Past Event! Note: this event has already taken place.

Can We Detect Human Trafficking and Money Laundering Using Machine Learning?

February 7, 2018 at 1:30 PM to 3:30 PM

Location:5345 Herzberg Laboratories


Money laundering is the process of transferring profit from crime and illegal activities into legitimate assets. Based on the United Nations Office on Drugs and Crime, 2 to 5% of global GDP, or $800 billion – $2 trillion, is laundered globally on an annual basis. The laundered money often finances drug trafficking, human trafficking and terrorist activities.

Advanced analytic techniques are increasingly being employed to identify and reduce illegal activities such as money laundering. Machine Learning (ML) is playing an increasingly important role by way of two main mechanisms: transaction behavioral pattern analysis and network structure. Many financial institutions combine these two mechanisms to construct a rule based system to flag suspicious transactions. A challenge is that these systems can generate significant false positives which require tedious resource-intensive investigations.

In addition, such rule-based systems are challenged when seeking to detect new patterns and/or activities. Modern data mining and machine learning methods can help financial institutes by reducing system-generated false positives. In this talk, new machine learning methods employed to discover money laundering patterns will be presented.

About the speaker

Maria (Mahtab) Kamali, Data Scientist, Thomson Reuters Data Innovation Lab, Waterloo, Ontario

Maria’s work focuses on text processing/natural language processing and applying it in new applications. In her past experiences, she has helped startups build new features & capability using limited computational resources as well as freely available data. She recently joined Thomson Reuters Labs where she collaborates with 6 other TR innovation labs across the globe to build new data capability using state of the art machine learning methods. Maria holds a PhD in System Design Engineering from University of Waterloo.

All seats are sold out!