanical differences.
 - The cross-linguistic tendency then has a physiological explanation, but this tendency has been phonologized in some languages and not others.
- Perception?
- Perhaps high vowels *sound* shorter than low vowels?
- Adam Stone's Master's thesis: It seems like high vowels are perceived as being shorter han low vowels, at least by English speakers.

- If it is not jaw movement or something else production-related, then what is it?
- Perhaps it *is* production-related, just not directly?
- Solé & Ohala (2010:647):
 - Duration is one of several distinctive manifestations of vowel identity, but the specific durational targets of vowels may have originated in biomechanical differences.
 - The cross-linguistic tendency then has a physiological explanation, but this tendency has been phonologized in some languages and not others.
- Perception?
- Perhaps high vowels *sound* shorter than low vowels?
- Adam Stone's Master's thesis: It seems like high vowels are perceived as being shorter han low vowels, at least by English speakers.

Perceived vowel duration

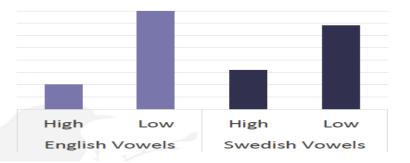
- Gussenhoven (2007): "Higher vowels sound longer than lower vowels, by way of compensation for the articulation-driven lengthening of open vowels." Limburgian dialects of Dutch.
- Gusssenhoven and Zhou (2013): High vowels sound shorter than low vowels. Dutch and Chinese listeners.
- Note: not exactly relevant here, but see Heike Lehnert-LeHouillier (2007) *The Perception of Vowel Quantity*

- 4 同下 4 国下 - 4 国下

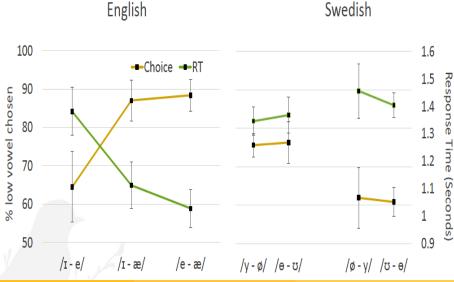
Adam Stone's thesis

- Forced choice perception task.
- Participants heard word pairs and were instructed to pick the longest word.

3


Stimuli

- Participants: 31 native speakers of English
- (1) English words; e.g., *big-beg*
- (2) English nonce words; e.g., mib-meb
- (3) Swedish words; e.g., gnytt-gnott
- (4) Swedish nonce words; e.g., drytt-drott
 - All words appeared in the way they were recorded and in a modified form where the duration was manipulated so that the duration of both words in the pair was the same.


イロト 不得下 イヨト イヨト

Adam's study

English vs. Swedish Choices

Adam's study

Toivonen

English results

Table 4: English length choices between natural a	and modified duration conditions
---	----------------------------------

·	Natural Duration			Modified Duration			
	/I - ε/	/I - æ/	$\epsilon - \epsilon /$	/I - ε/	/I - æ/	$\epsilon - \epsilon k$	
% Chosen	64.68	88.85	89.12	65.12	84.13	87.09	
#V1 Chosen	137	50	36	201	62	42	
#V2 Chosen	264	380	303	378	371	299	
Effect Size φ	.32	.77	.79	.31	.71	.75	

The bold vowel in each pair refers to the measurably lower one. "% Chosen" refers to how much the lower vowel was chosen. "#V1 Chosen" refers to the amount of times the first (higher) vowel in the above pairs was selected, and "#V2 Chosen" refers to the second (lower) vowel. All effects are significant, p < .0001.

3

ヘロト 人間 ト くほ ト くほ トー

Swedish results

Table 5: Swedish length choices between natural and modified duration conditions

	Natural	Duration	Modified Duration		
	/y – ø/	/θ - υ/	/y – ø/	/θ - υ/	
% Chosen	73.36 , 68.66	75.27 , 58.46	77.86 , 55.19	77.88 , 63.63	
#V1 Chosen	119 , 108	56 , 132	90 , 158	48 , 101	
#V2 Chosen	315 , 233	161 , 178	313 , 214	169 , 178	
Effect Size φ	.45 , .37	.48 , .15	.55 , .15	.56 , .28	

Each result is composed of normally-ordered pair results on left (in bold), followed by reverseordered pairs on right, separated by a comma

0				

▲ロト ▲圖ト ▲画ト ▲画ト 二直 - のへで

Conclusion

- High vowels are shorter than low vowels.
- This seems to be true cross-linguistically.
- There are reasons to believe that this is not due to physiology, or at least not pure physiology
- There is some evidence that high vowels are perceived as shorter than low vowels.

- 4 同 1 - 4 回 1 - 4 回 1

Thank you

- LLI Lab, Carleton University
- Patrik Bye, Jen Hay, Raj Singh
- CUNY Phonology Forum
- NAPHC8
- WCCFL
- SSHRC

3

Selected references

Bye, Patrik, Elin Sagulin and Ida Toivonen. 2009. Phonetic duration, phonological quantity and prosodic structure in Inari Saami. *Phonetica* 66(4): 199-221.

