Photo of Gopal Subramaniam

Gopal Subramaniam

Adjunct Research Professor

Degrees:B.Sc. (Manitoba), Ph.D. (Montreal)
Phone:613-759-7619
Email:subramaniamra@agr.gc.ca
Office:Eastern Cereal and Oilseed Research Centre
Agriculture and AgriFood Canada
960 CARLING AVE, Bldg. 21
Central Experimental Farm
Ottawa, ON K1A 0C6
Website:Visit my lab website

Current Research

  •  Plant-pathogen interactions
  •  Regulation of secondary metabolism in fungi
  •  Defense response in cereal crops
  •  Protein-protein interaction
  •  Chemical genomics

Selected Publications

  1. Khan M., Subramaniam R., Desveaux D. (2021) Biotin-Based Proximity Labeling of Protein Complexes in Planta. In: Sanchez-Serrano J.J., Salinas J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 2200. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0880-7_21
  2. Bonner, C. et al., (2021) DNA methylation is responsive to the environment and regulates the expression of biosynthetic gene clusters, metabolite production, and virulence in Fusarium graminearum. Front. Fungal Biol. https://doi.org/10.3389/ffunb.2020.614633
  3. Geiser, D.M. et al., (2020) Phylogenomic analyses of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology https://doi.org/10.1094/PHYTO-08-20-0330-LE
  4. Shostak, K. et al., (2020) Activation of biosynthetic gene clusters by the global transcriptional regulator TRI6 in Fusarium graminearum. Mol Microbiol. https://doi.org/10.1111/mmi.14575
  5. Horianopoulos, L.C. et al., (2020) The Canadian Fungal Research Network: current challenges and future opportunities. Can. J. Microbiol. https://doi.org/10.1139/cjm-2020-0263.
  6. Brauer, EK, et al., (2020) Genome Editing of a Deoxynivalenol-Induced Transcription Factor Confers Resistance to Fusarium graminearum in Wheat. Phytopathology. https://doi.org/10.1094/MPMI-11-19-0332-R
  7. Sridhar, P.S. et al., (2020). Ste2 receptor-mediated chemotropism of Fusarium graminearum contributes to its pathogenicity against wheat. Scientific Reports. https://doi.org/10.1038/s41598-020-67597-z
  8. Brauer, EK, et al., (2020) Regulation and Dynamics of Gene Expression During the Life Cycle of Fusarium graminearum. Phytopathology. https://doi.org/10.1094/PHYTO-03-20-0080-IA
  9. Brauer, EK, et al., (2020) Genome Editing of a Deoxynivalenol-Induced Transcription Factor Confers Resistance to Fusarium graminearum in Wheat. MPMI. https://doi.org/10.1094/MPMI-11-19-0332-R
  10. Brauer, EK, et al., (2019) Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum. Fungal Genetics Biology 134: . 103277
  11. Cui X, et al., (2019) An optimised CRISPR/Cas9 protocol to create targeted mutations in homoeologous genes and an efficient genotyping protocol to identify edited events in wheat. Plant Methods 15, 119.
  12. Mogg C, Bonner C, Wang L, Schernthaner J, Smith M, Desveaux D, Subramaniam R, Desveaux D (2019) Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum. mBio DOI: 10.1128/mBio.00792-19
  13. Wang Y, Chisanga Salasini B, Khan M, Devi B, Bush M, Subramaniam R, Hepworth SR (2019) Clade I TGAs mediate BOP1/2 development functions. Plant Physiology DOI:10.1104/pp.18.00805
  14. Fernando U, Chatur S, Joshi M, Bonner C.T., Fan T, Hubbard K, Chabot D, Rowland O, Wang L, Subramaniam R, Rampitsch C (2018) Redox signalling from NADPH oxidase targets metabolic enzymes and developmental proteins in Fusarium graminearum. Mol Plant Pathol. doi.org/10.1111/mpp.12742
  15. Khan M, Ji-Young Y, Gingras A-C, Subramaniam R, Desveaux D (2018) In Planta proximity dependent biotin identification (BioID). Scientific Reports (8): 9212.
  16. Mirmiran A, Desveaux D, Subramaniam R (2018) Building a protein-interaction network to study Fusarium graminearum pathogenesis. Can. J. Plant Pathol. 10.1080/07060661.2018.1442370
  17. Khan M, Seto D, Subramaniam R, Desveaux D (2018) Oh, the places they’ll go!  A survey of phytopathogen effectors and their host targets. The Plant Journal 93: 651-663
  18. Walkowiak S, Rowland O, Rodrigue N, Subramaniam R (2016) Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genomics 17:1014.
  19. Khan M, Subramaniam R, Desveaux D (2016) Of Guards, Decoys, Baits and Traps: Pathogen Perception in Plants by Type III Effector Sensors. Current Opinion in microbiology, 29: 49-55.
  20. Ta CAK., Guerrero-Analco,A, Roberts E, Liu R, Mogg CD, Saleem A, Otárola-Rojas M, Poveda L, Sanchez-Vindas P, Cal V, Caal F, Subramaniam R, Smith ML, Arnason JT (2016) Antifungal saponins from the Maya medicinal plant Cestrum schlechtendahlii G.Don (Solanaceae). Phytotheraphy Research, 30(3): 439-446.
  21. Subramaniam R, Narayanan S, Walkowiak S., Wang L, Joshi M, Rocheleau H, Ouellet T, Harris LJ (2015) Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum. Mol Micro 98 (4): 760-769.
