Gopal Subramaniam
Adjunct Research Professor
Degrees: | B.Sc. (Manitoba), Ph.D. (Montreal) |
Phone: | 613-759-7619 |
Email: | subramaniamra@agr.gc.ca |
Office: | Eastern Cereal and Oilseed Research Centre Agriculture and AgriFood Canada 960 CARLING AVE, Bldg. 21 Central Experimental Farm Ottawa, ON K1A 0C6 |
Website: | Visit my lab website |
Current Research
- Plant-Pathogen Interactions
- Regulation of Secondary Metabolism in Fungi
- Defense Response in Cereal Crops
- Protein-Protein Interactions
- Chemical Genomics
Selected Publications
- Shostak et al., (2023) Epistatic Relationship between MGV1 and TRI6 in the Regulation of Biosynthetic Gene Clusters in Fusarium graminearum. J. Fungi. https://doi.org/10.3390/jof9080816.
- Hicks et al., (2023) CRISPR-Cas9 Gene Editing and Secondary Metabolite Screening Confirm Fusarium graminearum C16 Biosynthetic Gene Cluster Products as Decalin-Containing Diterpenoid Pyrones. J. Fungi. https://doi.org/10.3390/jof9070695.
- Sharma T, Sridhar PS, Blackman C, Foote CS, Allingham JS, Subramaniam R, Loewen MC. (2022) Fusarium graminearum Ste3 G-protein coupled receptor: a mediator of hyphal chemotropism and pathogenesis. mSphere. https://doi.org/10.1128/msphere.00456-22
- Miltenburg M, Bonner C, et al.. (2022) Proximity-dependant biotinylation identifies a suite of candidate effector proteins from Fusarium graminearum. The Plant Journal https://doi.org/10.1111/tpj.15949 SMS ID: 53796
- Eranthodi A, et al., (2022) Cerato-plantain protein 1 is not critical for Fusarium graminearum growth and aggressiveness, but its overexpression provides an edge to Fusarium head blight in wheat. Can. J. Plant Pathology https://doi.org/10.1080/07060661.2022.2044910
- Seto D, Khan M, Bastedo DP, Martel A, Vo T, Guttman D, Subramaniam R, Desveaux D (2021) The Small Molecule Zaractin Activates ZAR1-Mediated Immunity in Arabidopsis. PNAS https://doi.org/10.1073/pnas.2116570118
- Manes N, Brauer EK, Hepworth S, Subramaniam R (2021). MAMP and DAMP signalling contributes resistance to Fusarium graminearum in Arabidopsis. J Expt Botany. https://doi.org/10.1093/jxb/erab285
- Bonner, C. et al., (2020) DNA methylation is responsive to the environment and regulates the expression of biosynthetic gene clusters, metabolite production, and virulence in Fusarium graminearum. Front. Fungal Biol.
- Geiser, D.M. et al., (2020) Phylogenomic analyses of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology. https://apsjournals.apsnet.org/doi/10.1094/PHYTO-08-20-0330-LE
- Shostak, K. et al., (2020) Activation of biosynthetic gene clusters by the global transcriptional regulator TRI6 in Fusarium graminearum. Mol Microbiol. https://doi.org/10.1111/mmi.14575
- Horianopoulos, L.C. et al., (2020) The Canadian Fungal Research Network: current challenges and future opportunities. Can. J. Microbiol. https://doi.org/10.1139/cjm-2020-0263.
- Sridhar, P.S. et al., (2020). Ste2 receptor-mediated chemotropism of Fusarium graminearum contributes to its pathogenicity against wheat. Scientific Reports. https://doi.org/10.1038/s41598-020-67597-z
- Brauer, EK, et al., (2020) Regulation and Dynamics of Gene Expression During the Life Cycle of Fusarium graminearum. Phytopathology. https://doi.org/10.1094/PHYTO-03-20-0080-IA
- Brauer, EK, et al., (2020) Genome Editing of a Deoxynivalenol-Induced Transcription Factor Confers Resistance to Fusarium graminearum in Wheat. MPMI. https://doi.org/10.1094/MPMI-11-19-0332-R
- Brauer, EK, et al., (2019) Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum. Fungal Genetics Biology 134: . 103277
- Cui X, et al., (2019) An optimised CRISPR/Cas9 protocol to create targeted mutations in homoeologous genes and an efficient genotyping protocol to identify edited events in wheat. Plant Methods 15, 119.
- Mogg C, Bonner C, Wang L, Schernthaner J, Smith M, Desveaux D, Subramaniam R, Desveaux D (2019) Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum. mBio DOI: 10.1128/mBio.00792-19
- Wang Y, Chisanga Salasini B, Khan M, Devi B, Bush M, Subramaniam R, Hepworth SR (2019) Clade I TGAs mediate BOP1/2 development functions. Plant Physiology DOI:10.1104/pp.18.00805
Book Chapters
- S Blackman C. and Subramaniam R. (2023). A Bioinformatic guide to identify protein effectors from phytopathogens. In: Foroud N.A. and Neilson J.A.D. (eds) Plant-Pathogen Interactions. Methods in Molecular Biology, Vol. 2659. Humana Press. SMS ID: 57344
- Rowland B.E., Henriquez M.A., Nilsen K.T., Subramaniam R., Walkowiak S. (2023). Review: Unraveling plant-pathogen interactions in cereals using RNAseq. In: Foroud N.A. and Neilson J.A.D. (eds) Plant-Pathogen Interactions. Methods in Molecular Biology, Vol. 2659. Humana Press. SMS ID: 57344
- Schernthaner J., Balcerzak M., Murmu M., Subramaniam R. (2021). A genotyping protocol to identify CRISPR/Cas9-edited events in hexaploid wheat. Bilichak A., Laurie AD. (eds) in Accelerated Breeding of Cereal Crops. Accelerated Breeding of Cereal Crops DOI:10.1007/978-1-0716-1526-3, Springer SMS ID: 53159
- Khan M., Subramaniam R., Desveaux D. (2021) Biotin-Based Proximity Labeling of Protein Complexes in Planta. In: Sanchez-Serrano J.J., Salinas J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 2200. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0880-7_21. SMS ID: 57346
[top]