Elert, C.-C. 1964. Phonologic Studies of Quantity in Swedish. Uppsala: Almqvist & Wiksell.

Gussenhoven, Carlos. 2007. A vowel height split explained: Compensatory listening and speaker control. LapPhon9.

Gussenhoven & Zhou. 2013. Revisiting pitch slope and height effect on perceived duration. Interspeech.

House, A.S., and G. Fairbanks. 1953. The influence of consonant environment upon the secondary acoustical characteristics of vowels. *Journal of the Acoustical Society of America* 25: 268–277.

Lehiste, Ilse. 1970. Suprasegmentals. Cambridge, MA: The MIT Press.

Lindblom, B. (1967). Vowel duration and a model of lip mandible coordination. Speech Transmission Laboratory Quarterly Progress and Status Report, 4: 1-29.

Lisker, Leigh. 1974. On "explaining" vowel duration variation. Technical report SR 37/38, Haskins Laboratories. Peterson, G. E., and Ilse Lehiste. 1960. Duration of syllable nuclei in English. *Journal of the Acoustical Society of America* 32(6): 693–703.

Sammallahti, Pekka and Matti Morottaja. 1993. Säämi-suomâ sänikirje. Davvi Girji, Karasjok.

Schaeffler, Felix. 2005. Phonological Quantity in Swedish Dialects: Typological Aspects, Phonetic Variation and Diachronic Change. PhD Thesis, Umeå University.

Solé, Maria-Josep, and John Ohala. 2010. What is and what is not under the control of the speaker: Intrinsic vowel duration. In Fougeron, Kühnert, D'Imperio, and Vallée, eds., *Papers in Laboratory Phonology* 10, 607–655. Berlin: de Gruyter.

Stone, Adam. 2015. The production and perception of vowel height and duration. Master's thesis, Carleton University. Tauberer, Joshua, and Keelan Evanini. 2009. Intrinsic vowel duration and the post-vocalic voicing effect: Some evidence from dialects of North American English. *Interspeech* 2211–2214.

Toivonen, Blumenfeld, Gormley, Hoiting, Logan, Ramlakhan, Stone. Vowel height and duration. WCCFL 32, 64-71.

3

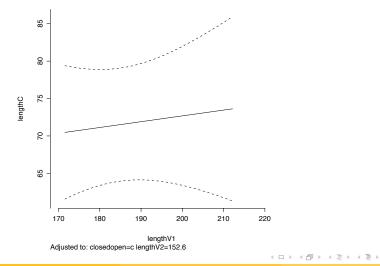
イロト 不得下 イヨト イヨト

Different types of quantity languages

- Swedish has complementary quantity
- Inari Saami does not, but an effect can still be seen: longer V1 goes with shorter C
- Inari Saami and Swedish are both quantity languges, but they are described as begin quite different.
- Do Swedish and Inari Saami have fundamentally different quantity systems?
- Hypothesis: Inari Saami effects on vowels are simply phonetic side effects; the Swedish interaction between vowels and consonants is a fundamental part of the phonology
- Can we look for acoustic evidence for the hypothesis?

(4 個)ト イヨト イヨト

Within category

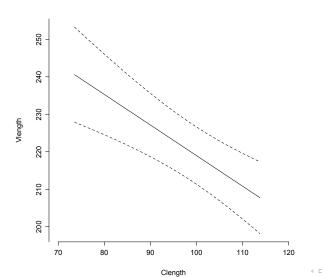

- Do we find a negative correlation in duration between vowels within categories?
- Example: several instances of words of the type [ha:t]
- If the duration of consonants and vowels are fundamentally co-dependent in Swedish, then perhaps we would expect a negative correlation within categories in Swedish, and not in Inari Saami

Inari Saami

- Category: For example, words with short V1 and short C.
- Within categories, there is no negative correlation in duration between vowel and consonant in Inari Saami.
- Within categories, there is either no significant correlation, or else a (weak) positive correlation
- Positive correlation probably due to weak speech rate effects

(4 回 ト 4 ヨ ト 4 ヨ ト

Speaker IM, short V1 short C


E

Swedish

- Category: For example, words with long V and short C.
- Within categories, there is sometimes negative correlation in duration between vowel and consonant in Swedish, for some speakers and categories.
- For some speakers and categories, there was no correlation or a weak positive correlation
- Again, positive correlation probably due to weak speech rate effects

(4 回) (4 \Pi) (4 \Pi)

Speaker GT, long V short C

Toivonen

୬ ୯ ୯ 63 / 64

E

- 4 ⊒ →

Results of within-category study of vowel & consonant duration

- In Swedish, but not in Inari Saami, there are within-category negative correlations between vowel and consonant duration.
- Perhaps this makes sense if Swedish is a complementary quantity language and Inari Saami is not?