Photo of Gopal Subramaniam

Gopal Subramaniam

Adjunct Research Professor

Degrees:B.Sc. (Manitoba), Ph.D. (Montreal)
Phone:613-759-7619
Email:subramaniamra@agr.gc.ca
Office:Eastern Cereal and Oilseed Research Centre
Agriculture and AgriFood Canada
960 CARLING AVE, Bldg. 21
Central Experimental Farm
Ottawa, ON K1A 0C6
Website:Visit my lab website

Current Research

  •  Plant-Pathogen Interactions
  •  Regulation of Secondary Metabolism in Fungi
  •  Defense Response in Cereal Crops
  •  Protein-Protein Interactions
  •  Chemical Genomics

Selected Publications

  1. Shostak et al., (2023) Epistatic Relationship between MGV1 and TRI6 in the Regulation of Biosynthetic Gene Clusters in Fusarium graminearum. J. Fungi. https://doi.org/10.3390/jof9080816.
  2. Hicks et al., (2023) CRISPR-Cas9 Gene Editing and Secondary Metabolite Screening Confirm Fusarium graminearum C16 Biosynthetic Gene Cluster Products as Decalin-Containing Diterpenoid Pyrones. J. Fungi. https://doi.org/10.3390/jof9070695.
  3. Sharma T, Sridhar PS, Blackman C, Foote CS, Allingham JS, Subramaniam R, Loewen MC. (2022) Fusarium graminearum Ste3 G-protein coupled receptor: a mediator of hyphal chemotropism and pathogenesis. mSphere. https://doi.org/10.1128/msphere.00456-22
  4. Miltenburg M, Bonner C, et al.. (2022) Proximity-dependant biotinylation identifies a suite of candidate effector proteins from Fusarium graminearum. The Plant Journal https://doi.org/10.1111/tpj.15949 SMS ID: 53796
  5. Eranthodi A, et al., (2022) Cerato-plantain protein 1 is not critical for Fusarium graminearum growth and aggressiveness, but its overexpression provides an edge to Fusarium head blight in wheat. Can. J. Plant Pathology https://doi.org/10.1080/07060661.2022.2044910
  6. Seto D, Khan M, Bastedo DP, Martel A, Vo T, Guttman D, Subramaniam R, Desveaux D (2021) The Small Molecule Zaractin Activates ZAR1-Mediated Immunity in Arabidopsis. PNAS https://doi.org/10.1073/pnas.2116570118
  7. Manes N, Brauer EK, Hepworth S, Subramaniam R (2021). MAMP and DAMP signalling contributes resistance to Fusarium graminearum in Arabidopsis. J Expt Botany. https://doi.org/10.1093/jxb/erab285
  8. Bonner, C. et al., (2020) DNA methylation is responsive to the environment and regulates the expression of biosynthetic gene clusters, metabolite production, and virulence in Fusarium graminearum. Front. Fungal Biol.
  9. Geiser, D.M. et al., (2020) Phylogenomic analyses of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology. https://apsjournals.apsnet.org/doi/10.1094/PHYTO-08-20-0330-LE
  10. Shostak, K. et al., (2020) Activation of biosynthetic gene clusters by the global transcriptional regulator TRI6 in Fusarium graminearum. Mol Microbiol. https://doi.org/10.1111/mmi.14575
  11. Horianopoulos, L.C. et al., (2020) The Canadian Fungal Research Network: current challenges and future opportunities. Can. J. Microbiol. https://doi.org/10.1139/cjm-2020-0263.
  12. Sridhar, P.S. et al., (2020). Ste2 receptor-mediated chemotropism of Fusarium graminearum contributes to its pathogenicity against wheat. Scientific Reports. https://doi.org/10.1038/s41598-020-67597-z
  13. Brauer, EK, et al., (2020) Regulation and Dynamics of Gene Expression During the Life Cycle of Fusarium graminearum. Phytopathology. https://doi.org/10.1094/PHYTO-03-20-0080-IA
  14. Brauer, EK, et al., (2020) Genome Editing of a Deoxynivalenol-Induced Transcription Factor Confers Resistance to Fusarium graminearum in Wheat. MPMI. https://doi.org/10.1094/MPMI-11-19-0332-R
  15. Brauer, EK, et al., (2019) Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum. Fungal Genetics Biology 134: . 103277
  16. Cui X, et al., (2019) An optimised CRISPR/Cas9 protocol to create targeted mutations in homoeologous genes and an efficient genotyping protocol to identify edited events in wheat. Plant Methods 15, 119.
  17. Mogg C, Bonner C, Wang L, Schernthaner J, Smith M, Desveaux D, Subramaniam R, Desveaux D (2019) Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum. mBio DOI: 10.1128/mBio.00792-19
  18. Wang Y, Chisanga Salasini B, Khan M, Devi B, Bush M, Subramaniam R, Hepworth SR (2019) Clade I TGAs mediate BOP1/2 development functions. Plant Physiology DOI:10.1104/pp.18.00805

 

Book Chapters

  1. S Blackman C. and Subramaniam R. (2023). A Bioinformatic guide to identify protein effectors from phytopathogens. In: Foroud N.A. and Neilson J.A.D. (eds) Plant-Pathogen Interactions. Methods in Molecular Biology, Vol. 2659. Humana Press. SMS ID: 57344
  2. Rowland B.E., Henriquez M.A., Nilsen K.T., Subramaniam R., Walkowiak S. (2023). Review: Unraveling plant-pathogen interactions in cereals using RNAseq. In: Foroud N.A. and Neilson J.A.D. (eds) Plant-Pathogen Interactions. Methods in Molecular Biology, Vol. 2659. Humana Press. SMS ID: 57344
  3. Schernthaner J., Balcerzak M., Murmu M., Subramaniam R. (2021). A genotyping protocol to identify CRISPR/Cas9-edited events in hexaploid wheat. Bilichak A., Laurie AD. (eds) in Accelerated Breeding of Cereal Crops. Accelerated Breeding of Cereal Crops DOI:10.1007/978-1-0716-1526-3, Springer SMS ID: 53159
  4. Khan M., Subramaniam R., Desveaux D. (2021) Biotin-Based Proximity Labeling of Protein Complexes in Planta. In: Sanchez-Serrano J.J., Salinas J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 2200. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0880-7_21. SMS ID: 57346

[top]