  22. Walkowiak S, Bonner CT, Wang L, Blackwell, B, Rowland O, Subramaniam R (2015) Intraspecies interaction of Fusarium graminearum contributes to reduced toxin production and virulence. MPMI 28(11): 1256-1267.
  23. Carballo-Arce A.F, Ta, CAK, Rocha L, Liu R, Harmsen I, Mogg C, Otárola-Rojas M, Garcia M, Sanchz-Vindas P, Poveda L, Subramaniam R, Smith ML, Kaplan MAC, Figueiredo MR, Durst T, and Arnason JT (2015) Antimicrobial activities of Marcgraviaceae species and isolation of a naphthoquinone from Marcgravia nervosa (Marcgraviaceae). Botany 93: 1-12.
  24. Hurley B, Subramaniam R, Guttman DS, Desveaux D (2014) Proteomics of effector-triggered immunity (ETI) in plants. Virulence 5(7): 752-760.
  25. Lumba S, Toh S, Handfield L-F, Swan M, Liu R, Youn J-Y, Cutler SR, Subramaniam R, Provart N, Moses A, Desveaux D, McCourt, P (2014) A Mesoscale Abscisic Acid Hormone Interactome Reveals a Dynamic Signaling Landscape in Arabidopsis. Developmental Cell 29(3): 360-372.
  26. Walkowiak S, Subramaniam R (2014) A nitrogen-responsive gene affects virulence in Fusarium graminearum Can J plant pathol 36(2): 224-234.
  27. Ravensdale M, Rocheleau H, Wang L, Nasmith C, Ouellet T, Subramaniam R (2014) Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum. Mol. Plant Pathol DOI:10.1111/mpp.12145.
  28. Wang L, Josh, M, Walkowiak S, Subramaniam R. (2014) NADPH Oxidase genes NoxA and NoxB contribute to perithecia development and virulence in F. graminearum. Can J plant pathol 36(1): 12-21.
  29. Murmu M, Wilton M, Allard G, Pandeya R, Desveaux D, Singh J, Subramaniam R. (2014) Arabidopsis Golden2-like transcription factors (GLK) activate JA-dependent disease susceptibility against the biotrophic pathogen Hyaloperonospora arabidopsidis as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea. Mol. Plant Pathology 15(2): 174-184.
  30. Rampitsch C, Subramaniam, R. (2013) Towards systems biology of mycotoxin regulation. Toxins 5 (4): 675-682.
  31. Rampitsch C, Day J, Subramaniam, R, Walkowiak S.  (2012) Comparative secretome analysis of Fusarium graminearum and two of its non-pathogenic mutants upon deoxynivalenol induction in vitro. Proteomics 12(7): 1002-1005.
  32. Balcerzak M, Harris LJ, Subramaniam R, Ouellet T (2012). The feruloyl esterase gene family of Fusarium graminearum is differentially regulated by aromatic compounds and hosts. Fungal Biol. 116 (4): 478-488.
  33. Rampitsch C, Tinker NT, Subramaniam R, Barkow-Oesterreicher S, Laczko E. (2012) Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions.  Proteomics, 12 (7):1002-1005.
  34. Nasmith C, Walkowiak S, Wang L, Leung W, Gong Y, Johnston A, Harris L, Guttman D, Subramaniam R. (2011) Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. PloS Pathogens 7(9): e1002266.
  35. Schreiber K, Nasmith C, Allard G, Singh J, Subramaniam R, Desveaux D. (2011) Found in translation: High-throughput chemical screening in Arabidopsis thaliana identifies small molecules that reduce Fusarium head blight disease in wheat. Mol. Plant Microbe Interaction 24: 640-648.
  36. Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, Desveaux D. (2010) The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proceedings of the National Academy of Sciences of the USA (PNAS), 107(5), 2349-2354.
  37. Rampitsch C, Subramaniam R, Djuric-Ciganovic S, Bykova NV. (2010) The phosphoproteome of Fusarium graminearum at the onset of nitrogen starvation. Proteomics, 10(1): 124-140.
  38. Sharma T, Sridhar PS, Blackman C, Foote CS, Allingham JS, Subramaniam R, Loewen MC. (2022) Fusarium graminearum Ste3 G-protein coupled receptor: a mediator of hyphal chemotropism and pathogenesis . mSphere. https://doi.org/10.1128/msphere.00456-22
  39. Miltenburg M, Bonner C, et al.. (2022) Proximity-dependant biotinylation identifies a suite of candidate effector proteins from Fusarium graminearum. The Plant Journal https://doi.org/10.1111/tpj.15949 SMS ID: 53796
  40. Eranthodi A, et al., (2022) Cerato-platanin protein 1 is not critical for Fusarium graminearum growth and aggressiveness, but its overexpression provides an edge to Fusarium head blight in wheat. Can. J. Plant Pathology https://doi.org/10.1080/07060661.2022.2044910; SMS ID: 52694
  41. Seto D, Khan M, Bastedo DP, Martel A, Vo T, Guttman D, Subramaniam R, Desveaux D (2021) The Small Molecule Zaractin Activates ZAR1-Mediated Immunity in Arabidopsis. PNAS https://doi.org/10.1073/pnas.2116570118 SMS ID: 52196
  42. Manes N, Brauer EK, Hepworth S, Subramaniam R (2021). MAMP and DAMP signalling contributes resistance to Fusarium graminearum in Arabidopsis. J Expt Botany. https://doi.org/10.1093/jxb/erab285 SMS ID: 5118

[top]